














Methods for
 the calculation of
physical effects



 3

## GEVAARLIJKE STOFFEN <br> 而 <br> GEVAARLIJKE S





























[^0]．




[^1]

[^2]







Ombo


．
是
是




，




－







$$
>
$$

正

$$
411+0
$$






$\qquad$
$\qquad$
$\qquad$
$\square$
$\square$
$\square$


$$
\square
$$

Publicatiereeks Gevaarlijke Stoffen 2

## Methods for the calculation of Physical Effects

Due to releases of hazardous materials (liquids and gases)

## szw

Ministerie van Verkeer en Waterstaat

# Methods for the calculation of physical effects 

- due to releases of hazardous materials (liquids and gases) -


## 'Yellow Book'

## CPR 14E

Editors: C.J.H. van den Bosch, R.A.P.M. Weterings

This report was prepared under the supervision of the Committee for the Prevention of Disasters and is published with the approval of

The Director-General for Social Affairs and Employment
The Director-General for Environmental Protection
The Director-General for Public Order and Security The Director-General for Transport

The Hague, 1996
The Director-General for Social Affairs and Employment

Committee for the Prevention of Disasters
Third edition First print 1997
Third edition Second revised print 2005


Research performed by TNO - The Netherlands Organization of Applied Scientific Research

List of authors

Chapter 1. General introduction

Chapter 2. Outflow and Spray release

Chapter 3. Pool evaporation

Chapter 4. Vapour cloud dispersion

Chapter 5. Vapour cloud explosion

Chapter 6. Heat flux from fires

Chapter 7. Ruptures of vessels

Chapter 8. Interfacing of models

Annex Physical properties of chemicals

Ir. C.J.H. van den Bosch Dr. R.A.P.M. Weterings

Ir. C.J.H. van den Bosch
Ir. N.J. Duijm

Ir. C.J.H. van den Bosch

Dr. E.A. Bakkum Ir. N.J. Duijm

Ir. W.P.M. Mercx
Ir. A.C. van den Berg
dIr. W.F.J.M. Engelhard

Mrs. Ir. J.C.A.M. van Doormaal Ir. R.M.M. van Wees

Ir. C.J.H. van den Bosch

Ir. C.J.H. van den Bosch

## Contents

## Preamble

Preface
Revision history

1. General introduction
2. Outflow and Spray release
3. Pool evaporation
4. Vapour cloud dispersion
5. Vapour cloud explosion
6. Heat flux from fires
7. Rupture of vessels
8. Interfacing of models

Annex Physical properties of chemicals

## Preamble


#### Abstract

When the first edition of this 'Y ellow Book' was issued, it contained calculation methods to be performed on pocket calculators. Although the second edition in 1988 presumed that personal computers would be available to perform the required calculations, only part of the report was updated. T oday more powerful computers are generally available, thus enabling the use of more complex and more accurate computing models. This third edition is a complete revision by TNO Institute of Environmental Sciences, Energy Research and Process Innovation. It is based on the use of these powerful PC's and includes the application of proven computing models. Special attention is paid to provide adequate directions for performing calculations and for the coupling of models and calculation results.

The revision of the 'Yellow Book' was supervised by a committee in which participated:

Dr. E.F. Blokker, chairman Dienst C entraal M ilieubeheer Rijnmond M r.Ir. K. Posthuma, secretary Dr. B.J.M. Ale Drs. R. Dauwe Ir. E.A. van K leef M rs. Ir. M .M. K ruiskamp Dr. R.O.M. van Loo

Ing. A.J. M uyselaar Ing. H.G. Roodbol Drs.Ing. A.F.M . van der Staak Ing. A.W. Peters Ir. M. Vis van Heemst

M inisterie van Sociale Zaken en W erkgelegenheid Rijksinstituut voor Volksgezondheid en M ilieu DOW Benelux N.V. M inisterie van Binnenlandse Zaken Dienst C entraal $M$ ilieubeheer Rijnmond M inisterie van Volkshuisvesting, Ruimtelijke Ordening en M ilieubeheer M inisterie van Volkshuisvesting, Ruimtelijke Ordening en M ilieubeheer Rijkswaterstaat M inisterie van Sociale Zaken en W erkgelegenheid M inisterie van Verkeer en W aterstaat AK ZO N obel Engineering B.V.

With the issue of this third edition of the 'Y ellow Book' the Committee for the Prevention of D isasters by H azardous M aterials expects to promote the general use of standardised calculation methods of physical effects of the release of dangerous materials (liquids and gases).


The H ague, 1996
THE COMMITEE FOR THE PREVENTION OF DISASTERS BY HAZARDOUS MATERIALS,

Drs. H.C.M.M iddelplaats, chairman

## Preface to the PGS 2 edition of the Yellow Book

Starting from June $1^{\text {st }}$ 2004, the Advisory Council on $D$ angerous Substances (Adviesraad Gevaarlijke Stoffen - AGS) was installed by the Cabinet. At the same time the Committee for the Prevention of D isasters (Commissie voor de Preventie van Rampen- CPR) was abolished.

CPR issued several publications, the so-called CPR-guidelines (CPR-richtlijnen), that are often used in environmental permits, based on the Environmental Protection Law, and in the fields of of labour safety, transport safety and fire safety.

The CPR-guidelines have been transformed into the Publication Series on D angerous Substances (Publicatiereeks G evaarlijke Stoffen - PGS). T he aim of these publications is generally the same as that of the CPR-guidelines. All CPR-guidelines have been reviewed, taking into account the following questions:

1. Is there still a reason for existence for the guideline or can the guideline be abolished;
2. C an the guideline be reintroduced without changes or does it need to be updated.

The first print (1997) of the $3^{\text {rd }}$ edition Y ellow Book contained typographical errors that occurred during the conversion of the Y ellow Book documents from one word processing system to another. M ost of these conversion errors occurred especially with formulas, leading to erroneous and non-reproducible results when calculation examples and formulas were recalculated.

This PGS 2 edition (2005) is a second print that has been thoroughly checked for errors. Every chapter starts with a condensed summary of changes to give the user an idea about what was changed and where it was changed.

D espite all effort, it might be possible that errors still persist. If this is the case, or if you have any other remarks about the Yellow Book, please send a mail to: info@infomil.nl.

H ard copies of this PGS-2 edition can be obtained from Frank van het Veld, T N O D epartment of Industrial \& External Safety: YellowBook@tno.nl, or fax +3155549 3390.

Also on behalf of my colleagues at the M inistries of Transport, Social Affairs and of the Interior,
The State Secretary of H ousing Spatial Planning and the Environment (VROM).

Drs. P.L.B.A van Geel

CPR 14E
Revision history of the 'Y ellow B ook'

## Revision history

| Date | Release | Comments |
| :--- | :--- | :--- |
| 19 April 2005 | $3^{\text {rd }}$ edition $2^{\text {nd }}$ print, version 1 | Please refer to the modification <br> paragrahs of all chapters. |
| $3^{\text {rd }}$ edition $2^{\text {nd }}$ print, version 2 | The appendix of chapter 6 was <br> missing and has now been included. <br> Table 6.A.2 and Figure 6.A.11 were <br> not corresponding and has been <br> corrected. |  |

Chapter 1
General introduction
C.J.H. van den Bosch, R.A.P.M . W eterings

## Table of contents of chapter 1

1.1 Introduction to chapter 1 ..... 1.3
1.2 Educational objectives and target groups ..... 1.4
1.3 C ontents of the Revised Y ellow Book ..... 1.5
1.3.1 General remarks ..... 1.5
1.3.2 Remarks on the individual chapters ..... 1.6
1.4 U ser instructions ..... 1.8
1.5 References ..... 1.9

## 11 Introduction to chapter 1

For designers, manufacturers of industrial equipment, operators and responsible authorities it is essential to have models available for assessing the physical effects of accidental releases of hazardous materials.
F or this purpose the handbook ' $M$ ethods for the calculation of physical effects of the release of dangerous materials (liquids and gases)', was issued by the Directorate G eneral of L abour in 1979.
In the past decade the handbook has been widely recognised as an important tool to be used in safety and risk assessment studies to evaluate the risks of activities involving hazardous materials. Because of its yellow cover, the handbook is world-wide known as the 'Y ellow Book'.

The 'Y ellow Book', originating from 1979, was partially revised in 1988. H owever, it can be stated that the Y ellow Book issued in 1988 was almost entirely based on literature published before 1979.
The current version of the Yellow Book results from an extensive study and evaluation of recent literature on models for the calculation of physical effects of the release of dangerous materials. The Committee for the Prevention of Disasters, Subcommittee R isk Evaluation started this project in June 1993 and it was completed in M arch 1996.

This project was carried out by TNO Institute of Environmental Sciences, Energy Research and Process Innovation, T N O Prins M aurits Laboratory and T N O Centre for T echnology and Policy Studies.

The project was supervised by a steering commitee with representatives from governmental organisations and proces industries with the following members:
B.J.M. Ale, E.F. Blokker (chairman), R. Dauwe, E.A. van Kleef, M rs. M. K ruiskamp, R.O.M . van Loo, A.J. M uyselaar, A.W. Peters, K . Posthuma (secretary), H.G. Roodbol, A.F.M . van der Staak, M . Vis van H eemst.

The revision had the following three objectives:

1. to update individual models from a scientific point of view, and to complete the book with models that were lacking,
2. to describe the interfacing (coupling) of models,
3. to meet educational requirements.

This general introduction starts with a description of the educational objectives pursued by the Y ellow Book. A general description of the target groups is envisioned (in section 1.2). The differences between this edition and the previous edition are elucidated in section 1.3. F inally (in section 1.4), guidance will be given to the reader regarding how to use the Y ellow Book.

### 1.2 E ducational objectives and target groups

In the first phase of the process of developing this update of the Y ellow Book, an educational framework was formulated [Weterings, 1993] and a set of educational objectives was defined. Studying the Y ellow Book the reader may expect to:
a. gain knowledge of the phenomena relevant to estimating the physical effects of the release of hazardous materials,
b. gain knowledge of the models that have been developed to describe these phenomena,
c. gain understanding of the general principles of the selection of these models, and of the conditions under which these models can be applied,
d. gain understanding of the procedure according to which the selected models should be applied,
e. be able to apply the selected models in practical situations, and to interface them adequately to related models for estimating physical effects of hazardous releases, according to more complex release scenarios.

The Y ellow Book has been written in such a manner as to meet the requirements of:

- chemical industry,
- technical consultancy bureaus,
- engineering contractors,
- authorities and government services (national and regional level),
- institutes for advanced research and education.

It should be kept in mind that these target groups will use the models for estimating physical effects of hazardous releases for different purposes. T able 1.1 presents some of the purposes for which specialists from industry, government agencies or consultancy may use the presented models. The number of stars gives some indication of the frequency in which the models are used in practice.

Table 1.1 Selected target groups and purposes in estimating physical effects

| Purpose | Target groups |  |  |
| :--- | :---: | :---: | :---: |
|  | Companies | Authorities | Consultants |
| Design of installations | $* * *$ | $*$ | $* *$ |
| Quantified risk assessment | $* * *$ | ${ }^{* *}$ | $* * *$ |
| Workers safety | ${ }^{* *}$ | ${ }^{*}$ | $* *$ |
| Emergency planning | ${ }^{* *}$ | ${ }^{* *}$ | $*$ |

## 13 Contents of the Revised Yellow Book

### 13.1 General remarks

In the past decade, considerable progress has been made in modelling physical effects resulting from accidental releases of a hazardous material. The current revision has been based on available data in the open literature and known state-of-the-art models, and maintains more or less the same structure as the former version:

| Chapter | Author |
| :---: | :---: |
| 1. General Introduction | C.J.H. van den Bosch and R.A.P.M. Weterings |
| 2. Outflow and Spray Release | C.J.H. van den Bosch and N.J. Duijm |
| 3. Pool Evaporation | C.J.H. van den Bosch |
| 4. Vapour Cloud Dispersion | N .J. Duijm and E. Bakkum |
| 5. Vapour Cloud Explosions | W.P.M. M ercx and A.C. van den Berg |
| 6. H eat Fluxes from F ires | W.J.F.M E Engelhard |
| 7. Ruptures of Vessels | R.M.M. van W ees and J.C.A.M . van D oormaal |
| 8. Interfacing of M odels | C.J.H. van den Bosch |

The strongly increased availability of powerful (personal) computers has caused a shift in the application of analytical models and physical correlations towards complex computerised numerical models. We aimed to collect models that combine a good scientific performance with ease of application in practice.
It appears that the optimal combination of models varies for different classes of physical effect models; some models are simple correlations, many models consist of a straight forward numerical scheme, but few models are unavoidably complex as the related physical phenomena have a complex nature.
The selected models are described in a way to make computerisation by the reader possible in principle, yet prices of available software packages are relatively low.

An inventory of the applicable models available in the field of safety and hazard assessment studies has shown the 'white spots' left in this area.
Guidelines on how to deal with 'white spots' in the revised 'Y ellow Book' have been based on engineering judgement, which may lead to simple rules of the thumb.

Although the Y ellow Book focuses on liquids and gases, under certain conditions some models may be applied for solids. In particular, atmospheric dispersion models may be used to estimate concentrations of non-depositing dust in the atmosphere, or concentrations of volatile reaction products of burning solids.

### 1.3.2 Remarks on the individual chapters

Below, the major improvements and differences in this version of the Y ellow Book in relation to the former edition are outlined.

In chapter 2 'Outflow and Spray Release' a rather fast model for two-phase flow in pipes is given as well as several models about non-stationary outflow from long pipe lines. M uch attention is given to the dynamic behaviour of the content of vessels due to the release of material.
An adequate model for spray release is presented, explaining amongst others why 'light gases’ such as ammonia can behave like a heavy gas under certain circumstances.

In chapter 3 'Pool Evaporation’ a model for the evaporation of a (non-)spreading boiling and non-boiling liquid pool on land or on water is described. This model overcomes many numerical boundary problems encountered in the past, but is also quite complex. In addition a model for the evaporation of volatile solved chemicals in water is given.

Chapter 4 'Vapour C loud Dispersion’ reflects the major scientific progress that has been made on modelling heavy gas dispersion. The plume rise model has been extended for heavy gases. Also a new description is given for the atmospheric boundary layer stability.

In chapter 5 'Vapour Cloud Explosions' a new method for the prediction of blasts resulting from confined vapour cloud explosions is described. This so-called M ulti-Energy-M ethod is an improvement to earlier methods. Although not fully developed yet, it is able to incorporate results of future experiments on vapour cloud explosions.

In chapter 6 'H eat Fluxes from Fires' a new model for gas flares and a model for confined pool fires on land and water are included.

In chapter 7 'Ruptures of Vessels’ models are described for several different types of vessel ruptures leading to blast and fragmentation. Although these models are much more adequate than previous models, they are not yet able to render very accurate predictions.

In chapter 8 'Interfacing of M odels' attention is given to the interfacing of the physical effect models described in the previous chapters. Often (subsequent) physical effects are involved in between the release of hazardous material and the actual impact on people and properties causing damage. So, physical effect models may have to be 'coupled', meaning that their results, i.e. the predictions of these models (output data), have to be adapted and transferred to serve as input to other subsequent

CPR 14E
Chapter 1 of the ' $Y$ ellow B ook'
models. The procedure of adaptation and transfer of data is usually addressed by 'interfacing'.

The remainder of this chapter deals with the physical effects of BLEVE's.
A BLEVE (Boiling Liquid Expanding Vapour Explosion) causes several physical effects: heat radiation, pressure waves and fragmentation, that may cause damage. T hese phenomena will be treated in different chapters. In order to present an overall picture of the BLEVE an integral calculation example is given in chapter 8.

### 1.4 User instructions

The educational design provides a framework according to which this version of the Y ellow Book has been structured. This framework defines the topics to be considered in separate sections, and reflects a causal chain of effects to be a logical argument in determining the sequence in which these topics should be addressed. As a result the Yellow Book starts with a section on outflow and spray release (chapter 2 ), then addresses evaporation (chapter 3) and dispersion (chapter 4), before addressing several other specific aspects, such as vapour cloud explosion (chapter 5), heat load (chapter 6) and the rupture of vessels (chapter 7). Finally a section on interfacing related models (chapter 8) illustrates how to proceed in applying a sequence of models in estimating physical effects, according to a few selected scenarios.

U sing the Y ellow Book, it is helpful to keep in mind that all chapters are structured in a similar manner. Each of the chapters 2 to 7 contains the following sections:

- section 1 provides an introduction and positions the chapter in relation to other chapters,
- section 2 provides a general introduction and defines relevant phenomena,
- section 3 gives a general overview of existing (categories) of models for the phenomena addressed,
- section 4 describes criteria according to which a limited number of models has been selected,
- section 5 provides a detailed description of the selected models: the general principles and assumptions on which they have been based, the procedure according to which these models should be applied as well as some considerations on their potential and limitations in practice,
- section 6 illustrates the practical application of the selected models by means of calculation examples,
- section 7 addresses relevant issues in relation to interfacing the selected models with other models,
- section 8 provides some discussion on the state-of-the art in the field addressed, which is relevant in view of assumptions and limitations of the selected models.

In conclusion, for background information the reader is referred to the sections 1 to 4 of each chapter. H owever, if the reader has already mastered the general principles of the selected models, it is advised to concentrate on the sections 5 and 6 - and if necessary also sections 7 and 8 - in which a detailed description is given of how to use the most relevant models for estimating the physical effects of hazardous releases.

CPR 14E
Chapter 1 of the ' $Y$ ellow B ook'

### 1.5 References

Y ellowB ook (1988),
M ethods for the calculation of physical effects of the release of dangerous materials (liquids and gases) $2^{\text {nd }}$ ed.,1988), published by Directorate General of Labour; English version, 1992).

W eterings (1993),
R.A.P.M . W eterings, T he revised Y ellow Book - educational concept,

TNO C entre for T echnology and Policy Studies (ST B), A peldoorn, O ctober 1993.

Chapter 2
Outflow and Spray release
C.J.H. van den Bosch, N .J. D uijm

## Modifications to Chapter 2 (Outflow and Spray release) with respect to the first print (1997)

N umerous modifications were made concerning typographical errors. A list is given below for the pages on which errors have been corrected.

In section 2.3.4.3 on page 2.36, as well as on page 2.87 and 2.89 the term 'void fraction' has been replaced by 'vapour mass fraction (or quality)'. The void fraction is a volume fraction, while the quality is a mass fraction, on which the two-phase density is based.

In section 2.4.3.4 and further onwards the name 'LPG' used with reference to the models of M orrow and T am has been replaced by 'propane', for which these models are derived.

In section 2.5.2.3 in equation (2.23) the erroneous $=$ sign in front of $\gamma$ has been removed.

In chapter 2 use is made of two different friction factors, viz. the $F$ anning factor $f_{F}$ and the $D$ arcy factor $f_{D}$, where $f_{D}=4 f_{F}$. As this has caused some confusion, $f_{D}$ has replaced almost all occurrences of $4 f_{F}$.

In section 2.5.2.5 a closing bracket has been added to equation (2.35). In equation (2.47a) the leading and ending brackets are removed.

In section 2.5.3.2 some equations have been corrected, viz.:

- In equation (2.58) the parameter $\phi_{m, e, 1}$ has been removed, because its value equals one according to the assumption of vapour outflow in step 1.
- In equation (2.59) the parameter $\rho_{V}$ is incorrect and has been replaced by $\rho_{L}$.
- Equation (2.60c) denoting the surface tension has been added.
- At the right hand side of equation (2.65) the parameter $f_{\text {Фv2 }}$ is incorrect and has been replaced by $f_{\text {Фv1 }}$.
- In equation (2.68a) the first bracket under the square root sign has been replaced to in front of the gravitational acceleration g .
- In equation (2.98) two brackets have been added.
- On page 2.95 some correlations for the parameters $C_{A r}$ and $C_{B r}$ from the TPDIS model have been added.

In section 2.5.3.6 the equations (2.118) have been modified and the constants $C$ have been corrected. The same holds for equation (2.128b).

In section 2.5.4.2 the discharge coefficient for a ruptured pipe has been added (equation (2.197d)), as well as equation (4.198) denoting the pressure drop in a pipe.

In section 2.5 .5 the equations (2.202) and (2.202a) have been modified by adding two brackets enclosing the last multiplication.

## In chapter 2.6 (calculation examples) the results of some examples have been corrected.

In section 2.6.2.1 table 2.3 has been replaced.
In section 2.6.2.2 the input parameter 'Vessel volume' has been added and the resulting mass flow at $t$ equals zero seconds has been adjusted. F urthermore table 2.4, containing incorrect and irrelevant data, has been removed.
In section 2.6.2.3 the input parameter 'Initial density' has been added and the resulting mass flows have been corrected. Furthermore all the computational steps described on page 2.132 have been corrected, i.e.

- Equation (2.24) has been added.
- Equations (2.40) and (2.41) have been corrected.
- The equation in step 6 has been corrected; two minus signs were missing in the exponents.
In section 2.6.2.4 in the equation in the first step two brackets have been added. F urthermore the results have been adjusted.
In section 2.6.3.2 the value for the surface tension has been corrected, as well as the output values. Equation (2.59) was incorrect and has been modified, cf. this equation on page 2.79. F urthermore table 2.6, containing incorrect and irrelevant data, has been removed.
In section 2.6.3.3 the resulting output values have been corrected and table 2.7 has been removed. This table presented data from a rather slow iterative calculation, while it is preferred to search for the maximum using a maximum finder e.g. the G olden Section Search method.
In section 2.6.3.4 table 2.5 has replaced the former incorrect table 2.8.
In section 2.6.3.5 table 2.6 has replaced the former incorrect table 2.9. F urthermore all calculation steps have been reviewed and the results have been corrected where appropriate. The former figure 2.13 has been removed.
Also in section 2.6.3.6 the various results in the cal culation steps have been corrected. In section 2.6.4.1 the output results have been corrected and table 2.8 has replaced the former incorrect table 2.11.
In section 2.6.4.2 the computational procedure has been modified. The former procedure tried to find the actual liquid mass flow by iterating on the Reynolds number. It is more straightforward to iterate on the mass flow itself, preferably using a root finder. The new approach has been described. Furthermore the output result has been corrected and the former table 2.12 has been removed.


## List of symbols Chapter 2

| $\mathrm{A}_{\text {e }}$ | exit cross-sectional area (2.1b) | $\mathrm{m}^{2}$ |
| :---: | :---: | :---: |
| $\mathrm{A}_{\mathrm{f}}$ | jet cross-section after flashing (2.1b) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\mathrm{h}}$ | cross-sectional area hole (2.22) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\mathrm{j}}$ | jet cross-section after evaporation droplets (2.167) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\mathrm{p}}$ | cross-sectional area pipe (2.31) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\mathrm{r}}$ | area ratio (2.49) | - |
| $\mathrm{A}_{\mathrm{L}}$ | normal liquid surface in the vessel (2.58) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\mathrm{R}}$ | area ratio defined by (2.134b) | - |
| b | radius (2.6) | m |
| $\mathrm{b}_{\text {disp }}$ | cloud radius (2.177) | m |
| $\mathrm{b}_{\mathrm{e}}$ | exit radius (table 2.4) | m |
| $\mathrm{b}_{\mathrm{f}}$ | jet or cloud radius after flashing (2.6) | m |
| $\mathrm{b}_{\mathrm{j}}$ | jet or cloud radius after evaporation droplets (2.176) | m |
| C | molar or volume fraction (2.159) | - |
| $C^{\prime}$ | atmospheric concentration (2.214) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\mathrm{C}_{\text {disp }}$ | c after expansion to ambient windspeed (2.179) | - |
| $\mathrm{c}_{\mathrm{j}}$ | c after evaporation droplets (2.155) | - |
| $\mathrm{C}_{\text {w }}$ | molar fraction of water (2.159) | - |
| $\mathrm{C}_{\text {wv }}$ | molar fraction of water vapour (2.159) | - |
| C | arbitrary constant (2.32) | - |
| C* | arbitrary constant (2.33) | $\left(\mathrm{N} / \mathrm{m}^{2}\right) \cdot \mathrm{m}^{3 \zeta}$ |
| $\mathrm{C}_{\text {AA }}$ | combined Arrhenius' and Arnolds' constant (2.67) | $\mathrm{kmol}^{1 / 6} \cdot \mathrm{~K}^{1 / 2} / \mathrm{m}^{1 / 2}$ |
| $\mathrm{C}_{\text {Ar }}$ | volume ratio parameter in TPDIS (2.103) | - |
| $\mathrm{C}_{\mathrm{D} 1}$ | constant D iers model (2.59) | - |
| $\mathrm{C}_{\mathrm{D} 2}$ | constant in Diers model (2.62a) | - |
| $\mathrm{C}_{\text {Bi }}$ | polynomial constants in M orrow's model (2.129a) | - |
| $\mathrm{C}_{\mathrm{Br}}$ | density ratio parameter in T PDIS (2.104) | - |
| $\mathrm{C}_{\mathrm{Ci}}$ | polynomial constants in M orrow's model (2.118a) | - |
| $\mathrm{C}_{\mathrm{b}}$ | blow-down correction factor (2.48) | - |
| $\mathrm{C}_{\mathrm{c}}$ | contraction coefficient (2.27) | - |
| $\mathrm{C}_{\text {d }}$ | discharge coefficient (2.22) | - |
| $\mathrm{C}_{\text {ds }}$ | constant related to droplet size (2.143b) | - |
| $\mathrm{C}_{\mathrm{f}}$ | friction coefficient (2.27) | - |
| $\mathrm{C}_{\text {Lp }}$ | artificial constant in T am's model (2.137a) | m |
| $\mathrm{C}_{\mathrm{p}}$ | specific heat at constant pressure (2.26) | J/(kg'K) |
| $C_{p, L}$ | specific heat liquid phase at constant pressure (2.77) | J/(kg-K) |
| $\mathrm{C}_{\text {Tam }}$ | correction factor for initial mass flow rate (2.137b) | (-) |
| $\mathrm{C}_{\mathrm{v}}$ | specific heat at constant volume (2.18) | J/(kg $\cdot \mathrm{K}$ ) |
| $\mathrm{C}_{\alpha}$ | constant of decay in T am's model (2.131) | 1/s |
| $\mathrm{C}_{\varepsilon}$ | constant (2.3) | - |
| $\mathrm{C}_{\mathrm{C}}$ | subconstant in T am's model (2.134) | 1/K |
| $\mathrm{C}_{\text {¢V }}$ | auxiliary variable (2.68a) | m |
| $\mathrm{C}_{\text {¢mf }}$ | constant (2.2) | - |


| $\mathrm{C}_{\text {O }}$ | constant W alden's rule (2.66) | m |
| :---: | :---: | :---: |
| $\mathrm{d}_{\mathrm{d}}$ | droplet diameter (2.143a) | m |
| $\mathrm{d}_{\mathrm{h}}$ | hole diameter (2.208) | m |
| $\mathrm{d}_{\mathrm{p}}$ | (inner) pipe diameter (2.31) | m |
| $\mathrm{d}_{\mathrm{v}}$ | vessel diameter (2.68b) | m |
| $\mathrm{d}_{0}$ | droplet diameter at ground level (2.151) | m |
| $\mathrm{d}_{\mathrm{M}}$ | maximum rain-out droplet (2.148) | m |
| $\mathrm{d}_{\mathrm{R}}$ | radius ratio defined by (2.134a) | - |
| D | diffusion coefficient (2.144b) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{D}_{\mathrm{c}}$ | toxic load (2.214) | $\left(\mathrm{kg} / \mathrm{m}^{3}\right)^{\mathrm{n}} \cdot \mathrm{S}$ |
| $\mathrm{f}_{\mathrm{D}}$ | D arcy friction factor defined by (2.201a) | - |
| $\mathrm{f}_{\mathrm{F}}$ | Fanning friction factor (2.204) | - |
| $\mathrm{F}_{1}$ | function of pressure(2.118) | - |
| $\mathrm{F}_{2}$ | function of pressure (2.127) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{F}_{3}$ | function of pressure (2.129a) | - |
| $\mathrm{F}_{4}$ | function of pressure (2.128a) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{f}_{\text {¢V1 }}$ | flow dependent parameter in D iers model (2.65) | - |
| $\mathrm{f}_{\text {¢V2 }}$ | flow dependent parameter in D iers model (2.65) | - |
| g | gravitational acceleration (2.68A) | $\mathrm{m} / \mathrm{s}^{2}$ |
| G | mass flux (2.94) | $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{hf}_{\text {f }}$ | fluid height (2.93) | m |
| $h_{\text {h }}$ | height leak in vessel (par. 2.6.3.1) | m |
| $\mathrm{h}_{\mathrm{L}}$ | liquid height (2.70) | m |
| $h_{L, 0}$ | pipe inlet height (2.96) | m |
| $h_{L, 2}$ | pipe height at end of second flow regime (2.96) | m |
| $\mathrm{h}_{\mathrm{L}, \mathrm{e}}$ | pipe outlet height (2.105) | m |
| $h_{L, 3}$ | height difference in third regime (2.105) | m |
| $\mathrm{h}_{\text {s }}$ | source height (2.148) | m |
| H | specific enthalpy (2.4) | J/kg |
| $\mathrm{H}_{\mathrm{e}}$ | specific enthalpy at exit conditions (2.1a) | J/kg |
| $\mathrm{H}_{\mathrm{f}}$ | specific enthalpy after flashing (2.1a) | J/kg |
| $\mathrm{H}_{\mathrm{j}}$ | specific enthalpy after evaporation droplets (2.156) | J/kg |
| $\mathrm{H}_{L}$ | specific enthalpy of liquid (2.116) | J/kg |
| $\mathrm{H}_{\mathrm{V}}$ | specific enthalpy of vapour (2.140) | J/kg |
| $\mathrm{H}_{\mathrm{L}, 0}$ | idem at initial storage temperature (2.116) | J/kg |
| $\mathrm{H}_{0}$ | specific enthalpy at initial conditions (2.5) | J/kg |
| $\Delta h_{\text {L }}$ | height difference during the flow (2.96) | m |
| $\Delta h_{\text {Lp }}$ | head loss defined by (2.202) | m |
| i | time-step counter | - |
| $\mathrm{k}_{\text {B }}$ | droplet evaporation coefficient (2.146) | $\mathrm{m}^{2} / \mathrm{s}$ |
| K | resistance coefficient defined by (2.209) | - |
| $\mathrm{I}_{\mathrm{p}}$ | pipe length (2.31) | m |
| $I_{V}$ | length cylinder (par. 2.6.3.1) | m |


| $L_{v}$ | heat of vaporisation (2.66) | J/kg |
| :---: | :---: | :---: |
| $L_{v, w}$ | heat of vaporisation of water (2.161) | J/kg |
| LN (x) | natural logarithm of argument $x$ | - |
| ${ }^{10} \mathrm{LOG}(\mathrm{x})$ | common logarithm of argument x | - |
| $\Delta l_{i}$ | distance along the pipe from rupture to interface (2.126) | m |
| n | number of moles (2.9a) | - |
| $\mathrm{N}_{\mathrm{t}}$ | number of time-steps (2.12) | - |
| p | pressure ratio (2.47b) | - |
| $\mathrm{p}_{\text {cr }}$ | critical flow pressure ratio (2.47d) | - |
| $\mathrm{p}_{\mathrm{f}}$ | final pressure ratio (2.47c) | - |
| P | (absolute) pressure (2.8) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{a}}$ | ambient (atmospheric) pressure (2.1b) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{c}}$ | critical pressure of the chemical (2.11a) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{e}}$ | exit pressure in the pipe (2.1b) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{h}}$ | (hydraulic) liquid pressure (2.195) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{i}}$ | upstream pressure at interface (2.46) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{PaL}_{\mathrm{aL}}$ | external pressure above liquid (2.195) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{R}}$ | reduced pressure (2.11) | - |
| Pr | Prandtl number (2.144c) | - |
| $\mathrm{P}^{\circ}{ }^{\circ}$ | saturated vapour pressure (2.1d) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{0}$ | initial pressure (2.95) | $\mathrm{N} / \mathrm{m}^{2}$ |
| P* | corrected pressure (2.118c) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\Delta \mathrm{P}$ | pressure drop (2.29a) | $\mathrm{N} / \mathrm{m}^{2}$ |
| qs | mass flow (discharge rate) (2.14) | kg/s |
| $\mathrm{q}_{\mathrm{s}, \mathrm{e}}$ | exit flow rate (2.121) | kg/s |
| $\mathrm{q}_{\mathrm{s}, 0}$ | initial mass outflow (discharge) rate (2.35) | kg/s |
| $\mathrm{q}_{\mathrm{S}, \mathrm{\Phi m}=1}$ | initial mass flow rate vapour only (2.82) | kg/s |
| Q | (total) mass content (2.83) | kg |
| $\mathrm{Q}_{\mathrm{H}}$ | heat transferred into a system (2.18a) | J/mol |
| $\mathrm{Q}_{\mathrm{L}}$ | liquid mass (2.71) | kg |
| $\mathrm{Q}_{0}$ | initial total mass content (2.35) | kg |
| $\mathrm{Q}_{\mathrm{V}}$ | vapour mass (2.72) | kg |
| $\mathrm{Q}_{\mathrm{V}, 0}$ | initial vapour mass (2.81) | kg |
| R | gas constant (2.9a) | $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$ |
| Re | Reynolds number (2.98) | - |
| RH | relative humidity (2.157) | - |
| $\mathrm{S}_{\mathrm{p}}$ | circumference of a pipe (2.208) | m |
| $S_{L}$ | specific entropy of liquid phase (2.111) | J/(kg K ) |
| $\mathrm{S}_{\mathrm{V}}$ | specific entropy of vapour phase (2.111) | $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ |
| t | time from the start of the outflow (2.12) | S |
| $\mathrm{t}_{0}$ | time when droplet reaches the ground (2.150) | S |
| $\mathrm{t}_{\mathrm{v}}$ | duration vapour blown-out (2.81) | S |
| $\mathrm{t}_{\mathrm{B}}$ | time constant in the Wilson model (2.35) | S |
| $\mathrm{t}_{\mathrm{E}}$ | maximum time validity model (2.42) | S |
| $\Delta \mathrm{t}_{\mathrm{E}}$ | duration release remaining liquid (2.130b) | S |


| T | absolute temperature (2.8) | K |
| :---: | :---: | :---: |
| T ${ }_{\text {c }}$ | critical temperature of a chemical (2.11b) | K |
| T ${ }_{\text {d }}$ | droplet temperature (2.146) | K |
| $\mathrm{T}_{\text {disp }}$ | temperature after expansion to ambient (2.178) | K |
| Te | exit temperature (2.113) | K |
| T ${ }_{\text {j }}$ | temperature after evaporation droplets (2.155) | K |
| T m | melting point (2.113) | K |
| $\mathrm{T}_{\text {sh }}$ | shatter temperature limit (2.3) | K |
| TB | normal boiling point (2.1d) | K |
| To | initial temperature (2.39c) | K |
| TR | reduced temperature (2.11) | - |
| T ${ }^{\text {p }}$ | triple point temperature (par. 2.2.3.3) | K |
| $\delta \mathrm{T}_{\mathrm{sc}, 0}$ | initial sub-cooling (par. 2.3.4.4.2) | K |
| u | (fluid) velocity (2.6) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{a}}$ | wind speed (2.177) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{b}}$ | bubble rise velocity (2.59) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{g}}$ | gas velocity (2.204a) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{d}}$ | droplet free fall velocity (2.145) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{e}}$ | fluid velocity at exit (2.1a) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{f}}$ | fluid velocity after flashing (2.1a)) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{j}}$ | fluid velocity after evaporation droplets (2.166) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{5}$ | speed of sound (2.39a) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{s}, \mathrm{L}}$ | speed of sound in liquid (2.122) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{s}, \mathrm{V}}$ | speed of sound in vapour (2.120) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{L}}$ | velocity liquid phase (2.114) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{v}}$ | superficial (average) vapour velocity (2.58) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{VR}}$ | dimensionless superficial velocity (2.61) | - |
| $u_{V R, b f}$ | minimum value $u_{V R}$ for bubbly flow (2.62a) | - |
| $u_{V R, \text { cf }}$ | minimum value $u_{V R}$ for churn flow (2.62c) | - |
| U | internal energy of the gas (2.18a) | J/mol |
| V | specific volume (2.8) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{\mathrm{F}}$ | specific volume fluid (2.93) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $V_{F, ~}$ | fluid specific volume at the outlet (2.103) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{\mathrm{F}, \mathrm{i}}$ | specific volume at resistance site (2.108) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{\mathrm{L}}$ | specific volume of the liquid phase (2.95) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{\mathrm{V}}$ | specific volume vapour (2.110) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{\mathrm{c}}$ | critical volume (2.11d) | $\mathrm{m}^{3} / \mathrm{mol}$ |
| V | vessel volume (2.71) | $\mathrm{m}^{3}$ |
| $V_{\text {disp }}$ | V after expansion to ambient windspeed (2.177) | $\mathrm{m}^{3}$ |
| $V_{\text {f }}$ | cloud volume after flashing (2.171) | $\mathrm{m}^{3}$ |
| $\mathrm{V}_{\mathrm{j}}$ | cloud volume after evaporation droplets (2.176) | $\mathrm{m}^{3}$ |
| $\mathrm{V}_{\text {L,E }}$ | expanded 'liquid' volume in the vessel (2.69) | $\mathrm{m}^{3}$ |
| $\mathrm{V}_{\mathrm{L}, 0}$ | initial liquid volume in the vessel (2.69) | $\mathrm{m}^{3}$ |
| $\mathrm{V}_{\mathrm{p}}$ | pipeline volume (2.136) | $\mathrm{m}^{3}$ |
| $V_{\text {R }}$ | reduced volume (2.11d) | - |
| We | Weber number (2.142) | - |
| X | length variable along the pipe (2.97) | m |
| $\mathrm{x}_{\mathrm{s}}$ | distance to the source (2.210) | m |
| z | compressibility factor (2.10a) | - |

CPR 14E
Chapter 2 of the ' $Y$ ellow B ook'

| G reek symbols |  |  |
| :---: | :---: | :---: |
| $\beta$ | isothermal compressibility (2.7) | $\mathrm{m}^{2} / \mathrm{N}$ |
| $\gamma$ | specific heat ratio (Poisson ratio) defined by (2.26) | - |
| $\varepsilon$ | wall roughness (2.40) | m |
| $\eta_{L}$ | dynamic viscosity of liquid phase (2.102) | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\eta_{V}$ | dynamic viscosity of vapour phase (2.102) | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\eta_{\text {tp }}$ | dynamic viscosity two-phase fluid (2.101) | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\lambda$ | thermal conductivity (2.144c) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\mu_{i}$ | molecular mass (weight) chemical i (2.9b) | kg/mol |
| $\xi$ | liquid fraction in vessel (2.84) | - |
| $\rho$ | density (2.9c) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{F}}$ | average fluid density (2.91) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{L}}$ | liquid density (2.59) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\text {tp }}$ | density two-phase fluid (2.101) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{V}}$ | vapour density (2.58) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{e}}$ | density at exit (2.1b) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{f}$ | density after flashing (2.1b) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{j}$ | density after evaporation droplets (2.176) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\sigma$ | surface tension (2.59) | $\mathrm{N} / \mathrm{m}$ |
| $\sigma_{x}$ | downwind dispersion parameter (2.210) | m |
| $\xi$ | constant (2.33) | - |
| $\tau_{\text {cr }}$ | dimensionless sonic blow-down time (2.46) | - |
| $\tau_{i}$ | specific volume ratio defined by (2.108) | - |
| $\tau_{\text {s }}$ | dimensionless subsonic blow-down time (2.47a) | - |
| $\tau_{v}$ | time constant in Weiss model (2.43) | 5 |
| $v_{\text {a }}$ | kinematic viscosity of air (2.145) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $v_{\mathrm{L}}$ | liquid kinematic viscosity (2.67) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $v_{V}$ | vapour kinematic viscosity (2.67) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\phi$ | filling degree vessel (2.63) | $\mathrm{m}^{3} / \mathrm{m}^{3}$ |
| $\phi_{\mathrm{m}, \mathrm{e}}$ | quality (mass fraction vapour) at the exit (2.58) | kg/kg |
| $\Phi_{\mathrm{m}}$ | quality (mass fraction vapour) (2.92) | kg/kg |
| $\Phi_{\mathrm{m}, \mathrm{f}}$ | quality (mass fraction vapour) after flashing (2.2) | kg/kg |
| $\Phi_{\mathrm{v}}$ | void fraction (2.62a) | $\mathrm{m}^{3} / \mathrm{m}^{3}$ |
| $\Phi_{\mathrm{v}, \mathrm{av}}$ | average void fraction (2.63) | $\mathrm{m}^{3} / \mathrm{m}^{3}$ |
| $\psi$ | outflow coefficient (2.22) | - |
| M athematical symbols |  |  |
| C | general constant |  |
| $\Delta X$ | change in quantity $X$ |  |
| $\delta X$ | small change in quantity $X$ |  |
| dx | differential of $X$ |  |
| $\partial \mathrm{X}$ | partial differential of $X$ |  |
| $N$ ote: the numbers between brackets refer to equations. |  |  |

## Glossary of terms

| critical flow | The critical (choked) outflow is reached when <br> the downstream pressure is low enough for the <br> stream velocity of the fluid to reach the sound of <br> speed in the mixture, which is the maximum <br> possible flow velocity. |
| :--- | :--- |
| critical temperature | Thehighest temperature at which it is possible to <br> have two fluid phases of a substance in <br> equilibrium: vapour and liquid. Above the <br> critical temperature there is no unambiguous <br> distinction between liquid and vapour phase. |
| entropy |  |
| Thermodynamic quantity which is the measure |  |


| pipelines | Relatively long pipes for transportation of fluid <br> chemicals. |
| :--- | :--- |
| pressurized liquified gas (pressure liquefied gas) |  |
|  | Gas that has been compressed to a pressure <br> equal to saturated vapour pressure at storag <br> temperature, so that the larger part has <br> condensed to the liquid state |
| quality |  |
| release (synonyms: outflow, discharge, spill) |  |
|  | The mass fraction of vapour in a liquid-vapour <br> containment, i.e. the process and storage |
| mixture (two-phase mixture). |  |


| triple point | A point on a phase diagram representing a set of conditions (pressure $P_{3 p}$ and temperature $T_{3 p}$ ), under which the gaseous, liquid and solid phase of a substance can exist in equilibrium. For a pure stable chemical the temperature and pressure at triple point are physical constants. |
| :---: | :---: |
| two-phase flow | F low of material consisting of a mixture of liquid and gas, while the gas (vapour) phase is developing due to the vaporisation of the superheated liquid during the flow, caused by decreasing pressure along the hole or pipe due to the pressure drop over the resistance. |
| vapour | Chemical in the gaseous state which is in thermodynamic equilibrium with its own liquid under the present saturation pressure at given temperature. |
| void fraction | The volume fraction of vapour in a liquid-vapour mixture (two-phase mixture). |
| N ote: $\quad$ Som | been taken from Jones [1992], AIC hE [1989] and |

## Table of contents Chapter 2

Modifications to Chapter 2, Outflow and Spray release ..... 3
List of symbols Chapter 2 ..... 5
Glossary of terms ..... 11
2 Outflow and Spray release ..... 17
2.1 Introduction ..... 17
2.2 Phenomenon of outflow ..... 19
2.2.1 Introduction to section 2.2 ..... 19
2.2.2 Pressure and resistance ..... 19
2.2.3 Thermodynamic state of the stored chemical ..... 20
2.2.4 Release modes ..... 26
2.3 G eneral overview of existing models. ..... 29
2.3.1 Introduction to section 2.3 ..... 29
2.3.2 Release modes ..... 29
2.3.3 C ompressed gases ..... 31
2.3.4 Pressurised liquefied gases ..... 32
2.3.5 Liquids ..... 51
2.3.6 Friction factors ..... 53
2.3.7 Physical properties of chemicals ..... 53
2.4 Selection of models ..... 55
2.4.1 Introduction to section 2.4 ..... 55
2.4.2 Gases ..... 55
2.4.3 Pressurised liquefied gases ..... 56
2.4.4 Liquids ..... 60
2.5 Description of models ..... 61
2.5.1 Introduction to section 2.5 ..... 61
2.5.2 Compressed gases ..... 63
2.5.3 Pressurised liquefied gases ..... 78
2.5.4 Liquids ..... 118
2.5.5 Friction factors ..... 123
2.6 Application of the selected models: calculation examples ..... 127
2.6.1 Introduction to section 2.6 ..... 127
2.6.2 Compressed gases ..... 127
2.6.3 Pressurised liquefied gases ..... 134
2.6.4 Liquids ..... 153
2.7 Interfacing to other models ..... 157
2.7.1 Introduction to section 2.7 ..... 157
2.7.2 Interfacing to vapour cloud dispersion models ..... 157
2.8 Discussion of outflow and spray release models ..... 167
2.8.1 Introduction to section 2.8 ..... 167
2.8.2 General remarks ..... 167
2.8.3 Single-phase (out)flow and vessel dynamics ..... 168
2.8.4 Pressurized liquified gases ..... 168
2.8.5 Spray release mode to reacting chemicals ..... 169
2.8.6 'Epilogue' ..... 169
2.9 References ..... 171

A ppendix 2.1 Some properties of chemicals used in the T PDIS model [K ukkonen, 1990]

Appendix $2.2 \quad$ Relations for changes in enthalpy and entropy

## 2 Outflow and Spray release

### 2.1 Introduction

$M$ any hazardous materials are stored and transported in large quantities in gaseous and, usually, in liquid form, refrigerated or under pressure.
Incidental releases of hazardous materials can arise from failures in the process or storage equipment in which the hazardous substance is kept in a safe condition.
Initiating events are either system internal or system external. Internal causes may be subdivided into those arising from departures from design condition during operation and those from human error in operation. External causes could be, for instance, failure through mechanical impact, natural causes, corrosion and domino effects which are events arising at one plant affecting another.
Releases may also be necessary for the operation of a process.
The release of a material depends on:

- the physical properties of the hazardous material;
- the process or storage conditions;
- the way the (accidental) decontainment takes place, and,
- possible subsequent mechanical and physical interaction with the environment.

The state of aggregation of a chemical is determined by its physical properties, and the process or storage conditions, i.e. pressure and temperature in the containment. F or mixtures of chemicals also the composition has to be known.
The Y ellow Book deals with gases and liquids, so the following process conditions are considered, as usual:

1. compressed gas,
2. pressurised liquefied gases,
3. liquids.

Incidental releases from containment systems range from slow discharge through a small pinhole failure to rapid discharge resulting from a major rupture of a containment; Jones [1992].

D uring and after a release, the released material, gas or liquid, may interact with the immediate surroundings in its own specific way, also depending on the process conditions. These interactions have a direct effect on the (thermodynamic) state of the hazardous material entraining into the surroundings. The released material may form a liquid pool, or may be dispersed into the atmosphere or into a water body, or may be ignited immediately.

The models in this chapter 'O utflow and Spray Release' may act as a source term model to provide (quantitative) information about the so-called source term, such as:

- the amount of material entering the surroundings in the vicinity of the failing containment;
- the dimensions of the area or space in which this process takes place;
- the thermodynamic state of the released chemicals: concentration, temperature, and pressure;
- velocities of the outflowing chemical at the boundaries of the source region.

These results may be used for further calculations as input for subsequent physical effect models, described in chapter 3 'Pool evaporation', in chapter 4 'V apour C loud Dispersion', and in chapter 6 'H eat flux from fires'.

In the following sections, release phenomena of gases/vapours and liquids under various conditions will be addressed. E ach section will treat the subject from another perspective.
Section 2.2 provides the principles and basic understanding of the phenomena of outflow and spray release. It will address the applied thermodynamics and transport laws.
Section 2.3 provides an overview of methods and models published in open literature regarding the estimation of the characteristics of releases: release rates, temperatures of the released chemical, etc.
In section 2.4 the considerations will be elucidated that have led to the selection of the recommended models.
Section 2.5 provides complete detailed descriptions of the recommended models and methods. Whenever calculations or analyses have to be made, all necessary information can be found in this chapter, except for the physical properties of the chemical.
Section 2.6 provides examples in using the selected models and methods.
In section 2.7 the interfacing of other models, i.e. the necessary transformation of the results, will be addressed.
Finally, in section 2.8 general considerations are given about the models and methods presented and present gaps in the knowledge about outflow and spray release.

### 2.2 Phenomenon of outflow

### 2.2.1 Introduction to section 2.2

Section 2.2 provides the principles and basic understanding of the phenomenon of outflow (and spray release).
The outflow through an opening in a containment is mainly controlled by:

1. The pressure in the containment and the resistance to flow through the opening, and,
2. The state of aggregation of the chemical: gas, liquid, or vapour/liquid-mixture.

The different modes of a release can be divided in:

1. Transient releases (outflow), and,
2. Instantaneous releases.

The effect of pressure and resistance is briefly addressed in subsection 2.2.2. T he influence of the aggregation state of the outflowing fluid chemical is explained in subsection 2.2.3.
In subsection 2.2.4 mainly the distinction between stationary and non-stationary outflow is addressed in detail, determining the concept of modelling.

### 2.2.2 Pressure and resistance

The driving force for outflow of a material from a containment is the pressure difference between the containment and the ambient.
Such overpressure may exist because of:

1. gas compression,
2. saturated vapour pressure at storage temperature, or,
3. hydraulic liquid height.

The pressure difference has to overcome the wall friction due to flow in pipes and pipe fittings. Friction causes a pressure drop depending on the roughness of the pipe wall and the shape of the pipe fittings. F riction factors relate the pressure drop caused by friction to the characteristics of the pipe, such as pipe diameter and roughness of the inner pipe wall, and the flow velocity and the viscosity of the fluid.

In general the outflow rate of fluids will increase if the pressure difference over the hole or pipe increases, and thus also the stream velocity. F low of compressible fluids, like gases and vapour/liquid-mixtures (two-phase mixtures) may become critical. The so-called critical (choked) outflow is reached when the downstream pressure is low enough for that the stream velocity of the fluid to reach the speed of sound in the mixture, which is the maximum flow velocity possible. F or a given constant upstream stagnation state, further lowering of the downstream pressure does not increase the mass flux, but will only lead to steep pressure drops in the opening to the ambient. When the upstream pressure increases, the critical mass flow rate ( $\mathrm{kg} / \mathrm{s}$ ) will increase but only due to the increasing density of the outflowing chemical.

If the pressure in the outlet is higher than the ambient pressure, the flow is called choked. If these pressures are (nearly) equal, the flow is non-choked. It is customary to use 'choked flow' and 'critical flow' as synonyms.

### 2.2.3 Thermodynamic state of the stored chemical

The state of aggregation of a chemical is determined by its physical properties and the process or storage conditions, i.e. pressure and temperature in the containment. F or mixtures of chemicals also the composition has to be known.

This book deals with gases and liquids, and so the following different process conditions are considered, as usual:

1. compressed gas,
2. pressurised liquefied gases,
3. liquids.

### 2.2.3.1 Gases

'State of aggregation of chemical or mixture of chemicals that is fully in the gaseous state under the present pressure and temperature; gases have neither independent shape nor volume [W ebster, 1981].'

If the temperature $T$ of a chemical is higher than its critical temperature $T_{c}$, it will be a gas. Below the critical temperature the chemical may still be a gas if the pressure $P$ is lower than the saturated vapour pressure $P_{v}{ }^{\circ}(T)$. Increasing the pressure above its saturated vapour pressure at given temperature, forces the chemical to condensate.

### 2.2.3.2 Liquids

'State of aggregation of a chemical or mixture of chemicals, in which it has a definite volume but no definite form except that given by its container [W ebster, 1981].'

If a chemical has a temperature between its boiling point $T_{B}(P)$ at given (partial) pressure $P$ and its melting point $T_{m}$, it will be in the liquid state. Often these liquids are called non-boiling liquids, to distinguish them from the liquid phase apparent in stored pressurised liquefied gases.
It must be mentioned, however, that the mere fact of boiling or not boiling of the liquid is not relevant for outflow. Just the fact that the vapour pressure of a (nonboiling) liquid may be neglected if it is less than atmospheric, is relevant.
Refrigerated liquefied gases (just) below atmospheric pressure are also non-boiling liquids.

### 2.2.3.3 Pressurised liquefied gases

'C hemical in the liquid state which is in thermodynamic equilibrium with its own vapour under the present saturation pressure at given temperature, higher than the atmospheric pressure.'

The usual term 'pressurised liquefied gases' refers to a state in which a liquid chemical, i.e. the condensed 'gas', is in thermodynamic equilibrium with its own vapour, and thus at saturation pressure at given temperature: $P=P_{v}{ }^{\circ}(T)$.
The use of the terminology about 'gases' and 'vapours' used in this respect may be a little awkward, but will be maintained while commonly used in practice.

A so-called 'pressurised liquefied gas' is basically a two-phase system in which the vapour phase is in thermodynamic equilibrium with the liquid phase. This liquidvapour equilibrium may exist along the saturation curve: the storage temperature must be between the critical temperature $T_{c}$ and the triple point temperature $T_{3 p}$ of the chemical.

### 2.2.3.4 Influence of thermodynamic state of the stored chemical

The different thermodynamic states a chemical can have, have a major influence on the outflow in two ways. First, the magnitude of the mass outflow rate is very dependent on the aggregation state of the fluid. Secondly, the thermodynamic state of the chemical in the vessel determines to a great extent the way in which the vessel will react to the loss of material resulting from the outflow.

M ass flow rate

The diagram in figure 2.1 gives possible leak rates per unit of effective leak crosssection for (non-boiling) liquids, pressurised liquefied gases and gases over a range in pressure difference from 0.05 up to $2000 \operatorname{bar}\left(5 \cdot 10^{3}-2 \cdot 10^{8} \mathrm{~N} / \mathrm{m}^{2}\right.$ ). The different curves clearly show the strong pressure dependence of gas flow, and the fact that liquid leaking rates are 10-20 times higher than gas mass flow rates [Pilz, 1976].


Figure 2.1 Mass flow rate versus pressure difference for flow of gases, vapours and liquids through an orifice [Pilz, 1976]

## Two-phase flow

Beside gas flow and liquid flow, a so-called two-phase flow may be apparent. In general a 'two-phase flow' is basically a fluid flow consisting of a mixture of two separate phases, for instance water and oil, or water and air.
In this chapter we consider only two-phase flows of a pure, single chemical.
Such two-phase flows may develop when a pressurised liquefied gas flows through a pipe and the local pressure in the pipe becomes lower than the saturation pressure of the flowing liquid, due to decrease of pressure along the pipe due to friction. Then the liquid becomes superheated and a gas phase may appear due to vaporisation of the liquid.

The most important factor in the two-phase flow is the volumetric void fraction of vapour in the liquid (or its mass equivalent: quality). T he quality determines to a large extent the mass flow rate and the friction in the pipe.
The largest possible discharge rate is obtained with a pure liquid phase flow. For a two-phase discharge the mass flow rate may be substantially smaller, due to the increased specific volume of the fluid.

T wo-phase flow occurs if a pressurised liquefied gas is flowing in a pipe. This is a complex physical process, and a concise description of the process will be given here. Liquid, from the liquid section of the vessel filled with pressurised liquefied gas, accelerates into the pipe entrance and experiences a pressure drop. Regarding initially saturated liquids which are per definition in thermodynamic equilibrium with their vapour phase, this pressure drop creates a superheated state and nucleation bubbles are formed, when the pressure decreases below the saturation pressure.

The (rapidly) vaporising liquid (flashing) is part of a bubble formation process in which subsequently the formation of vaporisation nuclei, bubble growth and bubble transport take place. The flashing process is related to the vaporisation of liquid around nuclei and the hydrodynamics of the liquid under thermodynamic nonequilibrium conditions. Vaporisation nuclei develop under the influence of microcavitation at the pipe surface on the inside, as shown in figure 2.2.


Figure 2.2 Flash vaporisation of a pressurised liquefied gas in a pipe [Yan, 1990]

The driving force for liquid evaporation is therefore its excessive temperature above the saturation curve corresponding to the local pressure. Evaporation is usually considered to occur at the liquid bubble interface, and bubbles may continue to form downstream. F urther continuous pressure losses arise due to liquid wall friction and, more importantly, due to the evaporation process. As a result, the degree of superheat tends to increase and consequently also the evaporation rate. In addition, the expanding bubbles begin to interact and coalesce and adopt different heat and mass transfer modes: bubble flow, churn turbulent flow.
In many flows the evaporation proceeds to a point where the liquid is forced to the pipe walls and the gas occupies a rapidly moving core: annular flow.


Figure 2.3 Schematic of superheated liquid pipe flow [Ewan, 1988]

In critical flows, the acceleration has progressed to the point where the flow is choked, which is characterised by very steep pressure gradients located at the pipe exit, where the pressure is above ambient.

The maximum fraction of pressurised liquefied gas that may flash (vaporise) occurs when the final pressure is equal to the atmospheric pressure. D uring flashing, the total entropy of the fluid is conserved. Often it is assumed that the fluid is in a saturated state initially and finally, and the fluid is initially pure liquid (quality $\Phi_{m, 0}=0$ ). T he final temperature of the fluid leaving the pipe, is the boiling point temperature. In choked isentropic pipe flow the vapour fraction of the fluid at the exit is always smaller than the maximum flash fraction, because the exit pressure is higher than the atmospheric pressure for choked (critical) pipe flow. Small qualities correspond to a partial flashing process in which the exit pressure is substantial.

N ote that although the discharged fluid is mostly liquid on the basis of mass, it is mostly vapour on the basis of volume. T he qualities of a few per cent correspond to vapour volume fractions larger than $90 \%$. Clearly, this is due to the fact that the density of liquid is two to three hundred times higher than the density of vapour [K ukkonen, 1990].

## B ehaviour vessel content ('vessel dynamics')

For gases the position of the opening in the containment is irrelevant in general, although depressurising gas mixtures may partially condensate on the wall of the containment, resulting in a liquid pool at the bottom.

In case of a pressurised liquefied gas, a rapid depressurisation causes the liquid in the vessel to flash, which means that due to a relatively rapid depressurisation part of a superheated liquid evaporates rapidly until the resulting vapour/mixture is cooled below boiling point at the end pressure. Due to the development of vapour bubbles in the stored liquid ('champagne-effect') the liquid phase seems to expand, necessitating a redefinition of liquid height.
If the expanded liquid rises above the hole in the tank, a two-phase flow will be apparent through the hole in the tank.
The level swell is illustrated in figure 2.4.


Figure 2.4 Illustration of level swell in a depressurizing vessel filled with pressurised liquefied gas [Wilday, 1992]

It might not be realistic to expect a homogeneous rise of the liquid level in the vessel. D uring the blow down of the vapour, initially apparent in the vapour section of the vessel, liquid might be dragged along through the opening.
H owever, little data exist for the transient void fraction in the vent line during rapid depressurisation. Experiments have been carried out in which the blow-down times were less than two seconds [Bell, 1993]. It was concluded that the quality inside the vent line, based on the calculated vessel-average values, was much less than the experimentally determined values. This effect may compensate neglected apparent
liquid dragged along with the vapour stream.
Altogether it may be concluded, that the some-what idealised approach of having a blow-off of the vapour initially apparent, until the swelled liquid has risen above the opening in the vessel, may be not too bad an approximation.
So, for pressurised liquefied gases the relative height of the liquid level above the outflow opening in the containment is a crucial factor in determining the initial quality of the outflowing material from the vessel:

1. (Small) hole in vapour space of the vessel well above liquid level: $\rightarrow \quad$ vapour outflow
2. H ole in vapour space just above liquid level: $\rightarrow$ two-phase flow
3. H ole in liquid space well below liquid level: $\quad \rightarrow$ liquid outflow

In case of pressurised liquefied gases and non-boiling liquids the shape of the vessel should be taken into account for estimation of the liquid height. T his height might be of importance for the relative height of the hole or pipe connection and the hydraulic pressure.
Liquids will flow out as long as the liquid level is higher than the opening.

### 2.2.4 Release modes

Incidental releases from containment systems range from slow discharge through a small pinhole failure to rapid discharge resulting from a major rupture of a containment [Jones,1992].

In case a vessel has been damaged to a minor extent, this results in a small opening to the environment leading to relatively small outflow rates compared to the total amount of hazardous material in the process. This opening could be a crack or hole in the vessel wall, or could be a rupture of connected piping with a relatively small diameter. D epending on the ratio between the (initial) transient outflow rate and the total mass of chemical stored, a transient outflow has to be regarded as non-stationary or as (quasi-)stationary.

In general for outflow from vessels through a hole and through piping, the flow can be considered to be stationary, meaning that the outflow is (fully) controlled by the (stagnant) upstream pressure and the downstream pressure.
If the conditions upstream are changing gradually in time, the flow may be considered quasi-stationary, meaning that the outflow rate is changing in time only because the conditions upstream are changing.

The vessel can al so be ruptured totally. This causes the content, at least the larger part of it, to be released into the environment in a relatively short time. T his type of rel ease may be regarded as instantaneous. Instantaneous releases of pressurised liquefied gases will be considered in the paragraph dealing with spray release. D ifferent release types are illustrated in figure 2.5.

## CPR 14E

Chapter 2 of the ' $Y$ ellow B ook'


Figure 2.5 Ilustration of some conceivable release mechanisms [Kaiser, 1988]

In case of ruptured pipelines the flow in the pipeline will not be stationary during the larger part of the outflow, meaning that the outflow is not being controlled by the (stagnant) conditions of both pipe ends only, but will also be a function of time after the rupture itself.

### 2.3 General overview of existing models

### 2.3.1 Introduction to section 2.3

Section 2.3 provides an overview of methods and models for estimation of the characteristics of releases: release rate and thermodynamic state of the released chemical.

In the previous section the following different process conditions have been considered:

1. compressed gas,
2. pressurised liquefied gases,
3. (non-boiling) liquids.

The main structure of this section will be along this classification.
In the previous section also the following release modes have been distinguished:

1. outflow from vessels,
2. outflow from pipelines,
3. total rupture of vessels.

F or each process condition these three different release modes have to be addressed.

While the way of modelling of the different release modes is typical for every process condition, the general features of the approaches concerning the different release modes will be explained in subsection 2.3.2 first.
In subsection 2.3.3 the outflow of compressed gases will be explained, in subsection 2.3.4 the outflow of pressurised liquefied gases and in subsection 2.3.5 the outflow of (non-boiling) liquids.
In general physical properties are required to perform the calculations. For the calculations of the mass flow rate for flow in pipes, friction factors are required. Finally, in subsections 2.3.6 and 2.3.7 these two topics will be briefly addressed.

### 2.3.2 Release modes

### 2.3.2.1 Quasi-stationary flow from vessels

For outflow through relatively small holes in a vessel wall or in piping the flow may be considered to be quasi-stationary, as the vessel conditions change relatively gradually. T ransient conditions in the hole or pipe may be neglected.
The flow of a chemical out of a containment with a large capacity relative to the outflow rate, can be described by two coupled independent sub-models:

1. a sub-model 'vessel dynamics' that describes the dynamic behaviour of the material stored in the containment,
2. a sub-model 'outflow' that predicts the outflow rate and the conditions of the outflowing material as function of the conditions in the containment.

The independency of the 'outflow' and the 'vessel dynamics', makes it possible to estimate the change of the vessel conditions, regardless whether:

1. the outflow of materials goes through piping or through a hole in the vessel wall,
2. the gas outflow is critical or sub-critical (choked or non-choked),
3. the loss of containment is due to a one-phase outflow through a hole in the vessel wall or a two-phase flow in a pipe, etc.

The sub-model 'vessel dynamics' covers the changes of pressure, temperature, and mass content in the vessel caused by the outflow of material.
The changes of the conditions in the vessel may be estimated for small steps, i.e. sufficiently short periods of time, assuming the outflow rate and physical properties of the stored material to be constant.
This approach accommodates handling of discontinuities in the behaviour of the vessel content, like the 'sudden' drop of the liquid level under the vessel hole or pipe connection. In case the outflow rate effects the dynamic behaviour in the tank then for every time-step an iterative solution is still required.
The dependency of physical properties of temperature and pressure in the vessel can easily be taken into account, avoiding analytical approximations.
U sual assumptions made are thermodynamic equilibrium, isentropic processes, and homogeneous liquid and vapour or gas phases in the vessel.
A process is called isentropic when it is adiabatic and thermodynamic reversible. T he assumption of adiabatic process may be a good approximation for relatively badly isolated systems when the quantity of mass flowing through is so big that any heat exchange can be neglected.

### 2.3.2.2 Non-stationary flow from pipelines

In case of a rupture of a pipeline the flow in the pipe itself is non-stationary. The flow is controlled by the initial conditions in the pipeline apparent before the rupture, the ambient conditions, and the time passing after the rupture. The models may be distinguished according to the different process conditions

1. gas pipelines,
2. liquid pipelines,
3. pipelines with pressurised liquefied gases.

For non-stationary flows the usual assumptions regarding thermodynamic equilibrium can not be made without careful examination.

### 2.3.2.3 Total rupture of vessels: instantaneous releases

The physical phenomena playing a roll with instantaneous release of gases and (non-boiling) liquids are incorporated in 'subsequent' models, respectively vapour cloud dispersion (chapter 4) and pool evaporation (chapter 3), and will not be addressed in this chapter.
The instantaneous release of pressurised liquefied gases is not trivial and independent modelling exist. This topic will be addressed in the subsection 2.3.4.7

### 2.3.3 Compressed gases

### 2.3.3.1 Introduction to compressed gases

The (out-)flow of gases through holes and in pipes, and the dynamic behaviour of a (adiabatic) expansion of a compressed gas in a vessel, have been well established for many years. T he governing equations can be found in any handbook on this matter.

### 2.3.3.2 Vessel dynamics compressed gas

D ue to the outflow of gas out of a containment (vessels or pipelines), the remaining gas rapidly depressurises and will expand. This inevitably leads to a reduction in the temperature of the gas and the vessel itself. In case of gas mixtures less volatile components may condensate [H aque, 1990].

Applying the first law of thermodynamics, using the definition of volumetric work done by an expanding gas and of equations of state for (non-)perfect gases, enables the prediction of the decrease of pressure and temperature during the outflow.
This will result in an adequate description of the vessel dynamics as will be described in section 2.5.

### 2.3.3.3 Gas flow through holes and piping

Well-known relations for the stationary outflow through orifices and through pipes exist. In the previous edition [Y ellowBook,1988] models for critical and non-critical gas flow through holes have been given, together with laminar and turbulent flow of fluids (i.e. gases and liquids). These models will be described in section 2.5.

V apour flow

The models for outflow of gas through holes and through piping are also valid for pure vapour flowing out of the vapour section in the containment for vaporising pressurised liquefied gases.

### 2.3.3.4 Non-stationary gas flow in pipelines

N on-stationary gas flow after a full bore pipeline rupture

The previous edition of the $Y$ ellowB ook [1988] describes an approximate solution of the set differential equations governing the non-stationary gas flow after a full bore pipeline rupture by linearisations and applying perfect gas law. T he time-dependency
of the outflow is treated by assuming a so-called expansion zone which, after full bore rupture, starts moving with the speed of sound in the pipeline in the opposite (upstream) direction. T his model has not been validated.

Both O lorunmaiye [1993] and L ang [1991] describe two rather complex models with corresponding numerical solution procedures. Assumptions made are: onedimensional flow, friction term as in steady flow, isothermal or adiabatic flow, perfect gas.
L ang [1991] describes the flow in the gas pipeline after breakage by solving the mass balance and momentum differential equation using the spectral method with Legrendre-polynomials.
Olorunmaiye [1993] recognises the conservation equations for mass and momentum to form a set of hyperbolic partial differential equations, and solves them with a numerical method of characteristics.

H anna [1987] gives the empirical correlation of Bell, as reformulated by Wilson. The Wilson model predictions for the mass flow rate of methane from a pipeline are quite similar to those of the G asunie-model.
$N$ on-stationary gas flow in pipelines through small holes
In Weiss [1988] an empirical correlation has been given for small leakages in pipelines, which has been validated against complex models.
This correlation for small holes in pipelines is the only model found in open literature.

### 2.3.4 Pressurised liquefied gases

### 2.3.4.1 Introduction to pressurised liquefied gases

After a (sudden) depressurisation the liquid in the vessel will flash, and due to the presence of vapour bubbles in the tank the liquid section will expand ('champagne effect'), necessitating a redefinition of liquid height.
When the expanded liquid rises above the hole in the tank a two-phase flow will be apparent through the opening in the tank, in stead of a pure vapour outflow.
Qualitatively the following situations for outflow of pressurised liquefied gases from a vessel may occur:

1. (small) hole in vapour space of the vessel well above liquid level:
2. hole in vapour space near initial liquid level:
3. hole in liquid space (well) below liquid level:
vapour outflow
two-phase flow
liquid outflow

So, for pressurised liquefied gases the height of the liquid level relative to the outflow opening in the containment, is an important factor determining the initial state of the outflowing material from the vessel, and thus the behaviour of the vessel content ('vessel dynamics'). In order to determine which flow type will initially be at hand, the rise of the boiling liquid due to the bubble formation relative to the position of the opening in the vessel should be estimated first.

F urthermore, the outflow from the vessel may be through a hole or short pipe, or through a pipe.
In the scheme below a survey is given of the possible situations concerning the outflow of pressurised liquefied gas from a containment. The description of the various situations will be according to this diagram.

Diagram 2.1 Different situations concerning the outflow of pressurised liquefied gas from containment
I) Quasi-stationary outflow from vessel:

1) Vapour outflow (2.3.4.2.3):
a) Through hole in vessel wall
b) Through piping
2) Two-phase outflow (2.3.4.2.4):
a) Through hole in vessel wall
b) Through piping
3) Liquid outflow (2.3.4.2.5):
a) Through hole in vessel wall
b) Through piping
II) Non-stationary outflow from pipeline (2.3.4.5):
a) Due to full bore rupture
b) Through hole in pipe wall

In the following section the vessel dynamics of stored pressurised liquefied gases for the different outflow types will be addressed first in paragraph 2.3.4.2.
The outflow through holes and piping for each of the different flow types, will be addressed in paragraphs 2.3.4.3 and 2.3.4.4 respectively.
In paragraph 2.3.4.5 the two-phase flow in pipelines will be addressed.

### 2.3.4.2 Vessel dynamics pressurised liquefied gases

### 2.3.4.2.1 Flow type inside the vessel

F auske [1988] gives simple criteria that may determine whether there exists a two-phase flow inside the vessel or not. Fauske has presented simple vapour disengagement rules for determining the release type of non-foamy materials.
Especially if the liquid is viscous (e.g. greater than 500 cP ) or has a tendency to foam, two-phase flow in the containment will be apparent [AIChE, 1989].

M elhem [1993] describes a refined DIERS-method that distinguishes different ways of boiling in case of top venting, and relations to estimate the quality in the outflow opening for vertical vessels. From Sheppard [1993] it appears that the analytical
solution of the DIERS-model validates the Fauske correlation. This analytical solution has been shown to hold for varying cross-sectional vessels.

The DIERS-model SAFIRE [Skouloudis, 1990] is a complex model requiring extensive thermophysical data [AIChE, 1989]. H owever, in Sheppard [1994] it has been concluded that the numerical DIERS-model underpredicts the void fraction for vertical vessels for bubbly flow.

### 2.3.4.2.2 Void fraction in the vessel

T he expansion of a rapid boiling liquid depends on the ratio of the outflow rate and the size of the vaporisation area of the boiling liquid.
Belore [1986] gives the correlation of $M$ ayinger to estimate the void fraction in the expanded liquid. The void fraction or hold-up in a flashing liquid due to depressurisation is calculated using Viecenz experimental correlation, as published by M ayinger in 1981 [Belore, 1986].

For large atmospheric containers the liquid swell may be principally due to the boiling two-phase boundary layer, in the absence of vapour carry-under, so the major part of the bulk liquid remains bubble free. The two-phase flow effects for non-foamy substances can be ignored as long as liquid entrainment at the interface is prevented ensuring low vapour velocities. H owever, the present state of knowledge about the effects of bulk liquid sub-cooling on mitigating the liquid swell permits only case by case numerical solutions involving sizeable computer programs [Sallet, 1990,3].

The depressurisation of a pressurised liquefied gas causing bubble formation in the liquid and thus expansion of the boiling liquid is a rather complex phenomenon.
A large computer model has been presented by H aque [1992]. Although it deals with gas-oil-water mixtures, it demonstrates the complexity of the process by showing the various factors that influence the behaviour of the boiling liquid in the vessel.
For instance, the heat flux between the different phases and between the vessel and the surroundings, are taken into account. D uring a 'blow-down' large temperature gradients in the vessel may be apparent.

### 2.3.4.2.3 Vessel dynamics vapour outflow (quality=1)

V essel dynamics are mainly controlled by the evaporation of the pressurised liquefied gas, which is assumed to be at saturated vapour pressure initially.
Due to the outflow of vapour the vessel depressurises. This causes the liquefied gas to evaporate, and subsequently the temperature will decrease and so will the saturated vapour pressure. $M$ ore details can be found in section 2.5.

### 2.3.4.2.4 Vessel dynamics two-phase outflow (0<quality<1)

The model for two-phase outflow from a vessel is similar to the one for outflow of only vapour. Additional assumptions are that the two-phase mixture in the
vessel is considered to be homogeneous, and that the quality of the outflowing material is identical to that of the vessel. $M$ ore details can be found in section 2.5.

The quality in the vessel, and so the ratio between the vapour and liquid mass, changes due to the evaporation of liquid in the vessel caused by the depressurisation. Sumathipala [1990] states that the average void fraction is not representative of the local void fraction in the vessel. T he void fraction in the top of the vessel venting may be much higher than the average value. T his is demonstrated in the figure 2.6.
Also Bell [1993] concludes that the void fraction in the vent line is much higher than in the vessel. This corresponds to a lower mass flow rate and also to a higher volumetric flow rate. This criticism can only be coped with by applying very complicated models.


Figure 2.6 Top venting with flashing fluid [Bell, 1993]

### 2.3.4.2.5 Vessel dynamics of liquid outflow (quality=0)

In this case vessel dynamics are mainly controlled by saturated vapour pressure of the liquid at vessel temperature.
D ue to the outflow of liquid the vessel depressurises. While the density of the vapour is much lower than the liquid, a relatively small amount of liquid has to evaporate in order to maintain the pressure, and the temperature drop will be relatively small.
The model for liquid outflow from a vessel filled with pressurised liquefied gas is quite similar to the one for outflow of only vapour. H ere it is assumed that the change of vapour mass in the vessel is caused by evaporation of liquid only.
The estimation of the vessel conditions is similar to the model for the vapour outflow. In addition, the new liquid height has to be estimated as a function of the remaining liquid mass.
$M$ ore details can be found in section 2.5.

### 23.4.3 Outflow of pressurised liquefied gas through a hole in vessels

## V apour outflow

The models for outflow of gas through holes are valid for pure vapour flowing out of the vapour section in the containment from vaporising pressurised liquefied gases.

Two-phase outflow through a hole: champagne outflow

In the previous edition of the [Y ellowBook, 1988] the outflow of a two-phase mixture through a hole has been described assuming a fluid having a density based on the vapour mass fraction or quality. This approach is commonly applied, WorldBank [1988].
As a matter of fact the model is a particular solution for a two-phase flow, with the following conditions:

1. the two-phase flow is 'frozen' (see next paragraph),
2. the outflow quality equals the quality in the vessel,
3. the two-phase flow may be treated like a common liquid,
4. the pipe length is zero.

Liquid outflow through a hole

The same approach as for champagne flow can be applied. T he well-known relations for pure liquid flow through a hole can be applied, see paragraph 2.3.5.1.

### 2.3.4.4 Outflow of pressurised liquefied gas through piping

### 2.3.4.4.1 Vapour flow

The models for outflow of gas through piping are valid for pure vapour flowing out of the vapour section in the containment for vaporising pressurised liquefied gases.

### 2.3.4.4.2 T wo-phase flow

If a pure liquid is flowing out of a vessel through a pipe, then due to the pressure drop along the pipe caused by friction, the pressure will decrease below the saturated vapour pressure, and part of the liquid will vaporise. T he most important factor in the two-phase flow model is the volumetric void fraction of vapour in the liquid (or its mass equivalent: quality). T he quality to a large extent determines the mass flow rate and the friction in the pipe.

## Survey of models for two-phase flow in pipes

M uch research has been carried out in the (recent) past on the subject of two-phase flows through pipes. The following list has been taken from $M$ elhem [1993] and G iot [1992]:

- F auske's model
- Ogasawara's model
- Separated phases model
- Henry's model
- Chrisholm's correlation
- Leung and Grolmes (DIERS)
- Sallet's correlation
- DISP [K ukkonen,1990]
- M oody's model
- Levy's model
- AIChE-DIERS
- Lackmé's model
- ENEA
- Flinta's model
- Yan's model

Giot et al. have carried out a benchmark on two-phase-flow models, within the European U nion program ' M ajor Technological H azards', on the basis of selected well-documented and reliable data sets [Giot, 1992].
A model classification has been made, based on the 3 criteria corresponding with different physical regimes:

* $\mathrm{I}_{\mathrm{p}} / \mathrm{d}_{\mathrm{p}}<50 \quad$ or $>50$
* $\Phi_{\mathrm{m}, 0}<0.01 \quad$ or $>0.01$
* $\delta \mathrm{T}_{\mathrm{sc}, 0} / \mathrm{T}<0.1 \quad$ or $>0.1$
with
$\mathrm{I}_{\mathrm{p}} \quad=$ pipe length [m]
$\mathrm{d}_{\mathrm{p}}=$ pipe diameter $\quad[\mathrm{m}]$
$\Phi_{\mathrm{m}, 0}=$ initial vapour fraction [-]
$\delta \mathrm{T}_{\mathrm{sc}, 0}=$ initial sub-cooling $\quad[\mathrm{K}]$
In general most models from the list above are valid only for a specific physical regime, i.e. one combination of criteria $\left(I_{d} / d_{p}, \Phi_{m, 0}, \delta T_{s c, 0} / T\right)$.

N ote that the pressurised liquefied gas is sub-cooled when the (vapour) pressure is higher than the saturation pressure; this may be the case if the pressurised liquefied gas is under pump pressure.

The following classifications put some order in the large number of models found in the open literature.

In general the following categories of two-phase pipe flow models exist, based on different physical assumptions:

1. Quasi-one-phase models

The two-phase-flow is being approximated by (standard) relations for liquid flow, taking into account an average density related to the vapour fraction.
2. H omogeneous equilibrium models (HEM)

HEM assume equal flow velocities of both phases as well as thermodynamic equilibrium between the liquid and vapour phase. This means that the quality (vapour mass fraction) can be estimated by thermodynamic relations only.
3. Non-homogeneous models

Non-homogeneous models do not assume equal flow velocities of liquid and vapour phases, but account for phase slip.
4. 'F rozen' models
'F rozen' models assume equal flow velocities of both phases as well as a constant ratio between the vapour and liquid fraction of the flowing fluid.

The following classes of two-phase pipe flow models exist, based on different mathematical treatment [G iot, 1994]:
A. 'C ritical flow' correlations.

These models are hybrids in which theoretical inferred relations have been fitted by empirical correlations to improve the reproduction of experimental data.
B. 'Critical flow' models.

These models consist of or are based on sets of differential equations, to describe the variation of physical flow quantities along the pipe. The models in this category vary considerably in complexity [ N ijsing, 1988].

## Some categories of models for two-phase flow in pipes in more detail

## 1. 'H omogeneous Equilibrium M odels'

Homogeneous Equilibrium M odels (HEM s) are generally accepted and are widely used [K ukkonen, 1990].
T he expert opinions about the predictive abilities of the mass flow rate by H EM s are quite diverse. N yren [1987], Leung [1990], Leung and N azario [1990], M orris [1990] and N ielsen [1991] report good agreement between HEM and experimental data.
M any others emphasise underprediction by H EM s. F or instance, in N ielsen [1991] underprediction of about $10 \%$ has been reported for those situations HEM is supposed to be valid. M ore recently in Giot [1994] considerable underprediction has been reported.
However according to Giot [1996] HEM s will give reasonable predictions if the quality $\Phi_{m}$ is larger than $1 \%$, else HEM s will underpredict. Small vapour fractions may occur in case of sub-cooled liquid at the pipe inlet, or in case of relatively short pipes. Ewan [1988], K ukkonen [1990] and M elhem [1993] state that after 100 millimetres pipe length, thermodynamic equilibrium between vapour phase and liquid phase exists in the pipe. So, in case of saturated liquid upstream and pipes much longer than 0.1 metre, HEM s may be applied.

Also in Leung [1989] underprediction has been reported, but this paper deals with designs of nozzles. C learly the assumption of thermodynamical equilibrium, in case of a minimum pipe length of 0.1 metre, is not valid here.
The computer model TPDIS [K ukkonen, 1990] is a complete model including the required thermodynamics supplied in the form of correlations for some chemicals.
N yren and Winter [Nyren, 1983] have done field experiments, using liquefied ammonia and sulphur dioxide, the objective being to test the TPDIS model experimentally. As reported in these references, the experimental results and model predictions were compatible within a reasonable accuracy. H owever, this comparison was based on a fairly limited set of data. F letcher and Johnson have presented more extensive experimental data in 1984, based on the studies of several investigators. T he data include results of laboratory experiments using superheated refrigerant-II, and laboratory and large-scale experiments using superheated water. Suitable data for other substances are sparse.
TPDIS predicts mass flow rates of about 10\% higher than TRAUMA [Wheatley, 1987].

In Ramskill [1987] a HEM has been presented to predict the maximum two-phase outflow rate in pipes, neglecting the flow resistance.

## 2. Non-homogeneous models

In [anonymus] a model is given for the prediction of the maximum two-phase outflow rate in pipes, neglecting the flow resistance, based on the work of F auske.
T his model takes into account the phase slip. In general the model predicts mass flow rates that are about 1.4 higher than the H EM predictions.

## 3. 'F rozen flow'

The relevancy of the 'frozen flow model' is emphasised in Sallet [1990,1] for the estimation of the mass flow rate through 'nozzles' and 'valves'. In that case, the flow velocities are so high that the time is simply to short to reach thermodynamic equilibrium, and 'frozen flow' may be assumed, meaning constant quality of the twophase flow.
In the model for champagne outflow described in the previous edition of the [Y ellowB ook, 1988] the frozen flow assumption has been made implicitly.

## 4. 'C ritical flow' correlations

Sallet pleads clearly for the use of correlations instead of flow rate models [Sallet, 1990,2 ]. H is arguments are as follows. In general the calculation of the critical mass flux $\left(G_{c r}\right)$ is a cumbrous task. The numerical procedure is necessary iterative, because a priori the pressure in the pipe at the location where the mass flux $G_{c r}$ becomes critical, is unknown. Furthermore, thermodynamic data for most chemicals are insufficient to be able to make reasonably accurate estimations [Sallet, 1990,2]. These inaccuracies may lead to deviations of $50-150 \%$ in the critical heat flux $G_{c r}$ by HEM s. Sallet constructed generalised correlations for 10 industrial commodities.

However, these correlations deal with the release of pure vapour through vents, assuming that the phases are separated in the vessels, and no liquid flow through the valve [G iot, 1996].

## 5. 'C ritical flow' models

Within the European Union program 'M ajor T echnological H azards' the computer model FLIERS has been developed for two-phase flows in pipes.
Differential equations describe the conservation of mass, energy and momentum over the two-phases, the behaviour of the bubbles, etc. The model is capable, besides estimation of the critical mass flow rate, to calculate axial pressure and quality profiles in the pipe. The so-called $Y$ an's model [G iot, 1994] relates the flashing process with the vaporisation of liquid around nuclei and the hydrodynamics of the liquid under thermodynamic non-equilibrium conditions. It accounts for the development of vaporisation nuclei under the influence of micro-cavitation at the inside pipe surface. This model seems very complete from a theoretical scientific point, but requires large computational efforts, and may only run on 'main frames' requiring long responsetimes nevertheless. Yan's model demonstrates clearly the dominating physical phenomena along the pipe length, but also shows its limitations concerning application in practical situations.
Similar developments are reported by Riznic [1989], where a new flashing model is demonstrated based on the bubble formation process: vaporisation nuclei, bubble growth and bubble transport. These theories are under development, and obviously non-HEM.

## Influence of pipe length

## $I_{p} / d_{p}$-models

In earlier studies the flow type has been commonly correlated with the ratio of the pipe length and the pipe diameter $\left(I_{p} / d_{p}\right)$. The flow is assumed to be pure liquid for sufficiently small $I_{p} / d_{p}$ ratios, and two-phase fluid in equilibrium for sufficiently large $I_{p} / d_{p}$ ratios. F or intermediate values of $I_{p} / d_{p}$, a two-phase fluid in disequilibrium may exist. Based on their experimental results with F reon 12, F letcher and Johnson found that the mass flux density $\left[\mathrm{kg} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)\right]$ of a two-phase pipe flow depends on the pipe length, but not on the pipe diameter. They concluded that the flow types should be distinguished on the basis of the absolute length $I_{p}$ rather than the ratio $I_{p} / d_{p}$, [K ukkonen, 1990].

## T wo-phase flow in short piping

The rapid initial depressurisation during pipe flow may cause thermal and hydrodynamic non-equilibrium; these effects may be particularly important for short pipe lengths. In certain two-phase flow regimes the temperature and velocity are different for the vapour and the liquid phases, and the two-phase fluid is nonhomogeneous. These effects may be important if the interfacial area of the phases is small, i.e., for high-quality flow [K ukkonen, 1990].

As mentioned before, for two-phase pipe flows no thermodynamic equilibrium exists for pipe lengths shorter than 100 millimetres [M elhem, 1993], [AIChE, 1989]. Apparently, the release path must be sufficiently long to enable some degree of interphase mass transfer and equilibration. In Ewan [1988] a numerical flow model has been presented for two-phase flows for short pipes. In this paper it is advised to use specific correlations [AIC hE, 1989], or to interpolate between the prediction of
the one-phase-liquid approximation and HEM prediction.
In Hardekopf [1988] the influence of other parameters than the pipe length, is demonstrated. An interesting survey is given regarding the effect of geometry on the critical mass flux.

### 2.3.4.5 Non-stationary two-phase flow in pipelines

The previous edition of the [Y ellowBook, 1988] describes an approximate solution of the set differential equations governing the non-stationary two-phase flow after a full bore pipeline rupture by linearisations, applying perfect gas law and approximating thermodynamic relations.
The time-dependency of the outflow is treated by assuming a so-called evaporation zone that, after the rupture, starts moving with the speed of sound in the pipeline in the opposite (upstream) direction. No thermodynamic equilibrium and homogeneous flow has been assumed, but the kinetic energy of the flow near the vaporisation zone is maximised. The model has been taken from 'LPG a study', T N O [1983].
The model has not been validated. T he numerical solution has appeared to be nonstable. So, the approach is more or less the same as the previous approach for nonstationary gas flow in pipelines, for which its bad performance has been shown (paragraph 2.3.3.4). Altogether the model is expected to give doubtful predictions because two-phase flow is much more complex than gas flow.

M orrow [1983] describes a model specific for LPG pipelines, using an iterative numerical procedure. The model is used for the entire region of two-phase flow within the pipeline. At the point of pipe rupture, the upstream and downstream end of the pipe are assumed to be totally separated so that the flow rates coming from the upstream and downstream pipe regions, are independent.
The initial outflow is determined based on the assumption of choked flow at the pipe exit. As time progresses the flow rate diminishes until choking (equivalent to sonic flow in a perfect gas discharge) no longer occurs.
The F auske model for critical flow at the exit $\mathrm{G}_{\mathrm{cr}}$ of a full pipe break is used. Away from the point of rupture, the frictional pressure drop in the pipeline is given by the well-known D arcy-W eisbach equation.
An analysis of two-phase flow pressure gradient and void fraction (vapour volume) was developed to provide the mass depletion in the pipe as a function of exit flow rate and pressure. These correlations for exit flow and pipe flow together allow correlations for exit flow versus time after rupture.
Although the authors had no opportunity to make detailed comparisons of methods and accuracy assessments of the models, it is believed that these models will give slightly conservative results.

Large-scale experimental data have been used to compare and derive simple mathematical models to describe the transient release rate of pressurised liquid petroleum gas (LPG) from a ruptured pipeline if the fluid supply upstream of the rupture location has been stopped [T am,1990]. A simple exponential correlation has been fitted against experiments with 100 metre LPG pipeline. T he model is valid for small leaks as well as for a full bore rupture.

### 2.3.4.6 Finite duration spray release

## Statement of the problem

This section considers releases from liquefied gases stored under pressure at a temperature above normal boiling point. If a breach or puncture in the containment occurs, the pressurised liquefied gas will flow out and 'flash', i.e. part of the liquid phase will evaporate, extracting heat from the liquid phase, until the vapour/liquid mixture is cooled below boiling point. (T he difference between storage temperature and boiling point is often called 'superheat'). Flashing may (partly) occur upstream the release (e.g. in a long pipe between vessel and breach) or just downstream the release. Flashing before the release and its consequences for the release rate are dealt with in sections 2.3.3.2 and 2.3.3.3.
After flashing, either a vapour jet with a droplet spray or a liquid jet with vapour bubbles develops.
A droplet laden vapour jet will entrain air and the droplets in the jet evaporate. A part of the droplets may fall on the ground and form an (evaporating) liquid pool.
A liquid jet with vapour bubbles will form an (evaporating) pool, and the flashed vapour in the bubbles has to be dealt with as originating from the pool.
Evaporation from the pool is dealt with in chapter 3; the atmospheric dispersion of the single-phase jet and the vapour evaporating from a pool can be described using the models provided in chapter 4, Dispersion.
In order to describe the whole evolution of the two-phase jet, separate descriptions or models are needed for the following phenomena taking place in the jet:

- the flashing of the liquid phase after release, leading to the vapour mass fraction and temperature in the jet;
- the droplet size of the liquid fraction, the evaporation during sedimentation of the droplets and the fraction deposited on the ground (rain-out fraction);
- the evolution of velocity, concentration and width of the two-phase jet; and,
- the evaporation of droplets in the two-phase jet due to air entrainment and the thermodynamic state (temperature, density) of the mixture.
H ereafter, the emphasis will be on droplet-laden vapour jets. The treatment of liquid jets is straightforward in that they will form a (spreading) pool.
Figure 2.7 presents a schematic view of a two-phase jet. The jet shows three parts, divided by three cross-sections. Flashing occurs after the exit until the mixture is cooled to the boiling point. Then air is entrained, droplets may rain-out and/or evaporate due to the heat brought to the jet by air. Water vapour in the jet may condense. Finally all chemical droplets evaporate and a single-phase jet, which still might contain condensed water vapour, remains. The single-phase jet will be described in chapter 4, Vapour Cloud D ispersion; here emphasis is on the first two parts of the jet. T he relevant phenomena are summarised in Diagram 2.2. The first two lines refer to the first part of the jet, the other three lines refer to the second part of the jet. M odels and descriptions of these phenomena are discussed in the following sections.


Figure 2.7 Schematic view of a two phase-jet

Diagram 2.2 Phenomena of two-phase jets
Expansion and flashing at atmospheric pressure
Droplet diameter after flashing
Droplet diameter after flashing
Jet dispersion
Evaporation of the droplets in the jet

## Expansion and flashing in the atmosphere

It is common practice to neglect entrainment during the flashing stage.
F urthermore, except for Computational Fluid Dynamics approaches, it is assumed that vapour and droplets have the same velocity (no slip between phases). U nder these assumptions the flash fraction (and other quantities) at the end of the flashing stage can be calculated from the exit conditions by

- conservation of enthalpy: $\mathrm{H}_{\mathrm{e}}+0.5 \mathrm{u}_{\mathrm{e}}{ }^{2}=\mathrm{H}_{\mathrm{f}}+0.5 \mathrm{u}_{\mathrm{f}}{ }^{2} \quad(\mathrm{~J} / \mathrm{kg})$
- conservation of momentum: $\rho_{e} u_{e}^{2} A_{e}+A_{e}\left(P_{e}-P_{a}\right)=\rho_{f} u_{f} 2 A_{f} \quad(N)$
- conservation of mass: $\rho_{e} u_{e} A_{e}=\rho_{f} u_{f} A_{f}$
(kg/s)
- $T_{B}$ is the boiling temperature; $P_{V}{ }^{\circ}\left(T_{B}\right)=P_{a}$
( $\mathrm{N} / \mathrm{m}^{2}$ )
- an equation of state relating density to pressure, temperature, and quality. The vapour density is a function of pressure and temperature (e.g. the perfect gas law), and the density of the liquid phase is a function of temperature alone.
- data on the enthalpies $\mathrm{H}_{\mathrm{e}}$ and $\mathrm{H}_{\mathrm{f}}$ as a function of pressure, temperature and quality.

This approach is in principle used in the Y ellow Book [1988] and by many other authors, e.g. Wheatley [1987]. In his case he used the perfect gas properties and the C lausius-C lapeyron relations in order to define the equation of state, the saturation pressure and the enthalpies (assuming isentropic evaporation to give a higher bound on the flash fraction).

Often, e.g. Y ellow Book [1988] and K ukkonen [1990], the flash fraction is calculated using entropy relations.

In addition to the 'conventional' approach described above, some authors, e.g. W oodward [1993], state that equilibrium flash fractions are not established for orifice discharge or short nozzles and pipes. Instead one should use:

$$
\begin{equation*}
\Phi_{\mathrm{m}, \mathrm{f}}=\mathrm{C}_{\Phi \mathrm{mf}} \times \Phi_{\mathrm{m}, \mathrm{f}, \text { equilibrium }} \tag{-}
\end{equation*}
$$

with

$$
\begin{array}{llll}
C_{\Phi m f}=\Phi_{\mathrm{m}, \mathrm{f}, \mathrm{e}} / 0.14 & & \text { if } & \Phi_{\mathrm{m}, \mathrm{f}, \mathrm{e}} \leq 0.14 \\
\mathrm{C}_{\Phi \mathrm{mf}}=1.0 & & \text { if } & \Phi_{\mathrm{m}, \mathrm{f}, \mathrm{e}}>0.14
\end{array}
$$

H owever other authors, e.g. W heatley [1987], argue that the important parameter in reaching equilibrium is the path length of the flow since nucleation, and this can not, according to W heatley, be estimated by simple expressions such as those mentioned above.

Some alternative approaches towards determination of flash fractions and the conditions after flashing can be found. One such an alternative model is presented by Woodward [1993]. This model, which includes determination of critical flow rate, see 'outflow', is based on similarity of the two-phase discharge with underexpanded single-phase jets. The differences with the 'conventional' approach are considerable (higher jet velocities, less diameter expansion). Woodward [1993] states that experiments are necessary to decide which of the approaches is better.
A nother alternative is proposed by $V$ androux-K oenig et al. [1991]. They estimate the diameter and velocity after flashing on isotropic increase of bubble size. Also in that case the jet velocity is higher and droplet diameters smaller than when using the conventional approach, but the momentum balance is neglected.

## D roplet diameters after flashing

A liquid jet (either or not flashing) may break-up into droplets due to:

- the size of the nozzle (capillary break-up);
- aerodynamic break-up of the jet;
- shattering by flashing.

F or capillary break-up and aerodynamic break-up the literature provides a number of models and descriptions. M ost of these descriptions are quite similar, (Tilton \& F arley [1990], W heatley [1987]). T he summary of drop size correlations is provided by Tilton and F arley [1990]. T his summary includes also correlations for the length before break-up (relevant to determine which process starts first, e.g. a sub-cooled jet may break-up aerodynamically before being shattered by flashing, causing larger drops).

The initial drops formed in the jet may break further by aerodynamic forces. The maximum stable drop size can be determined using a critical Weber number. The values of critical Weber numbers vary, and may be dependent on parameters not included in the W eber number, between 5 and 100, [W ierzba, 1990] but often used values are between 10 and 20 [Tilton \& Farley, 1990], K ocamustafaogullari et al., [1994], W heatley [1987], Appleton [1984].

A pplication of the above-mentioned correlations leads to a single number for the drop size, not allowing for the variation of droplet sizes within a jet. Alternatively, Vandroux-K oenig et al. [1991] suggest assuming a droplet population using an upper log-normal distribution of which the median is the largest hydro-dynamically stable drop size.
With respect to the effect of shattering, A ppleton [1984] and H ague and Pepe [1990] conclude that shattering of the jet by flashing occurs if the exit temperature exceeds a 'shatter' temperature $\mathrm{T}_{\text {sh }}$, which obeys

$$
\begin{equation*}
\frac{\mathrm{T}_{\mathrm{sh}}-\mathrm{T}_{\mathrm{B}}}{\mathrm{~T}_{\mathrm{sh}}}=\mathrm{C}_{\varepsilon} \tag{-}
\end{equation*}
$$

H ere $T_{B}$ is the boiling temperature and $C_{\varepsilon}$ is $0.07-0.1$ (Appleton) or 0.1 (H ague and Pepe).
Estimates of drop size due to shattering are provided by Tilton \& Farley [1990], Appleton [1984] and Vandroux-K oenig [1991]. The approach used by VandrouxK oenig et al. [1991] requires an estimate of the rate of depressurisation in the flashing jet, which is not easy to obtain.

M ost authors however, determine the drop size after flashing by using the critical Weber number for aerodynamical break-up. In this way effects of coalescence of droplets (droplet growth) do not have to be dealt with separately and the method explains the experimental (low) fractions of rain-out satisfactorily.

D roplet evaporation and rain-out on the ground

Droplets will settle by gravity and they can fall on the ground, forming an (evaporating) pool.

The calculation of the trajectory of droplets is generally performed by assuming that the horizontal velocity of the droplet equals the horizontal jet velocity, and the vertical velocity (settling velocity) follows from the aerodynamic drag force.
The evaporation of droplets has been given much attention in recent research. In view of differences in complexity, one has to distinguish between

1. evaporation of a pure, single component droplet,
2. evaporation of a binary (or multi) component droplet.

The first approach is more simple and leads to more analytic or simple definite conclusions.
A simple approximate expression for the droplet diameter $d_{m}$ for which drying time and settling time to the ground are equal, has been derived by Kukkonen et al. [1989]. O nly droplets larger than $\mathrm{d}_{\mathrm{m}}$ will fall on the ground. Expressions describing the change of droplet mass up to the moment the droplet falls on the ground can be derived using the basic model principles.
The same principles are used by Papadourakis et al. [1991] and Woodward \& Papadourakis [1991]. Droplet evaporation is combined with calculations of the droplet trajectory in differential form. The calculations are combined with an integral plume trajectory model, and the difference between jet trajectory and droplet trajectory defines the 'ambient' droplet conditions for evaporation and drag. All evaporated chemical is fed 'back' into the jet/plume model.

The evaporation of binary component droplets is described by Vesala [1990], V esala \& K ukkonen [1992] and Pattison [1992].
Pattison attempts to include the binary component model in a jet/plume model frame work comparable to W oodward \& Papadourakis [1991] as described above, see also Hewitt \& Pattison [1992]. This leads to an extensive set of coupled ordinary differential equations.

In order to obtain some information about the relevance of the binary component model compared to the single component droplet evaporation model, the evolution of droplets was investigated by Vesala and K ukkonen [1992]: in 100\% humid air, 20 ${ }^{\circ} \mathrm{C}$ ambient temperature, initial diameter $100 \mu \mathrm{~m}$, the 'drying' time of a binary ammonia/water droplet is reduced by a factor 1.5 compared to a single component ammonia droplet in dry air (and thus ignoring 'binary' effects).

J et dispersion
A droplet-laden two-phase jet is assumed to behave like a pure vapour jet. According to Wheatley [1987], K ukkonen [1990], Webber et al. [1991], entrainment rates identical to those for pure vapour jets can be used. The jet model allows for prediction the change of concentration, velocity and radius of the jet along the jet axis. The following section will address droplet evaporation in the jet.

Evaporation of the droplets in the jet
The rate of evaporation of droplets in the jet is dominated by the amount of entrained air and the amount of heat brought into the jet by the entrained air. T he calculation of droplet evaporation in the jet can be made by the enthalpy balance at any point in the jet.

A rigorous derivation of concentration, phase balance and enthalpy balance in differential form, i.e. changes in properties related to small increases of entrained air in the jet, is provided by Webber et al. [1991]. Webber considers different possibilities:

1. T wo-phase chemical dispersing in dry air.
2. T wo-phase chemical which is immiscible with water dispersing in moist air.
3. T wo-phase chemical which forms an ideal solution in water (i.e. the partial vapour fraction of the chemical is linear to the molar fraction of chemical solved in water) dispersing in moist air.
4. $\mathrm{NH}_{3}$ dispersing in moist air.
5. HF dispersing in moist air.

H owever, it is not always necessary to use a differential approach. In some cases it is possible to make use of enthalpy- and phase balances at arbitrary positions in the jet without needing to solve differential equations. Examples of these methods are provided by K ukkonen [1990], who treats the 2nd possibility from above, Wheatley [1987] (possibility 4), and Webber and Brighton [1989] (possibilities 2 to 4).

The latter calculate the temperature after entrainment by evaluating the enthalpy changes when a certain amount of moist air at $\mathrm{T}_{\mathrm{a}}$ is mixed with chemical at flashing conditions ( $X_{f}, T_{B}$ ). The nett change of enthalpy is zero:

$$
\begin{equation*}
0=\Delta \mathrm{H}=\Delta \mathrm{H}_{\text {chemical }}+\Delta \mathrm{H}_{\text {dry air }}+\Delta \mathrm{H}_{\text {water vapour }} \tag{2.4}
\end{equation*}
$$

The individual enthalpy changes include the temperature change, both of liquid and vapour, and the heat of evaporation and/or condensation.
If the chemical is soluble in water, the scheme remains the same, but the liquid phase will be mixed. It also means that in most cases, if the chemical does not form an ideal solution in water, an additional term $\Delta \mathrm{H}_{\text {mixing }}$ has to be added to the enthalpy balance above to account for the fact that chemicals dissolving in water produce heat (e.g. ammonia). Also the saturated vapour pressures of both water and chemical change and become dependent on the mixture fraction in the droplet.
M ethods to calculate the mixing enthalpy and saturation pressures for ammonia/water mixtures are provided on an empirical way by Wheatley [1987] and in a more general way by V esala \& K ukkonen [1992]
If one is only interested in the situation at cross-section ' $j$ ' after complete evaporation of the chemicals, the nett mixing enthalpy equals zero.

The above-described approach assumes liquid and vapour to have the same temperature, and no velocity difference between the phases. This is the so called 'homogeneous equilibrium' theory (HE). According to Kukkonen [1990], a temperature difference, i.e. the 'temperature depression', is necessary to drive evaporation. By comparison with advanced models, K ukkonen [1993] concludes that at least in clouds, HE theory can be used for droplets up to $100 \mu \mathrm{~m}$. It is not necessarily valid in the jet region where high entrainment occurs. F urthermore, it appeared that the results were not very sensitive to the thermodynamic properties, i.e. the differences between Wheatley's [1990] and Vesala \& Kukkonen's [1992] expression.

### 2.3.4.7 Instantaneous releases pressurised liquefied gases

## Statement of the problem

This section considers the release following a complete failure of a vessel containing liquefied gases stored under pressure at a temperature above normal boiling point. After failure, the liquid will flash and expand in all directions until the vapour/liquid mixture is cooled below boiling point.
After flashing, the cloud will expand further and entrain ambient air. The entrained air will cause further evaporation of liquid droplets in the cloud. Part of the droplets may fall on the ground and form an evaporating pool.
For consequence analysis it is necessary to be able to describe the evolution of the cloud size and the concentration in the cloud after the release, before atmospheric dispersion takes over, and the fraction of the release that remains in the air compared to the fraction that will form an evaporating liquid pool.
In order to describe the evolution of the instantaneous release, separate descriptions or models are needed for the following phenomena taking place in the expanding twophase cloud:

- the flashing of the liquid phase after release, leading to the vapour mass fraction and temperature in the two-phase cloud;
- the evolution of the size, expansion velocity and concentration of the two-phase cloud;
- the fraction deposited of liquid droplets on the ground (rain-out fraction);
- the evaporation of droplets in the two-phase cloud due to air entrainment and the thermodynamic state (temperature, density) of the mixture.

A division in three stages, similar to that used for continuous releases, can be made. First, the liquid flashes and expands without entrainment. Secondly, air is entrained, droplets may rain-out and/or evaporate due to entrained air. Finally all chemical droplets disappear and a single-phase cloud remains.

A gain, emphasis will be on the first two stages. The phenomena are also summarised in D iagram 2.3. T he first two boxes refer to the first stage, the last two boxes to the second stage. M odels and descriptions of the phenomena in Diagram 2.3 are discussed in the following sections. A number of methodologies described in section 2.3.4.6 (continuous releases) will also be applicable to instantaneous releases.

Diagram 2.3 Phenomena of instantaneous releases of pressurised liquefied gases

Flashing and initial cloud expansion
Droplet size and rain-out on the ground
Expansion of the two-phase cloud during the entrainment phase
Evaporation of the droplets in the cloud

The study of instantaneous releases is far less developed than the study of continuous (jet) releases. The largest scale experiments reported are those by British Gas [Johnson et al., 1990], involving a commercial storage vessel of $5.7 \mathrm{~m}^{3}$ filled with 2 tonnes of butane (fill ratio 77\% by volume). F or this test only visual and LIDAR-data of the expanding cloud is available.
Other rather large-scale experiments are those of H ardee and L ee [1975] regarding 450 kg of welding gas 'M APP' and propane, and G iesbrecht et al. [1981] involving 435 kg of propylene.
Small-scale tests have been performed using refrigerants (N olan et al. [1991] 1 litre, Schmidli et al. [1992] 2 litres, and H SE, W ebber et al. [1991] 20 litres) and propane (Schmidli et al. [1992] 2 litres).
With respect to the use and importance of small-scale experiments, N olan et al. [1991] point out that a rigorous analysis of scaling aspects is necessary, but has not as yet been performed, in order to translate small-scale experiments to reality. Especially the rain-out behaviour of small-scale experiments is difficult to extrapolate to large-scale, and the older large-scale experiments provide no information on rainout.

## Flashing and initial cloud expansion

For the flashing stage immediately after the loss of containment it is reasonable to assume that no ambient air will entrain into the cloud, Webber et al. [1991].
The conditions in the cloud just after complete flashing can be described by the enthalpy balance, taking into account the kinetic energy of the expanding cloud and the work performed on the atmosphere [M elhem \& Croce, 1993], [N olan et al., 1991]:

$$
\begin{equation*}
\mathrm{H}_{0}=\left\{\Phi_{\mathrm{m}, \mathrm{f}} \mathrm{H}_{\mathrm{V}, \mathrm{f}}+\left(1-\Phi_{\mathrm{m}, \mathrm{f}}\right) \mathrm{H}_{\mathrm{L}, \mathrm{f}}\right\}+0.5 \mathrm{u}_{\mathrm{f}}^{2}+\left(\mathrm{P}_{0}-\mathrm{P}_{\mathrm{a}}\right) / \rho_{0} \quad(\mathrm{~J} / \mathrm{kg}) \tag{2.5}
\end{equation*}
$$

In order to calculate the unknown flash fraction $\Phi_{m, f}$ and the expansion velocity $u_{f}$, the thermodynamic path between $\mathrm{H}_{0}$ and $\mathrm{H}_{\mathrm{f}}$ needs to be known. Assuming an isentropic evaporation, an upper boundary for $u_{f}$ and a lower boundary for $\Phi_{m, f}$ can be obtained.
F rom experiments [N olan et al., 1991], [Schmidli et al., 1992], [W ebber et al., 1991] it is obvious that the expansion velocity is smaller than it would be by assuming isentropic evaporation and using the above mentioned enthalpy balance, but the differences in results and conclusions are large. Some researchers [Schmidli et al., 1992], [W ebber et al., 1991] find expansion velocities of only 10\% - 30\% of the theoretical, isentropic values. H owever the data from N olan et al. [1991] leads to expansion velocities which are about $60 \%-80 \%$ of the theoretical, isentropic values (see also the analysis of N olan et al.'s data by M elhem and Croce [1993]).
The reasons for lower-than-theory expansion velocities are that part of the kinetic energy is transformed into turbulent kinetic energy, the evaporation and expansion process is not isentropic and during the flashing stage no equilibrium state is reached (Webber et al. [1991] describe non-equilibrium between temperature and pressure during the H SE-experiments).
$N$ evertheless, no simple relation between 'theoretical' and real expansion velocities can be derived.

D roplet size and rain-out on the ground
In order to estimate the possibility of liquid rain-out on the ground there is an interest in describing the droplet size in the aerosol cloud after flashing.
M easurement and analysis of droplet size are reported by Nolan et al. [1991] and Schmidli et al. [1992]. O bserved droplet sizes are (much) smaller than the maximum stable droplet diameter, using a critical Weber-number and the expansion velocity of the cloud (cf. section 2.3.4.6). No other droplet size theories have been published.

No physically sound models have been found to describe rain-out and droplet evaporation in instantaneous releases.
T he settling of aerosols depends on the height to which droplets are carried, and the rate at which ambient air is mixed in the cloud in order to evaporate the droplet. It is reasonable to assume a dependence on the size of the release for droplet settling.
M oreover, rain-out occurs not only by settling of aerosol in the cloud, but also by impingement of droplets by the energy of the expanding cloud in the early stages of expansion.

Cavanaugh et al. [1994] suggest the assumption that all liquid will be emitted as aerosol if the storage temperature exceeds the boiling temperature by 10 K . For boiling temperatures between 200-250 K, this corresponds to a 'shattering' criterion (see formula (2.3), section 2.3.4.6) in which $C_{\varepsilon}$ is less than 0.05 . However, C avanaugh's assumption is supported neither by physical reasoning nor experimental data.

Only Schmidli et al. [1992] provide quantified experimental information on the amount of rain-out and pool formation for Refrigerants 12 and 114. Even for releases exceeding the 'shattering' criterion with $\mathrm{C}_{\varepsilon}=0.1$, a significant amount of mass remains in the pool. Impact of liquid on the ground during the early stage of expansion seems to be the major cause. A reduced liquid fill level leads to increased pool formation as the vapour above the liquid forces the liquid downwards during expansion.
It is common practice to assume that twice the amount of the flashing liquid remains airborne. This assumption provides a rough but reasonable approximation of the result of Schmidli et al. Of course, such a simple rule does not account for probable dependency of rain-out on droplet diameter, release size or fill level.

Expansion of the aerosol cloud during the entrainment phase
No generally accepted model for the expansion of an instantaneous aerosol cloud exists. The models published by Giesbrecht et al. [1981] and H ardee \& L ee [1975] for the expansion after flashing are very different in their approach.
The model included in the Y ellow Book [1988] and the 'W orldbank' model are based on the work by G iesbrecht et al. [1981]. W ebber et al. [1991], however, criticize the Y ellow Book [1988] model as it fails to reproduce the H SE experiments.
The model by Hardee \& L ee [1975] for the expansion rate of the cloud is based on conservation of momentum, but they assume no expansion in vertical direction, and the release is not purely instantaneous, but a large puncture in a vessel.
T he simplest approach, using H ardee \& L ee's ideas, is to assume that during flashing the expansion velocity is constant and that it can be calculated using formula (2.5), possibly with a correction for non-isentropy and turbulence. A fterwards an expanding cloud with a uniform concentration is assumed. The momentum which is contained
in a segment of the (hemi-) spherical cloud at the moment when flashing is complete, will be conserved. From this and from neglecting the density difference between the cloud and the ambient air, one derives the uniform radial velocity in the cloud, which is also assumed to be the expansion velocity:

$$
\begin{equation*}
\mathrm{u}(\mathrm{t})=\mathrm{u}_{\mathrm{f}}\left(\mathrm{~b}_{\mathrm{f}} / \mathrm{b}(\mathrm{t})\right)^{3} \tag{2.6}
\end{equation*}
$$

H ere, $b_{f}$ is the cloud radius at the moment when flashing is complete, and $b$ the cloud radius at any moment thereafter. By stating $u=d b / d t$, one can derive the evolution of the cloud size with time.
The expansion rate according to this simple model agrees fairly well with the experimental results of Giesbrecht et al. [1981], assuming expansion in a hemispherical cloud at ground level.
The model applies until the expansion velocity is of the same magnitude as the ambient wind speed.

Evaporation of the droplets in the cloud

All statements made in section 2.3.4.6 for droplet evaporation in continuous releases are applicable to the expanding aerosol cloud. No research is known towards the applicability of the H E-assumptions for instantaneous clouds. In the later stage of the cloud, the expansion velocities become small and the H E approach may probably be applied.

### 2.3.5 Liquids

The models for (non-boiling) liquids neglect the vapour pressure of the liquid, being not higher than atmospheric.
Non-boiling liquids are liquids that have a normal boiling point higher than the ambient temperature, or refrigerated liquefied gases at (nearly) atmospheric pressure.

### 2.3.5.1 Introduction to liquids

In general the hydraulic pressure of the liquid is the driving force of a flow of a non-boiling liquid out of a vessel.
In case a liquid has been pressurised, the hydraulic pressure may be much smaller than the storage pressure, and the effect of the decreasing liquid level may be negligible. T his is also true if pressurised liquefied gas has been set under pressure higher than the saturated vapour pressure.

The flow of liquids in orifices and in pipes, and the rather simple behaviour of liquid in a vessel, have been well established for many years. In the previous edition of the [Y ellowB ook, 1988] models for liquid outflow through holes have been given, and so have laminar and turbulent flows of fluids in pipes (i.e. gases ánd liquids).

### 2.3.5.2 Vessel dynamics liquids

Applying the basic law of conservation of mass, and taking into account the hydraulic pressure of a liquid column, will suffice for an adequate description of the vessel dynamics.
The hydraulic pressure determining the mass flow rate depends on the liquid level in the tank. The only slightly complicating factor may be the estimation of the liquid level as function of the filling degree and geometry of the vessel. For simple geometries (sphere, cylinders) relations $h_{L}=F\left(V_{L}\right)$ exist.

### 2.3.5.3 Liquid flow through holes and piping

Well-known relations for the stationary outflow through orifices and through pipes exist. In the previous edition [Y ellowBook, 1988] models for laminar and turbulent flow of fluids have been given. $M$ ore details can be found in section 2.5.

Simple analytical expressions exist for predicting the outflow rate through small holes in the vessel wall (punctures), as functions of time, in case the vessel has a simple geometric form. In F oster [1981], L ee [1987], W oodward [1991], C rowl [1993] and Sommerveld [1993], analytical expressions are inferred to compute the time it takes to empty vessels of different shapes: vertical cylinders, cone, horizontal cylinders, spheres, and other. In H art [1993], equations are given to estimate liquid discharge amounts and rates from a flow opening at any arbitrary elevation. In figure 2.8 some examples of these models have been given.


Vertical cylinder

$$
t=\frac{\pi 0^{2} v /}{\sqrt{B} C_{d} A_{n} \sqrt{g}}
$$



Cone
$t=\frac{\sqrt{2} \pi \tan ^{2} \theta h^{5 / 2}}{5 c_{d} A_{n} \sqrt{9}}$

- $A_{n}=$ orifice area, $\mathrm{ft}^{2}$
$g=32.2 \mathrm{ft} / \mathrm{s}^{2}$
$t=$ time to empty. s


Horizontal cylinder

$$
t=\frac{\sqrt{g} L\left(D^{3 / 2}-(D-h)^{3 / 2}\right)}{3 C_{d} A_{n} \sqrt{g}}
$$

$$
=0.80 \text { for short, flush-mounted tube }
$$

$$
=0.98 \text { for rounded orifice }
$$

Figure 2.8 Time required to empty a vessel [Foster, 1981]

### 2.3.5.4 Non-stationary liquid flow in pipelines

No model has been found in open literature except the model in the previous edition of the [Y ellowB ook, 1988]. T his model is an approximate solution of the mass balance (continuity equation) and the momentum balance governing the liquid flow in a horizontal pipeline. It has been assumed that after the full bore rupture of the pipeline, a decompression wave is travelling upstream into the pipe. The liquid flow is assumed to be stationary between this upstream moving wave and the downstream pipe end.

The average isothermal compressibility of liquids between 1 and 1000 bar (105$10^{8} \mathrm{~N} / \mathrm{m}^{2}$ ) is about:

$$
\beta=1.0 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{N}
$$

with

$$
\begin{equation*}
\beta=-1 / \mathrm{V} \times(\partial \mathrm{V} / \partial \mathrm{P})_{\mathrm{T}} \tag{2.7}
\end{equation*}
$$

This means that with pipe pressure below 200-300 $\operatorname{bar}\left(2-3 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}\right)$, the liquid volume has been compressed to a volume which is only a few percent smaller.
Due to the minor compressibility of liquids in general, it is advised to set the mass flow rate equal to the pump flow rate in case of a full bore rupture, taking into account less friction due to a smaller pipe length until the breakage. In case of a relatively small hole in the pipe wall, the outflow rate may be based on the initial pressure in the pipeline.

### 2.3.6 Friction factors

Friction factors have been given in the previous edition [Y ellowBook, 1988]. Additional information can be found in, for instance M elhem [1993] and Radford [1990].
The models for outflow through pipes have been developed for a pipe with no bends, reductions of cross-section or branches. If such fittings are present, they can be accounted for by introducing either an equivalent pipe length or extra resistance coefficients. In section 2.5 we put them together.

### 2.3.7 Physical properties of chemicals

F luid flow and the vaporisation of liquids are controlled by thermodynamic laws and laws governing physical transport phenomena. Relations for thermophysical properties have been given for well-known commodities in many publications.

Pressure, volume, temperature (PVT) relationships for gases and liquids, and also solids would preferably all be summarised in the form of equations of state of the general type:

$$
v=f(P, T) \quad\left(m^{3} / \mathrm{mol}\right)
$$

where

```
v = specific volume [m3/mol]
P = absolute pressure [N /m
T = absolute temperature [K ]
```

In theory it is possible to derive the thermodynamic properties from an equation of state, like:

| $\mathrm{T}_{\mathrm{fl}}$ | $=$ flash point | $[\mathrm{K}]$ |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{p}}$ | $=$ specific heat | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |
| $\rho$ | $=$ liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{P}^{0}$ | $=$ vapour pressure | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| H | $=$ enthalpy | $[\mathrm{Jg}]$ |
| S | $=$ entropy | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |
| $\mathrm{L}_{\mathrm{v}}$ | $=$ heat of vaporisation | $[\mathrm{J} / \mathrm{kg}]$ |

Only in the case of gases there has been much progress in the development of these state equations. They are obtained by correlation of empirical PVT data, and also from theoretical considerations based on atomic and molecular structure. The equation of state of gases will be addressed in more detail in section 2.5.

For compressible chemicals, gases and two-phase mixtures with vapour, the density depends strongly on pressure and temperature.
The physical properties of condensate phases, liquefied gases, liquids and solids, as well as the other physical properties of gases do not vary much as a function of pressure $P$ at moderate pressures, and may be expressed as functions of temperature only. T emperature-dependent thermodynamic and physical transport properties of pure chemicals will be addressed in the annex to this Y ellow Book.

Multi-component systems that act as a multi-phase system at given pressure, temperature and composition will not be addressed because they demand specific treatment.
M ono-phase multi-component mixtures can be treated as quasi one-component systems only in case of ideal mixing, meaning using average values for the physical properties proportional to the weight fractions of the chemical in the mixture.

### 2.4 Selection of models

### 2.4.1 Introduction to section 2.4

In section 2.4 the considerations which have led to the selection of the models that are included in section 2.5 , are explained. In section 2.5 these models will be described in detail. In general the selection is based on the following considerations.

Safety studies and hazard assessment require models that are reasonably accurate, demand little computational effort and not too much input.
L arger computational demands of the model are acceptable only if the accuracy of the predictions will be much greater and/or when the model has a (much) wider range of applicability.
$N$ eedless complicated models that mainly make an additional scientific contribution should be avoided, yet we must not close our eyes to future developments.

Leaving all models relying on computational fluid dynamics (CFD) behind, two main practical approaches may be distinguished:

1. Simple models, such as approximating analytical expressions and empirical correlations, meant for predictions of maximum and averaged flow rates and duration of the outflow.
2. Numerical procedures without approximating sub-models, meant for predictions of the outflow rate as function of time.

The analytical equations may be used to get a quick estimate of the magnitude of the outflow rate. These models are based on simplifying assumptions like: perfect gas behaviour, constant physical properties, and unchanged boundary conditions.
A numerical approach takes into account changes of the physical properties as a function of temperature and pressure, non-perfect gas and liquid behaviour, and 'sudden' changes in boundary conditions.

The (specific) considerations that have lead to the selection of the models to be described in section 2.5, are presented as follows:

- sub-section 2.4.2 addresses models for gases;
- sub-section 2.4.3 addresses models for releases of pressurised liquefied gases, including spray releases;
- sub-section 2.4.4 addresses models for releases of (non-boiling) liquids.


### 2.4.2 Gases

The well-known relations for the stationary critical and non-critical outflow of gases through orifices and through pipes are as in the previous edition of the Y ellowB ook [1988].

There is not much discussion about applying standard thermodynamics for the description of vessel dynamics, as will be described in section 2.5.
We have opted for numerical models, because these models are still relatively simple, and are able to cope with varying physical properties and sudden changes in constraints.

The model for non-stationary gas flow in pipelines in the previous edition of the [Y ellowBook, 1988] was not validated, has a bad performance, and seems numerically unsound. The Wilson correlation has good performance and is rather simple [H anna, 1987]. This model will be described in section 2.5.

The W eiss correlation [Weiss, 1988] for small holes in pipelines is the only model found in open literature. Therefore it will be described in chapter 2.5.

N o model to cope with crater formation, in case of leaks from buried pipelines, is publicly available, therefore no model can be included in section 2.5.

V apour outflow
The models for outflow of gas through holes and piping are valid for pure vapour flowing out of the vapour section in the containment for vaporising pressurised liquefied gases.

### 2.4.3 Pressurised liquefied gases

### 2.4.3.1 Vessel dynamics pressurised liquefied gases

The depressurising of a pressurised liquefied gas causes bubble formation in the liquid and thus expansion of the boiling liquid is a rather complex phenomenon.
A large computer model has been given in H aque [1992].
Because other models are much more complex and obviously do not have a (much) better performance, it would be advisable to use the F auske correlation to determine whether there exists a two-phase flow inside the vessel or not [F auske, 1988]. This model is simple and based on experimental data for horizontal cylinders and spheres. In M elhem [1993] a refined DIERS-method has been described that distinguishes different ways of boiling for top venting and relations to estimate the quality in the outflow opening for vertical vessels. In Sheppard [1993] it appears that this analytical solution of the DIERS-method validates the F auske correlation, but this analytical solution is also able to predict disengagement, regardless of vessel shape.
So the DIERS-method is to be preferred, being more generally applicable and not much more complicated. In chapter 2.5 the analytical DIERS-method is described.

A comparison of the results of both models in Haque [1992] shows that the correlation of $M$ ayinger [Belore, 1986] may well be used for the estimation of the void fraction in relatively small vessels. T he present state of knowledge about the effects of bulk liquid sub-cooling on mitigating the liquid swell, permits only case by case numerical solutions involving sizeable computer programs [Sallet, 1990,3].

Therefore, due to lack of a better and also manageable model, it is advised to apply the correlation of M ayinger, also for larger vessels.

The fact that the void fraction in the top of the vessel venting may be much higher than the average value, can only be coped with by applying very complicated models. Although the behaviour of a depressurising pressurised liquefied gas is a complex process, we choose to describe a model based on standard thermodynamics, taking into account the criteria of DIERS and $M$ ayinger.
We have opted for a numerical model, instead of analytical solutions, because these models are still relatively simple, but are able to cope with varying physical properties and sudden changes in constraints, predicted by the criteria of DIERS and $M$ ayinger. This approach will be described in section 2.5.

### 24.3.2 Stationary outflow of vapour through holes and piping

The well-known relations for the stationary critical and non-critical outflow of gases through orifices and through pipes are valid for one-phase vapour flow, and will be described in section 2.5.

### 2.4.3.3 Two-phase outflow through holes and piping

Giot et al. have carried out a benchmark on two-phase-flow models, within the European Union program ' M ajor Technological H azards', on the basis of selected well-documented and reliable data sets [G iot, 1992].
The benchmark has led to the conclusion that most models presented in open literature have a limited validity range.
The main conclusions are:

1. Only F linta's model has a acceptable performance on all ranges,
2. 'H omogeneous Equilibrium M odels' (HEM s) generally underpredict.

H owever, a very limited number of data points related to fluids other than water were included in the database and have been used for model validation [G iot,1992].

The TPDIS-model has been selected because of:

1. HEM is broadly accepted, and according to Giot [1996] HEMs will give reasonable predictions if the quality $\phi_{\mathrm{m}, \mathrm{e}}$ is larger than $1 \%$,
2. TPDIS is a complete model, well-described in open literature.

Flinta's model has not been selected because of:

1. Its general applicability has not been proven,
2. Some quantities in the required formulae cannot be easily obtained or derived.

It is advised to use TPDIS and other H EM s for those situations for which they have been validated.

### 24.3.4 Non-stationary two-phase flow in pipelines

H aving presumably a low accuracy and a not very robust numerical solution procedure, and not being validated, any simpler and validated model is to be preferred to the previous Y ellow Book model.

A generally applicable model is necessary. Therefore the model given in M orrow [1983] will be described in section 2.5. This model has been derived for propane, but could be generalised by using appropriate physical properties.

While propane is often transported in pipelines, the specific correlation given in T am [1990] will also be described in this section.

### 24.3.5 Finite duration spray releases

Expansion and flashing at atmospheric pressure
The selected model to calculate the conditions after flashing is based on the conventional, generally accepted model using the equations (2.1a-d) provided in section 2. No correction is applied for non-equilibrium flash fractions because of lack of consensus on this subject.

## D roplet diameter after flashing

The proposed model for initial droplet size is based on the work by Appleton [1984] and presented by Wheatley [1987]. T hese expressions are relatively simple to use and Appleton [1984] compared the proposed dropsize correlations with available experimental data. He concludes (for his case, a water/steam mixture at $192{ }^{\circ} \mathrm{C}$, 0.8 mm orifice) that there is reasonable agreement between the correlations and experimental data.
The correlations are different for shattered and non-shattered jets. The criterion for shattering follows the suggestions by A ppleton with $\mathrm{C}_{\varepsilon}=0.1$.

Droplet evaporation and rain-out on the ground
The proposed methodology to predict droplet rain-out from a two-phase jet is:

1. To refrain from the description of binary droplet evaporation in view of uncertainty in exit droplet size and the moderate reductions in drying times according to Vesala [1990];
2. First to determine whether droplets at the end of the flashing zone will reach the ground using K ukkonen's [1990] limiting radius;
3. If the droplets in the jet exceed the limiting droplet radius, then calculate the evaporated mass fraction until the droplet hits the ground. The deposited mass fraction is subtracted from the liquid mass entering the vapour jet, and will form an evaporating pool. For these evaporation calculations, use is made of the expressions by K ukkonen [1990] assuming evaporation in pure air. Only velocity differences between droplet and air due to settling are considered, the horizontal velocity of the jet and the droplet are assumed to be the same.
```
J et dispersion
```

It is assumed that the two-phase jet after flashing can be treated as a single-phase jet with respect to width, entrainment, and evolution of concentration and velocity on the jet centre line.
This leads to the conclusion that the single-phase vapour jet model as described in chapter 4 is applicable, using the jet diameter after flashing as the exit condition.

Evaporation of the droplets in the jet

The evaporation of droplets remaining in the jet due to the heat brought into the jet by entrained air is relevant to determine the density of the jet. In order to calculate the conditions in the jet after evaporation of the aerosols, use will be made of the homogeneous equilibrium model. It has been demonstrated that the homogeneous equilibrium model may be used for droplets less than $100 \mu \mathrm{~m}$ in clouds. The essence of the homogeneous equilibrium method is the use of the integral balance for the enthalpy in the jet (2.4) in section 2.3.4.6, and neglecting temperature differences between the two-phases.

### 2.4.3.6 Instantaneous release of pressurised liquefied gas

## Flashing and initial cloud expansion

The flash fraction is calculated assuming isentropic flashing. T he expansion velocity is calculated using the enthalpy balance (2.5), but multiplied by 0.8 to account for turbulence and non-isentropy. T his factor is justified by the available experimental data.

Expansion of the aerosol cloud during the entrainment phase

F or the evolution of cloud size the simple model as presented in section 2.3.4.7 is selected because there is no evidence that more complex and advanced models provide better results compared to the scarce data. The concentration in the cloud is assumed to be uniform.

D roplet size and rain-out on the ground

By absence of alternatives and considering an instantaneous airborne vapour cloud to give conservative results, it is assumed that a total mass of twice the isentropic flash fraction (in addition to the initial vapour mass in storage) will remain airborne.
T his simple model makes no use of droplet diameter, so no model for calculating the droplet diameter after flashing has been selected.

Evaporation of the droplets in the cloud
The conditions in the cloud at the moment when all aerosols have evaporated, are calculated by using exactly the same methods as included in the two-phase jet model (section 2.3.4.6).
The self-driven expansion of the cloud is assumed to have ended when all aerosols have evaporated and the expansion velocity is equal to the ambient wind speed at the height of the initially expanded cloud just before entrainment starts.

### 2.4.4 Liquids

Since there is not much discussion about which models to apply for liquid flow through holes and pipes, and the behaviour of liquid vessels, the standard approach will be followed in section 2.5.

M ost analytical models for liquid vessel dynamics suffice, although the expressions are not always simple to calculate and integral tables might be needed. W e have opted for numerical models for the description of vessel dynamics in order to be able to maintain the same approach as in the previous paragraphs.

A specific model for non-stationary liquid flow in pipelines is not considered relevant.

### 2.5 Description of models

### 2.5.1 Introduction to section 2.5

Section 2.5 provides descriptions of the recommended models for releases of compressed gases, pressurised liquefied gases and (non-boiling) liquids.
It contains all necessary information to perform the calculations. F or background of the models the reader may refer to section 2.3.
Section 2.5 provides detailed descriptions of the models and methods for the following releases:

- subsection 2.5.2 addresses models for releases of gases;
- subsection 2.5.3 addresses models for releases of pressurised liquefied gases, including spray releases;
- subsection 2.5.4 addresses models for releases of non-boiling liquids.

F inally, friction factors for pipe flow will be given in subsection 2.5.5.

## G uide to the calculations

First, the reader must determine the state of the chemical in its containment, by means of the criteria given in subsection 2.2.3 and summarised in the diagram 2.4.

Diagram 2.4 Thermodynamic states

| Thermodynamic state | Physical conditions |
| :--- | :--- |
| I. compressed gas | $T>T_{C}$ or $P<P_{V}{ }^{\circ}(T)$ |
| II. pressurised liquefied gas | $P=P_{v}{ }^{\circ}(T)$ |
| III. (non-boiling) liquid | $T_{m}<T<T_{B}(P)$ |

Secondly, the reader should check the failure mode of the containment.

M odels are available in this section for the outflow conditions listed in the diagram below.

Diagram 2.5 Models available
Outflow condition
Paragraphs
I. compressed gas (2.5.2)
A.1. outflow from vessel through small leak (2.5.2.2)
a) hole in vessel wall
(2.5.2.3)
b) break of piping
(2.5.2.4)
B.1. outflow from pipeline through small leak (2.5.2.5)
B.2. outflow from full bore ruptured pipeline (2.5.2.5)
II. pressurised liquefied gas (2.5.3)
A.1. outflow from vessel through small leak (2.5.3.2/3)
a) hole in vessel wall (2.5.3.4)
b) break of piping
A.2. totally ruptured vessel
B.1. outflow from pipeline through small leak
(2.5.3.6)
B.2. outflow from full bore ruptured pipeline
(2.5.3.6)
III. (non-boiling) liquid (2.5.4)
A.1. Outflow from vessel through small leak (2.5.4.1)
a) hole in vessel wall
b) break of piping (2.5.4.2)

No models are available in this section for the outflow conditions listed in diagram 2.6.

## Diagram 2.6 Models not available

Outflow condition
I. compressed gas (2.5.2)
A.2. totally ruptured vessel
III. (non-boiling) liquid (2.5.4)
A.2. totally ruptured vessel
B.1. outflow from pipeline through small leak
B.2. outflow from full bore ruptured pipeline

A total rupture of a vessel filled with compressed gas leads to a cloud that expands to atmospheric pressure. No models have been found to estimate the amount of air
entrained during the expansion. M ost atmospheric dispersion models assume that the initial cloud has not been diluted.

A total rupture of a vessel filled with non-boiling liquid leads to a spreading pool on the ground or on a water surface. The release phenomena are taken into account in these pool spreading models.

In section 2.4.4 arguments were given for not describing models for (long) liquid pipelines. The equations given in subsection 2.5.4.2 may be used.

### 2.5.2 Compressed gases

### 2.5.2.1 Equation of state for gases

Because gases are compressible, the gas density $\rho(P)$ as a function of the gas pressure P must be known.
The equation of state of a perfect gas is given by:

$$
\begin{equation*}
P \times V=n \times R \times T \tag{J}
\end{equation*}
$$

or

$$
\begin{equation*}
v=\mathrm{R} \times \mathrm{T} /\left(\mathrm{P} \times \mu_{\mathrm{i}}\right) \tag{2.9b}
\end{equation*}
$$

$$
\left(\mathrm{m}^{3} / \mathrm{kg}\right)
$$

note that

$$
\begin{equation*}
v=1 / \rho \tag{2.9c}
\end{equation*}
$$

where

| P | $=$ absolute gas pressure | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| :--- | :--- | :--- |
| T | $=$ absolute temperature | $[\mathrm{K}]$ |
| R | $=$ gas constant | $[\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})]$ |
| n | $=$ number of moles | $[-]$ |
| V | $=$ specific volume | $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ |
| V | $=$ volume | $\left[\mathrm{m}^{3}\right]$ |
| $\mu_{\mathrm{i}}$ | $=$ mol mass of gaseous chemical i | $[\mathrm{kg} / \mathrm{mol}]$ |
| $\rho$ | $=$ density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |

The perfect gas equation describes the PVT behaviour of real gases only to a first approximation.

A way of showing the deviations from ideality is to write for the real gas:

$$
\begin{equation*}
P \times V=z \times n \times R \times T \tag{J}
\end{equation*}
$$

or

$$
\mathrm{v}=\mathrm{z} \times \mathrm{R} \times \mathrm{T} /\left(\mathrm{P} \times \mu_{\mathrm{i}}\right)
$$

where
$z \quad=$ compressibility factor [-]
The factor $z$ is called compressibility factor, although this might be confusing because the factor $z$ has no relation with the compressibility of a gas. T he German term 'Realgasfaktor' is more plain [G asunie, 1980]; the factor z expresses the departure from the perfect gas behaviour with one single factor.

The compressibility factor appears to be a universal function of the so-called reduced temperature and pressure:

$$
\begin{equation*}
z=f\left(P_{R}, T_{R}\right) \tag{-}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{R}=P / P_{C} \tag{2.11a}
\end{equation*}
$$

(-)

$$
\begin{equation*}
T_{R}=T / T_{C} \tag{-}
\end{equation*}
$$

where

| $\mathrm{P}_{\mathrm{R}}$ | $=$ reduced pressure | $[-]$ |
| :--- | :--- | :--- |
| $\mathrm{P}_{\mathrm{C}}$ | $=$ critical pressure of the chemical | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\mathrm{T}_{\mathrm{R}}$ | $=$ reduced temperature | $[-]$ |
| $\mathrm{T}_{\mathrm{C}}$ | $=$ critical temperature of the chemical | $[\mathrm{K}]$ |



Figure 2.9 Compressibility factor as function of reduced state variables by Gouq-Jen Su [Moore, 1972]

For perfect gases the compressibility factor z equals unity. It is noted that most deviation from perfect gas behaviour occurs near the thermodynamic critical pressure
and critical temperature. In general for real gases the compressibility factor $z$ is about unity for high temperature and low pressures.

Other classical equations of state for real gases are those by Van der W aals and Berthelot. T he Van der W aals equation [M oore,1972] may be expressed as:

$$
\begin{equation*}
\left(P_{R}+3 / V_{R}^{2}\right) \times\left(V_{R}-1 / 3\right)=8 / 3 \times T_{R} \tag{2.11c}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{R}=V N_{C} \tag{-}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{c}=3 / 8 \times R \times T_{c} / P_{c} \tag{2.11e}
\end{equation*}
$$

$$
\left(\mathrm{m}^{3} / \mathrm{mol}\right)
$$

where
$V_{c} \quad=$ critical volume $\quad\left[\mathrm{m}^{3} / \mathrm{mol}\right]$
$\mathrm{V}_{\mathrm{R}} \quad=$ reduced volume $\quad[-]$
In Leung [1988] the Redlich-K wong-equation of state for gases has been used.
Also viral equations may be used to represent the behaviour of gases with greater accuracy, having more adjustable coefficients.
The Starling-H an equation and chemical dependent coefficients have been presented in [Edminster, 1984]. In M orrow's model the Starling equation is used, see paragraph 2.5.3.6.

### 2.5.2.2 Vessel dynamics compressed gas

The modelling of the dynamics of compressed gas stored in a vessel aims at predicting the decrease of pressure and temperature due to the outflow of gas. D ue to the release of gas the remaining gas in the vessel will expand. This expansion causes cooling and depressurisation.

The model is basically an iterative numerical procedure in which the outflow of gas out of a vessel is described in small steps. These steps should be small enough to consider the conditions in the vessel to be constant during one time-step.
First, the initial condition and termination condition of the numerical procedure will be given. After this the model in the form of a numerical procedure is given. This numerical procedure has to be repeated until the termination conditions will have been satisfied.
Afterwards, the inference is given of the system equation governing the behaviour of the compressed gas in the vessel used in the model.

The initial and termination condition of the numerical procedure concerning gas outflow
The initial condition of the vessel is given by: $\mathrm{P}_{1}, \mathrm{~T}_{1}, \rho_{1}$, meaning $\mathrm{i}=1$.
The duration of $\delta t$ may freely be chosen in principle, and depends of the number of
time-steps $\mathrm{N}_{\mathrm{t}}$. When one wishes to estimate the mass flow rate and vessel conditions at time $t_{\text {end }}$, then the size of time step $\delta t$ is given by

$$
\begin{equation*}
\delta t=t_{\text {end }} / N_{t} \tag{s}
\end{equation*}
$$

$\mathrm{t} \quad=$ time from the start of the outflow [s]
The larger the number of steps, the higher the accuracy of the model, but the more time needed for the calculation. The choice $\mathrm{N}_{\mathrm{t}}=50$ will be appropriate for most calculations.

The numerical procedures given should be repeated as long as the constraints are valid:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}<\mathrm{t}_{\text {end }} \quad \mathrm{P}>\mathrm{P}_{\mathrm{a}} \quad \mathrm{~T}>\mathrm{T}_{\mathrm{m}} \tag{2.13}
\end{equation*}
$$

The model for gas outflow: a numerical procedure
Starting every step at time $t_{i}$ in the iteration with a condition in the vessel given by $\mathrm{P}_{\mathrm{i}}$, $T_{i}, \rho_{i}$, the following procedure aims at calculation of the condition in the vessel at the end of the small time-step $\delta t$, given by $\mathrm{P}_{\mathrm{i}+1}, \mathrm{~T}_{\mathrm{i}+1}, \rho_{\mathrm{i}+1}$.

Let us say that the outflow rate $\mathrm{q}_{\mathrm{s}, \mathrm{i}}$ is given by a generalised function f , depending on whether the outflow is through a hole (see paragraph 2.5.2.3) or a pipe (see paragraph 2.5.2.4)

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}, \mathrm{i}}=\mathrm{f}\left(\mathrm{P}_{\mathrm{i}}, \mathrm{~T}_{\mathrm{i}}, \rho_{\mathrm{i}}, \ldots\right) \tag{2.14}
\end{equation*}
$$

D ue to the gas release in period $\delta t$, the density in the vessel decreases

$$
\begin{array}{ll}
\delta \rho=-q_{s, i} / V \times \delta t \\
\rho_{i+1}=\rho_{i}+\delta \rho \\
t_{i+1}=t+\delta t & \left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\
\left(\mathrm{kg} / \mathrm{m}^{3}\right) \tag{2.17}
\end{array}
$$

These steps should be small enough to consider the conditions in the vessel to be constant during one time-step.

D ue to the decrease of the gas density, the gas will expand and the gas temperature will decrease; applying the system equation (see Intermezzo below) gives

$$
\begin{align*}
& \delta T=P_{i} /\left(\rho_{i}^{2} \times C_{v}\right) \times \delta \rho  \tag{K}\\
& T_{i+1}=T_{i}+\delta T \tag{2.18}
\end{align*}
$$

The change in density and temperature of the gas forces the pressure to adapt to the new conditions according to the equation of state of (non-perfect) gases given by equation (2.10b)

$$
\begin{equation*}
P_{i+1}=z \times \rho_{i+1} \times R \times T_{i+1} / \mu_{j} \quad\left(N / m^{2}\right) \tag{2.20}
\end{equation*}
$$

with

$$
\begin{equation*}
z=z\left(P_{R, i}, T_{R, i}\right) \tag{-}
\end{equation*}
$$

The new condition of the vessel at time $t_{i+1}$ given by: $\mathrm{P}_{\mathrm{i}+1}, \mathrm{~T}_{\mathrm{i}+1}, \rho_{\mathrm{i}+1}$.
As long as the termination condition has not been fulfilled, this procedure has to be repeated.

Intermezzo: inference of the system equation (2.18) for compressed gases
The equations without a reference number in this paragraph are only part of the inference of the system equation that is required.
Applying the first law of thermodynamics and using the definition of volumetric work done by an expanding gas, gives

$$
\Delta U=Q_{H}-\int P \times d v
$$

where

| $\Delta U$ | $=$ change in internal energy of the gas | $[\mathrm{J} / \mathrm{kg}]$ |
| :--- | :--- | :--- |
| P | $=$ gas pressure | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| V | $=$ specific volume of the gas | $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ |
| $\mathrm{Q}_{\mathrm{H}}$ | $=$ heat transferred into 1 kg gas | $[\mathrm{J} / \mathrm{kg}]$ |

$N$ ote that the internal energy $U$ is given per unit mass in the vessel.
Assuming reversible adiabatic outflow results in
$\delta U=P \times \delta V$
(J/kg)
$\delta X=$ small change in quantity $X$
$N$ eglecting the internal pressure of non-perfect gases gives a relationship between the internal energy of gas and its temperature
$\delta U=C_{V}(T) \times \delta T$
$C_{V}=$ specific heat at constant volume the gas [J/(kg.K )]
$U$ sing the definition of density $\rho$ and combining the equations leads to the system equation that governs the behaviour of the gas in the vessel, namely
$C_{v} \times \delta T=P / \rho^{2} \times \delta \rho$
(J/kg)
$\rho \quad=$ density $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$

### 2.5.2.3 Gas outflow through holes

The modelling of the outflow of gas through holes aims at predicting the mass flow rate as a function of pressure drop over the hole.

The mass flow rate for gas outflow through an orifice can be estimated by a generalised equation

$$
\begin{equation*}
q_{s}=C_{d} \times A_{h} \times \psi \times \sqrt{\left(\rho_{0} \times P_{0} \times \gamma \times(2 /(\gamma+1))^{(\gamma+1) /(\gamma-1)}\right)} \quad(\mathrm{kg} / \mathrm{s}) \tag{2.22}
\end{equation*}
$$

The factor $\psi^{2}$ is given by equation (2.24) or (2.25) below, and depends on whether the gas outflow is choked (critical) or not.

The outflow is critical or choked when

$$
\begin{equation*}
\mathrm{P}_{0} / \mathrm{P}_{\mathrm{a}} \geq((\gamma+1) / 2)^{(\gamma /(\gamma-1))} \tag{-}
\end{equation*}
$$

For critical outflow

$$
\begin{equation*}
\psi^{2}=1 \tag{-}
\end{equation*}
$$

and for sub-critical outflow

$$
\psi^{2}=2 /(\gamma-1) \times((\gamma+1) / 2)^{(\gamma+1) /(\gamma-1)} \times\left(\mathrm{P}_{\mathrm{a}} / \mathrm{P}_{0}\right)^{2 / \gamma} \times\left(1-\left(\mathrm{P}_{\mathrm{a}} / \mathrm{P}_{0}\right)^{((\gamma-1) / \gamma)}\right)
$$

with

$$
\begin{equation*}
\gamma=C_{p} / C_{v} \tag{-}
\end{equation*}
$$

where

| $\mathrm{q}_{\mathrm{s}}$ | $=$ mass flow rate | $[\mathrm{kg} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{d}}$ | $=$ discharge coefficient | $[-]$ |
| $\mathrm{A}_{\mathrm{h}}$ | $=$ cross-sectional area hole | $\left[\mathrm{m}^{2}\right]$ |
| $\psi$ | $=$ outflow coefficient | $[-]$ |
| $\rho_{0}$ | initial gas density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{P}_{0}$ | $=$ initial gas pressure | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\gamma$ | $=$ Poisson ratio | $[-]$ |
| $\mathrm{C}_{p}$ | $=$ specific heat at constant pressure | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |
| $\mathrm{C}_{\mathrm{v}}$ | $=$ specific heat at constant volume | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |

For most gases $1.1<\gamma<1.4$ and the outflow will be critical when $\mathrm{P}_{0} / \mathrm{P}_{\mathrm{a}}>1.9$.

The discharge coefficient $C_{d}$ is in fact determined by two factors: friction and contraction.

$$
\begin{equation*}
C_{d}=C_{f} \times C_{c} \tag{-}
\end{equation*}
$$

where
$\mathrm{C}_{\mathrm{f}} \quad=$ friction coefficient $\quad[-]$
$\mathrm{C}_{\mathrm{C}}=$ contraction coefficient $[-]$
C ontraction is caused by the fact that the fluid in the vessel is flowing into the opening from all directions, having a velocity component perpendicular to the axis of the opening. The flowing fluid must be bent in the direction parallel to the hole axis. The
inertia of the fluid results in the smallest cross-sectional area, with no radial acceleration, that is smaller than the area of the opening.
F or sharp orifices contraction plays a part and friction is negligible;
The following value for the discharge coefficient is recommended [Beek, 1974]:

$$
\begin{equation*}
C_{d} \approx 0.62 \tag{2.28a}
\end{equation*}
$$

F or rounded orifices contraction does not play a part and friction is small;
The following value for the discharge coefficient is recommended [Beek, 1974]:

$$
\begin{equation*}
C_{d} \approx 0.95-0.99 \tag{2.28b}
\end{equation*}
$$

## V apour outflow

The models for outflow of gas from holes are valid for pure vapour flowing out of the vapour section in the containment for vaporising pressurised liquefied gases, as long as no condensation of the vapour occurs. T his means that the pressure of the vapour may not become higher than its saturation pressure at given temperature.

### 2.5.2.4 Gas outflow through piping

T he modelling of the outflow of gas through piping aims at predicting the mass flow rate as a function of the pressure drop over the piping. T his mass flow rate is mainly determined by the overpressure in the vessel and the flow resistance.

Principles of the model for gas flow in piping

The total pressure drop $\Delta \mathrm{P}$ between the vessel and the ambient is equal to the pressure drop over the pipe and the pressure drop over the downstream opening in the pipe

$$
\begin{align*}
\Delta \mathrm{P} & =\mathrm{P}_{0}-\mathrm{P}_{\mathrm{a}}  \tag{2.29a}\\
& =\left(\mathrm{P}_{0}-\mathrm{P}_{\mathrm{e}}\right)-\left(\mathrm{P}_{\mathrm{e}}-\mathrm{P}_{\mathrm{a}}\right) \\
& =\Delta \mathrm{P}_{\text {pipe }}-\Delta \mathrm{P}_{\text {hole }}
\end{align*}
$$

with

$$
\begin{array}{ll}
\Delta P_{\text {hole }}=P_{e}-P_{a} \\
\Delta P_{\text {pipe }}=P_{0}-P_{e} & \left(N / \mathrm{m}^{2}\right) \\
\left(\mathrm{N} / \mathrm{m}^{2}\right)
\end{array}
$$

where

$$
\begin{aligned}
& \Delta \mathrm{P}_{\text {pipe }}=\text { pressure drop in the pipe } \quad\left[\mathrm{N} / \mathrm{m}^{2}\right] \\
& \Delta \mathrm{P}_{\text {hole }}=\text { pressure drop in the hole } \\
& \mathrm{P}_{\mathrm{e}} \quad=\text { the (unknown) pressure at the downstream end } \\
& \text { of the pipe, just before the outflow opening } \\
& {\left[\mathrm{N} / \mathrm{m}^{2}\right. \text { ] }} \\
& P_{0}=\text { stagnant (initial) pressure at the upstream end } \\
& {\left[\mathrm{N} / \mathrm{m}^{2}\right. \text { ] }} \\
& \mathrm{P}_{\mathrm{a}} \quad=\text { atmospheric pressure }
\end{aligned}
$$

The pressure $\mathrm{P}_{\mathrm{e}}$ at the end in the pipe just before the pipe opening to the atmosphere is initially unknown.
The mass flow through the pipe $\mathrm{q}_{\mathrm{s} \text {, pipe }}$ is controlled by the pressure drop over the pipe and the mass flow through the pipe opening $q_{s, \text { hole }}$ is controlled by the pressure drop over the pipe opening. The law of conservation of mass requires the mass flow through the pipe $\mathrm{q}_{\mathrm{s}, \text { pipe }}$ to be equal to the mass flow through the hole $\mathrm{q}_{\mathrm{s} \text {, hole }}$ (or pipe opening). Thus, the condition that must be fulfilled is given by

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}, \text { pipe }}\left(\Delta \mathrm{P}_{\text {pipe }}\right)=\mathrm{q}_{\mathrm{s}, \text { hole }}\left(\Delta \mathrm{P}_{\text {hole }}\right) \tag{2.30}
\end{equation*}
$$

In conclusion, in the estimation of the mass flow through the pipe, the pressure just inside the pipe $P_{e}$ must be determined. The governing set of equations can be solved by trial and error, by guessing the internal pressure in the pipe just before the pipe opening $\mathrm{P}_{\mathrm{e}}$.

The model for gas flow in piping: a numerical procedure

1. G uess the internal pressure $P_{e}$ at the downstream end of the pipe, just before the outflow opening: $\mathrm{P}_{\mathrm{a}}<\mathrm{P}_{\mathrm{e}}<\mathrm{P}_{0}$
2. Calculate the mass flow through a pipe opening or a hole in the pipe wall, with respect to the condition formulated by equations (2.29a-c).
The mass flow rate $\mathrm{q}_{\mathrm{s}, \text { hole }}$ in the opening in the pipe can be estimated by using the equations in paragraph 2.5.2.3. In case of a full bore pipe rupture the mass flow rate in the pipe opening $q_{s, \text { hole }}$ can be estimated by assuming the pipe opening having the diameter of the pipe; then a discharge coefficient $C_{d}=1.0$ is advised to be used in the calculation, Beek [1974]. F or smaller holes the standard model for outflow through an orifice is valid, and a value for discharge coefficient $\mathrm{C}_{\mathrm{d}}=0.62$ is recommended.
3. Calculate the mass flow rate through the pipe $q_{s, p i p e}$ by equation (2.31) and related equations, as has been derived in the following subparagraph.

The mass flow rate through a pipe as function of the pressure at both pipe ends can be calculated by (see Intermezzo)
$q_{S}=A_{p} \sqrt{\frac{2 \times \int_{P_{0}}}{P_{e}} \frac{4 f_{F} \times I_{p} / d_{p}}{}}$
with

$$
\begin{align*}
& \rho=\mathrm{C} \times(\mathrm{P} / \mathrm{z})^{1 / \zeta}  \tag{2.32}\\
& \zeta=1+\mathrm{z} \times \mathrm{R} /\left(\mathrm{C}_{\mathrm{v}} \times \mu_{\mathrm{i}}\right) \tag{-}
\end{align*}
$$

where

$$
C=\text { constant }
$$

N ote that for perfect gas behaviour ( $z=1$ )

$$
\begin{equation*}
\zeta=\gamma \tag{-}
\end{equation*}
$$

The integral may be solved simply by numerical methods, but also analytically assuming constant compressibility factor, for instance $z=1$, and constant specific heat at constant volume $\mathrm{C}_{\mathrm{v}}$ :

$$
\int_{P_{0}}^{P_{E}} \rho(P) \times d P \approx P_{0} \times \rho_{0} \times(\zeta /(1+\zeta)) \times\left(\left(P_{e} / P_{0}\right)^{((1+\zeta) / \zeta)}-1\right)
$$

$$
\begin{equation*}
\left(\mathrm{kg}^{2} /\left(\mathrm{m}^{4} \cdot \mathrm{~s}^{2}\right)\right)( \tag{2.31a}
\end{equation*}
$$

4. Compare those two mass flow rates $\mathrm{q}_{s}\left(\Delta \mathrm{P}_{\text {pipe }}\right)$ and $\mathrm{q}_{s}\left(\Delta \mathrm{P}_{\text {hole }}\right)$. If not equal repeat procedure.

A more convenient way to solve equation (2.30) is to use a root finding procedure by defining

$$
\begin{align*}
F\left(P_{e}\right) & =q_{s, \text { pipe }}\left(\Delta P_{\text {pipe }}\right)-q_{s, \text { hole }}\left(\Delta P_{\text {hole }}\right) \\
& =q_{s, \text { pipe }}\left(P_{0}-P_{e}\right)-q_{s, \text { hole }}\left(P_{\mathrm{e}}-P_{\mathrm{a}}\right) \tag{2.30a}
\end{align*}
$$

T he principle is still the same, but the determination of the right $P_{e}$ is much quicker.

## Intermezzo: inference of the equation (2.31) describing the mass flow rate of gas flow in a pipe

The total pressure drop for a stationary fluid flow (gases and fluids) in piping can be estimated by the wellknown D arcy-W eisbach equation

$$
\begin{equation*}
\Delta P=f_{D} \times \rho_{g} / 2 \times u_{g}^{2} \times I_{p} / d_{p} \quad\left(N / m^{2}\right) \tag{2.198a}
\end{equation*}
$$

This relation does not account for the effect of the pressure drop on the density of the gas, which consequently will expand. In the following the equation will be inferred which relates the mass flow rate $\mathrm{q}_{\mathrm{s}}$ of a gas in a pipe to the pressure drop in the pipe. Reformulated for the local pressure drop along the pipe the relation gives

$$
\begin{equation*}
\delta P / \delta I_{p}=f_{D} \times \rho_{g} / 2 \times u_{g}{ }^{2} / d_{p} \quad\left(N / \mathrm{m}^{3}\right) \tag{2.198b}
\end{equation*}
$$

where

| $\mathrm{f}_{\mathrm{D}}$ | $=$ D arcy friction factor | $[-]$ |
| :--- | :--- | :--- |
| $\rho_{g}$ | $=$ gas density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{u}_{\mathrm{g}}$ | $=$ gas velocity | $[\mathrm{m}]$ |
| $\mathrm{I}_{\mathrm{p}}$ | $=$ pipe length | $[\mathrm{m}]$ |
| $\mathrm{d}_{\mathrm{p}}$ | $=$ pipe diameter | $[\mathrm{m}]$ |
| $\Delta \mathrm{P}$ | $=$ total pressure drop over the pipe | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |

The Darcy friction factor $f_{D}$ is a function of the inside wall roughness of the pipeline and the Reynolds number (see section 2.5.5).
The gas velocity u is determined by the mass flow rate in the pipe by

$$
\begin{equation*}
u_{g}=q_{s} /\left(\rho_{g} \times A_{p}\right) \tag{m/s}
\end{equation*}
$$

Integrating over the pipe length results in

$$
\int_{P_{0}}^{P_{e}} \rho(P) \times d P=f_{D} \times I_{p} / d_{p} \times\left(q_{s} / A_{p}\right)^{2} / 2
$$

The calculation of the integral on the left-hand side of equation (2.34) requires an expression for the gas density as a function of the local pressure in the pipe: $\rho(\mathrm{P})$.

When the equation of state of a non-perfect gas is given by equation (2.10a) and (2.11)

$$
\begin{equation*}
P \times V=z\left(P_{R}, T_{R}\right) \times R \times T \tag{J}
\end{equation*}
$$

Then, an adiabatic expansion of a non-perfect gas may be described by

$$
\begin{equation*}
P \times V^{\xi} / z \approx C^{*} \tag{2.32a}
\end{equation*}
$$

with

$$
\begin{equation*}
\zeta=1+z \times R /\left(C_{v} \times \mu_{i}\right) \tag{-}
\end{equation*}
$$

where

$$
\mathrm{C}^{*}=\text { constant }\left(\left(\mathrm{N} / \mathrm{m}^{2}\right) \cdot \mathrm{m}^{35}\right)
$$

And thus the integral on the left-hand side of equation (2.34) can be calculated using

$$
\begin{equation*}
\rho=C \times(P / z)^{1 / 5} \tag{2.32}
\end{equation*}
$$

where

$$
\mathrm{C}=\text { constant }
$$

The mass flow rate through a pipe as a function of the pressure at both pipe ends can now be calculated by using equations (2.33) and (2.32) and

$$
\begin{equation*}
q_{S, \text { pipe }}=A_{p} \sqrt{\frac{P_{e}}{2 \times \int_{P_{0}} \rho(P) \times d P}} \tag{kg/s}
\end{equation*}
$$

## V apour outflow

The models for outflow of gas through piping are valid for pure vapour flowing out of the vapour section in the containment for vaporising pressurised liquefied gases, as long as no condensation of the vapour occurs. T his means the pressure of the vapour may not become higher than its saturation pressure at given temperature.

### 2.5.2.5 Non-stationary gas flow in pipelines

A fter a sudden rupture at one end of the pipeline, a pressure wave will start moving with the speed of sound in the pipeline in the opposite (upstream) direction.
$N$ on-stationary gas flow in pipelines after a full bore rupture

T he W ilson model of the outflow of gas through pipelines aims at predicting the mass flow rate as a function of time depending on the initial conditions.
The model assumes a compressor to trip when the decompression wave in the pipeline reaches the compressor station at the other pipe end.

T he mass flow rate for a full bore ruptured pipeline according to the empirical model of Wilson [H anna, 1987] is given by
$q_{s}(t)=q_{s, 0} /\left(1+Q_{0} /\left(t_{B} \times q_{s, 0}\right)\right) \times\left\{Q_{0} /\left(t_{B} \times q_{s, 0}\right) \times \exp \left(-t / t_{B}\right)+\exp \left(-t \times t_{B} \times\left(q_{s, 0} / Q_{0}\right)^{2}\right)\right\}$
(kg/s)
where
$\mathrm{q}_{\mathrm{s}, 0}=$ initial mass flow (discharge) rate
[kg/s]
$\mathrm{Q}_{0} \quad=$ initial total gas mass in the pipeline
[kg]
$\mathrm{t}_{\mathrm{B}} \quad=$ time constant
[s]

1. The initial total mass $Q_{0}$ in the pipeline can be calculated by

$$
\begin{equation*}
Q_{0}=\rho_{0} \times A_{p} \times I_{p} \tag{kg}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{A}_{\mathrm{p}}=\pi / 4 \times \mathrm{d}_{\mathrm{p}}^{2} \tag{2.36b}
\end{equation*}
$$

2. The initial release rate $\mathrm{q}_{\mathrm{s}, 0}$ can be calculated by using the equations presented in paragraph 2.5.2.4

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}, 0}=C_{d} \times A_{p} \times \psi \times \sqrt{\left(\rho_{0} \times \mathrm{P}_{0} \times \gamma \times(2 /(\gamma+1))^{(\gamma+1) /(\gamma-1)}\right)} \quad(\mathrm{kg} / \mathrm{s}) \tag{2.37}
\end{equation*}
$$

F or outflow through the pipe opening in case of a full bore rupture it is advised to use the following value for the discharge coefficient

$$
\begin{equation*}
C_{d}=1.0 \tag{-}
\end{equation*}
$$

3. The sonic velocity in the gas $u_{5}$, assuming adiabatic expansion ( $\Delta \mathrm{S}=0$ ) is given by

$$
\begin{equation*}
\mathrm{u}_{\mathrm{s}}=\sqrt{ }(\mathrm{dP} / \mathrm{d} \rho)_{\mathrm{s}} \tag{2.39a}
\end{equation*}
$$

$U$ sing the equations of state for non-perfect gases given in paragraph 2.5.2.4 results in

$$
\begin{equation*}
d \rho / d P=\rho /(\zeta \times P) \tag{2.39b}
\end{equation*}
$$

$$
\left(s^{2} / \mathrm{m}^{2}\right)
$$

which results for non-perfect gases in

$$
\begin{equation*}
\mathrm{u}_{\mathrm{s}}=\sqrt{\left(\zeta \times \mathrm{Z} \times \mathrm{R} \times \mathrm{T}_{0} / \mu_{\mathrm{i}}\right)} \tag{m/s}
\end{equation*}
$$

4. The Darcy friction factor may be calculated by the Colebrook-W hite equation, approximated for high Reynolds numbers, by

$$
\begin{equation*}
f_{D}=\left\{1 /\left(-2 \times{ }^{10} \log \left(\varepsilon /\left(3.715 \times d_{p}\right)\right)\right\}^{2}\right. \tag{-}
\end{equation*}
$$

5. The time constant $t_{B}$ is given by

$$
\begin{equation*}
t_{B}=2 / 3 \times l_{\rho} / u_{s} \times \sqrt{\left(\gamma \times f_{D} \times l_{\rho} / d_{\rho}\right)} \tag{s}
\end{equation*}
$$

6. Finally the mass flow rate $\mathrm{q}_{\mathrm{s}}(\mathrm{t})$ can be estimated at any time t after the full bore rupture of the pipeline by the W ilson model given by equation (2.35).
7. Check the validity of the model.

When the pressure wave travelling upstream reaches the opposite side of the pipeline the W ilson model is not valid any more. This is the case when

$$
\begin{equation*}
t_{E}=I_{p} / u_{s} \tag{s}
\end{equation*}
$$

The following symbols used in this paragraph have not been mentioned earlier:

| $d_{p}$ | $=$ pipe diameter | $[\mathrm{m}]$ |
| :--- | :--- | :--- |
| $\mathrm{I}_{\mathrm{p}}$ | $=$ pipe length | $[\mathrm{m}]$ |
| $\mathrm{Q}_{0}$ | $=$ initial mass content in the pipeline | $[\mathrm{kg}]$ |
| $\mathrm{P}_{0}$ | $=$ initial (operating) pressure in pipeline | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\mathrm{q}_{\mathrm{s}, 0}$ | $=$ initial mass flow (discharge) rate | $[\mathrm{kg} / \mathrm{s}]$ |
| $\mathrm{T}_{0}$ | $=$ initial temperature | $[\mathrm{K}]$ |
| t | $=$ time after rupture | $[\mathrm{s}]$ |
| $\mathrm{t}_{\mathrm{E}}$ | $=$ maximum time validity model | $[\mathrm{s}]$ |
| $\mathrm{f}_{\mathrm{D}}$ | $=$ D arcy friction factor | $[-]$ |
| $\gamma$ | $=$ specific heat ratio | $[-]$ |
| $\varepsilon$ | $=$ wall roughness | $[\mathrm{m}]$ |
| $\zeta$ | $=$ constant defined paragraph 2.5.2.4 | $[-]$ |
| $\mu_{\mathrm{i}}$ | $=$ molecular weight of substance i | $\left[\mathrm{kg} / \mathrm{mol}^{2}\right]$ |
| $\rho$ | $=$ density of the gas | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\rho_{0}$ | $=$ initial density of the gas | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |

N on-stationary gas outflow from pipelines through small holes

T heW eiss model of the outflow of gas from pipelines through punctures (small holes) aims at the estimation of the blow-down time (and not the mass flow rate as a function of time).
The model has been developed for blow-down riser design, but can be applied to a small hole in a pipeline similarly.

The method for accurately predicting gas-pipeline blow-down times, involves application of appropriate correction factors to a simple calculation that regards the pipeline as a volume. T he correction factors apply to a wide range of length/diameter values and the ratio of the main pipe area to the area of the small holes [W eiss, 1988]. It is assumed that the gas within the pipeline expands isothermally.
The effect of friction in the pipeline can have pronounced effects on the blow-down time. The cross-area of a small hole is much smaller than the cross-section of the pipeline. Consequently the gas velocities in the pipeline are moderate and the flow may be regarded as quasi-steady. In case the ( $f_{D} \times I_{p} / d_{p}$ ) $<40$ the pipeline may be considered as a stagnant volume neglecting the effects of flow and friction in the pipeline.
An attempt was made to formulate correction factors which could be applied to the volume model calculations in order to provide better blow-time predictions.
The result was a polynomial expression in ( $f_{D} \times I_{p} / d_{p}$ ) and pipe to hole area $\left(A_{p} / A_{h} \cdot C_{d}\right)$
$N$ ote that the $D$ arcy friction factor $f_{D}$ is explained in subsection 2.5.5.

N umerical procedure non-stationary blow-down time of pipelines through small holes

1. Determine the average speed of sound $u_{s}$ and the Poisson ratio $\gamma$ for the blowdown and calculate the time constant $\tau_{v}$
$\tau_{v}=V_{p} \times \frac{((\gamma+1) / 2)^{(\gamma+1) /(2(\gamma-1))}}{u_{s} \times A_{h} \times C_{d}}$
$\mathrm{u}_{\mathrm{s}}=\sqrt{\left(\mathrm{z} \times \gamma \times \mathrm{R} \times \mathrm{T} / \mu_{\mathrm{i}}\right)}$
(m/s)
$V_{p}=\frac{\pi}{4} \times d_{p}^{2} \times l_{p}$
$\left(m^{3}\right)$
$\gamma=C_{p} / C_{v}$
2. C alculate the dimensionless sonic blow-down time
$\tau_{\text {cr }}=\ln \left(P_{i} / P_{\mathrm{a}}\right)-(\gamma /(\gamma-1)) \times \ln ((\gamma+1) / 2)$
3. Calculate the dimensionless sub-sonic blow-down time $\tau_{s}$ by solving the following equation by a standard numerical integration procedure (method by Simpson or Romberg)

$$
\begin{equation*}
\tau_{\mathrm{s}}=\frac{2^{1 /(\gamma-1)} \times \sqrt{(\gamma-1)}}{(\gamma+1)^{(\gamma-1) /(2 \times(\gamma-1))}} \times \int_{P_{\mathrm{cr}}}^{P_{\mathrm{f}}} \frac{1}{\mathrm{p} \times\left(\mathrm{p}^{-2 / \gamma}-\mathrm{p}^{-(\gamma+1) / \gamma}\right)} \times \mathrm{dp} \tag{-}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathrm{p}=\mathrm{P} / \mathrm{P}_{\mathrm{a}}  \tag{-}\\
& \mathrm{p}_{\mathrm{f}}=1  \tag{2.47c}\\
& \mathrm{p}_{\mathrm{cr}}=\mathrm{P}_{\mathrm{cr}} / \mathrm{P}_{\mathrm{a}}
\end{align*}
$$

The dimensionless sub-sonic blow-down time $\tau_{s}$ can also be determined morequickly by using table 2.1 below, knowing the (average) Poisson ratio $\gamma$ of the gas, yet, thereby losing some accuracy.

Table 2.1 Some values for the dimensionless
sub-sonic blow-down time $\tau_{s}$
as function of the Poisson ratio $\gamma=C_{p} / C_{v}$ of the gas

| $\gamma$ | $\mathbf{P}_{\mathbf{c r}} / \mathbf{P a}_{\mathbf{a}}$ | $\boldsymbol{\tau}_{\mathbf{s}}$ |
| :---: | :---: | :---: |
| 1.20 | 1.7716 | 0.7371 |
| 1.25 | 1.8020 | 0.7605 |
| 1.30 | 1.8324 | 0.7833 |
| 1.35 | 1.8627 | 0.8058 |
| 1.40 | 1.8929 | 0.8278 |
| 1.45 | 1.9231 | 0.8495 |
| 1.50 | 1.9531 | 0.8707 |
| 1.55 | 1.9831 | 0.8916 |
| 1.60 | 2.0130 | 0.9122 |

4. Estimate the blow-down correction factor $\mathrm{C}_{\mathrm{b}}$
$C_{b}=a_{1}+a_{2} \times{ }^{10} \log \left(f_{D} \times I_{p} / d_{p}\right)+a_{3} \times\left({ }^{10} \log \left(f_{D} \times I_{p} / d_{p}\right)\right)^{2}+a_{4} \times\left({ }^{10} \log \left(f_{D} \times I_{p} / d_{p}\right)\right)^{3}$
$N$ ote that $f_{D}$ is the $D$ arcy friction factor; see paragraph 2.5.5;
with

$$
\begin{align*}
& A_{r}=A_{p} /\left(A_{h} \times C_{d}\right)  \tag{2.49}\\
& a_{1}=b_{1,1}+b_{1,2} \times A_{r}+b_{1,3} \times A_{r}^{2}+b_{1,4} \times A_{r}^{3}  \tag{2.50}\\
& a_{2}=b_{2,1}+b_{2,2} \times A_{r}+b_{2,3} \times A_{r}^{2}+b_{2,4} \times A_{r}^{3} \\
& a_{3}=b_{3,1}+b_{3,2} \times A_{r}+b_{3,3} \times A_{r}^{2}+b_{3,4} \times A_{r}^{3} \\
& a_{4}=b_{4,1}+b_{4,2} \times A_{r}+b_{4,3} \times A_{r}^{2}+b_{4,4} \times A_{r}^{3}
\end{align*}
$$

T hese coefficients have been matched with a numerical pipe model that corresponds well with experimental data.

$$
\begin{array}{llll}
b_{1,1}=0.88107 & b_{1,2}=-0.064749 & b_{1,3}=0.0067921 & b_{1,4}=-0.00019302  \tag{2.51}\\
b_{2,1}=0.82784 & b_{2,2}=0.053443 & b_{2,3}=-0.0088474 & b_{2,4}=0.00026646 \\
b_{3,1}=-0.78302 & b_{3,2}=-0.0086017 & b_{3,3}=0.0049027 & b_{3,4}=-0.00016658 \\
b_{4,1}=0.34043 & b_{4,2}=-0.032399 & b_{4,3}=0.0013735 & b_{4,4}=-0.000023546
\end{array}
$$

These correlations are valid for

$$
\begin{equation*}
4 \leq A_{r} \leq 16 \tag{2.52}
\end{equation*}
$$

The following correlations

$$
\begin{align*}
& a_{1}=c_{1,1}+c_{1,2} \times\left(1 / A_{r}\right)+c_{1,3} \times\left(1 / A_{r}\right)^{2}+c_{1,4} \times\left(1 / A_{r}\right)^{3}  \tag{2.53}\\
& a_{2}=c_{2,1}+c_{2,2} \times\left(1 / A_{r}\right)+c_{2,3} \times\left(1 / A_{r}\right)^{2}+c_{2,4} \times\left(1 / A_{r}\right)^{3} \\
& a_{3}=c_{3,1}+c_{3,2} \times\left(1 / A_{r}\right)+c_{3,3} \times\left(1 / A_{r}\right)^{2}+c_{3,4} \times\left(1 / A_{r}\right)^{3} \\
& a_{4}=c_{4,1}+c_{4,2} \times\left(1 / A_{r}\right)+c_{4,3} \times\left(1 / A_{r}\right)^{2}+c_{4,4} \times\left(1 / A_{r}\right)^{3}
\end{align*}
$$

with

$$
\begin{array}{llll}
c_{1,1}=1.0319 & c_{1,2}=-5.2735 & c_{1,3}=25.680 & c_{1,4}=-38.409  \tag{2.54}\\
c_{2,1}=-0.26994 & c_{2,2}=17.304 & c_{2,3}=-86.415 & c_{2,4}=144.77 \\
c_{3,1}=0.24175 & c_{3,2}=-12.637 & c_{3,3}=56.772 & c_{3,4}=-88.351 \\
c_{4,1}=-0.054856 & c_{4,2}=2.6258 & c_{4,3}=-8.9593 & c_{4,4}=12.139
\end{array}
$$

apply to a somewhat wider validity range

$$
\begin{equation*}
3 \leq A_{r} \leq 30 \tag{2.55}
\end{equation*}
$$

but may be not so good a fit in the middle range, and can best be used at the extremities of the range

$$
\begin{align*}
& 3 \leq A_{r}<4  \tag{2.56}\\
& 16 \leq A_{r} \leq 30
\end{align*}
$$

5. The duration of the outflow can be determined by

$$
\begin{equation*}
\mathrm{t}=\left(\tau_{\mathrm{cr}}+\tau_{\mathrm{s}}\right) \times \tau_{\mathrm{v}} \times \mathrm{C}_{\mathrm{b}} \tag{s}
\end{equation*}
$$

The following symbols have been used in this paragraph:

| $\mathrm{A}_{\mathrm{p}}$ | = cross-sectional area pipeline | [ $\mathrm{m}^{2}$ ] |
| :---: | :---: | :---: |
| $A_{h}$ | = cross-sectional area hole | [ $\mathrm{m}^{2}$ ] |
| $\mathrm{C}_{\text {d }}$ | = discharge coefficient hole | [-] |
| $\mathrm{C}_{\text {b }}$ | = blow-down correction factor | [-] |
| $\mathrm{d}_{\mathrm{p}}$ | = pipeline diameter | [m] |
| $\mathrm{f}_{\mathrm{D}}$ | = D arcy friction factor | [-] |
| $\gamma$ | = Poisson ratio | [-] |
| p | = pipe length | [m] |
| P | = (absolute) pressure | [ $\mathrm{N} / \mathrm{m}^{2}$ ] |
| p | $=$ pressure ratio ( $\mathrm{P} / \mathrm{P}_{\mathrm{a}}$ ) | [-] |
| $\mathrm{p}_{\text {cr }}$ | = critical flow pressure ratio | [-] |
| $\mathrm{p}_{\mathrm{f}}$ | = final pressure ratio | [-] |
| $\mathrm{Pa}_{\mathrm{a}}$ | = atmospheric pressure | [ $\mathrm{N} / \mathrm{m}^{2}$ ] |
| $\mathrm{P}_{0}$ | = initial pipeline pressure | [ $\mathrm{N} / \mathrm{m}^{2}$ ] |
| R | = gas constant | [ $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$ ] |
| T | = absolute temperature | [K] |
| $\tau_{\text {cr }}$ | = dimensionless sonic blow time | [-] |
| $\tau_{\text {s }}$ | = dimensionless subsonic blow time | [-] |
| $u_{\text {s }}$ | = speed of sound | [m/s] |
| V | = pipeline volume | [ $\mathrm{m}^{3}$ ] |
| z | = compressibility factor |  |
| $\rho$ | $=$ density | [ $\mathrm{kg} / \mathrm{m}^{3}$ ] |
|  | = time constant |  |

### 2.5.3 Pressurised liquefied gases

### 2.5.3.1 Introduction to pressurised liquefied gases

The modelling of the dynamics of a vessel filled with pressurised liquefied gas aims at predicting the decrease in temperature and liquid mass during outflow.

The way the content in the vessel behaves ('vessel dynamics') is very much dependent on the type of outflow initially from the vessel:

* outflow of pure vapour
* two-phase outflow
$\Phi_{\mathrm{m}}=1$
$0<\Phi_{\mathrm{m}}<1$
* liquid outflow
$\Phi_{\mathrm{m}}=0$
$N$ ote that $\Phi_{m}$ is the quality or vapour mass fraction of the outflowing fluid.
In order to determine which flow type will be at hand, the swell of the boiling liquid due to the bubble formation relative to the position of the opening inside the vessel should be estimated first. The DIERS-criteria determine whether two-phase flow
inside the vessel is apparent in case of top venting. In case of a release the rise of the liquid level can be estimated by the relation of M ayinger [Belore, 1986].

The model is basically an iterative numerical procedure in which the outflow of gas and liquid from a vessel is described in small steps. T hese steps should be small enough to consider the conditions in the vessel to be constant during one time-step.

The outlines of the numerical procedure for the vessel dynamics concerning the release of pressurised liquefied gas is somewhat different for each flow type.
The procedure corresponding to the vessel dynamics resulting from outflow of pure vapour ( $\Phi_{\mathrm{m}}=1$ ) will be described first. The other procedures will be described as a variant of this procedure.

In the following, first the criteria for the flow type inside the vessel and the model for liquid level rise are given.
$N$ ext, the initial and termination condition of the numerical procedure will be given.
After this the model in the form of a numerical procedure is described. Every flow type is related to its own variant of the basic procedure.
The numerical procedure has to be repeated until the termination conditions will have been satisfied, and as long as the initial flow type remains.

### 2.5.3.2 Determination outflow type from the vessel

F low type inside the vessel

A detailed analytical method for predicting the flow regime for two-phase flows from a vertical vessel during depressurisation was developed by the Design Institute of E mergency Relief Systems (DIERS) of the A merican Institute of C hemical E ngineers (AIChE) [DIERS, 1986 and M elhem, 1993].

The DIERS-method proceeds as follows:

1. Determine the outflow rate $\mathrm{q}_{\mathrm{s}, 1}$, assuming vapour outflow at the exit, by using the equations presented in paragraphs 2.5.2.3 and 2.5.2.4.
2. Calculate the superficial vapour velocity inside the vessel

$$
\begin{equation*}
u_{v}=q_{s, 1} /\left(\rho_{V} \times A_{L}\right) \tag{m/s}
\end{equation*}
$$

3. C alculate the bubble rise velocity

$$
\begin{equation*}
u_{b}=C_{D 1} \times\left(g \times \sigma \times\left(\rho_{L}-\rho_{V}\right)\right)^{0.25} / \sqrt{ } \rho_{\mathrm{L}} \tag{2.59}
\end{equation*}
$$

with

$$
\begin{align*}
& C_{D 1}=1.18 \text { for bubbly flow }  \tag{-}\\
& C_{D 1}=1.53 \text { for churn flow (extensive bubble coalescence) }  \tag{2.60b}\\
& \sigma \quad=\text { surface tension } \tag{2.60c}
\end{align*}
$$

In figure 2.3 (page 2.24) the bubble flow region and the churn turbulent flow region have been outlined.
4. The dimensionless superficial vapour velocity is given by

$$
\begin{equation*}
u_{\mathrm{VR}}=\mathrm{u}_{\mathrm{v}} / \mathrm{u}_{\mathrm{b}} \tag{-}
\end{equation*}
$$

5. C alculate the characteristic dimensionless superficial velocity $u_{V R}$ for both typical two-phase flow types.

For bubbly flow the dimensionless superficial velocity $u_{V R}$ must be greater than

$$
\begin{equation*}
\mathrm{u}_{\mathrm{VR}, \mathrm{bf}}=\Phi_{\mathrm{v}} \times\left(1-\Phi_{\mathrm{v}}\right)^{2} /\left(\left(1-\Phi_{\mathrm{v}}^{3}\right) \times\left(1-\mathrm{C}_{\mathrm{D} 2} \times \Phi_{\mathrm{v}}\right)\right) \tag{-}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{D 2}=1.2 \text { for bubbly flow } \tag{2.62b}
\end{equation*}
$$

For churn flow the dimensionless superficial velocity must be greater than

$$
\begin{equation*}
u_{\mathrm{VR}, \mathrm{cf}}=2 \times \Phi_{\mathrm{V}} /\left(1-\mathrm{C}_{\mathrm{D} 2} \times \Phi_{\mathrm{v}}\right) \tag{-}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{D 2}=1.5 \text { for churn flow } \tag{2.62d}
\end{equation*}
$$

The average void fraction $\Phi_{v, a v}$ in the vessel is assumed to be given by

$$
\begin{equation*}
\Phi_{\mathrm{v}, \mathrm{av}}=1-\phi \quad\left(\mathrm{m}^{3} / \mathrm{m}^{3}\right) \tag{2.63}
\end{equation*}
$$

6. Determination whether two-phase flow is apparent inside the vessel, if so than two phase outflow occurs.

Application of the criteria

$$
\begin{array}{ll}
\mathrm{u}_{\mathrm{VR}} \geq \mathrm{u}_{\mathrm{VR}, \mathrm{cf}} & \rightarrow \text { two-phase churn flow } \\
\mathrm{u}_{\mathrm{VR}} \geq \mathrm{u}_{\mathrm{VR}, \mathrm{bf}} & \rightarrow \text { two-phase bubbly flow }  \tag{2.64b}\\
\mathrm{u}_{\mathrm{VR}}<\mathrm{u}_{\mathrm{VR}, \text { bf }} \text { and } \mathrm{u}_{\mathrm{VR}}<\mathrm{u}_{\mathrm{VR}, \mathrm{cf}} & \rightarrow \text { vapour outflow }
\end{array}
$$

$N$ ote that if both conditions (2.64a) and (2.64b) are satisfied that churn flow prevails.

If condition (2.64b) is satisfied while two-phase flow is in progress, disengagement is predicted.
7. If vapour outflow is predicted, then the procedure is finished. If two-phase flow is predicted, the quality for top venting $\Phi_{\mathrm{m}, \mathrm{e}, 2}$ can be estimated by an implicit function

$$
\begin{equation*}
\frac{\phi_{\mathrm{m}, \mathrm{e}, 2} \times \mathrm{q}_{\mathrm{s}, 2}}{\mathrm{f}_{\Phi \mathrm{V} 1} \times \mathrm{f}_{\Phi \mathrm{V} 2} \times \mathrm{u}_{\mathrm{b}} \times \rho_{\mathrm{v}} \times \mathrm{A}_{\mathrm{L}}}=\frac{1}{1-\mathrm{C}_{\mathrm{D} 2} \times \mathrm{f}_{\Phi \mathrm{v} 1} \times\left(\rho_{\mathrm{v}} / \rho_{\mathrm{L}}\right) \times\left(1-\phi_{\mathrm{m}, \mathrm{e}, 2}\right) / \phi_{\mathrm{m}, \mathrm{e}, 2}} \tag{2.65}
\end{equation*}
$$

(-)

The parameters $f_{\Phi \vee 1}$ and $f_{\Phi \vee 2}$ are flow dependent.
F or bubbly flow:

$$
\begin{equation*}
f_{\Phi \mathrm{V} 1}=\Phi_{\mathrm{v}, \mathrm{av}} /\left(1-\mathrm{C}_{\mathrm{D} 2} \times \Phi_{\mathrm{v}, \mathrm{av}}\right) \tag{-}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\Phi v 2}=\left(1-\Phi_{v, a v}\right)^{2 /\left(1-\Phi_{v, a v}^{3}\right)} \tag{-}
\end{equation*}
$$

For churn flow:

$$
\begin{equation*}
\mathrm{f}_{\Phi \mathrm{v} 1}=2 \times \Phi_{\mathrm{v}, \mathrm{av}} /\left(1-\mathrm{C}_{\mathrm{D} 2} \times \Phi_{\mathrm{v}, \mathrm{av}}\right) \tag{-}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{f}_{\text {ФV2} 2}=1 \tag{-}
\end{equation*}
$$

$N$ ote: use the correct value for $C_{D 2}$.
Equation (2.65) has to be solved iteratively.
The outflow rate $\mathrm{q}_{\mathrm{s}, 2}$ in every iteration step, must be recalculated by the equations in paragraph 2.5.3.4 or 2.5.3.5, taking quality $\phi_{m, e, 2}$ into account.

Where
$\mathrm{A}_{\mathrm{L}}=$ vessel cross sectional area [m²]
$u_{b} \quad=$ bubble rise velocity
$u_{V} \quad=$ superficial vapour velocity in vessel
$u_{V R}=$ dimensionless superficial velocity
$u_{V R, b f}=$ minimum dimensionless superficial
velocity for bubbly flow
$\mathrm{u}_{\mathrm{VR}, \mathrm{cf}}=$ minimum dimensionless superficial
velocity for churn flow
$\phi \quad=$ filling degree of vessel
$\left[\mathrm{m}^{3} / \mathrm{m}^{3}\right]$
$\Phi_{\mathrm{m}, \mathrm{e}}=$ quality (mass fraction vapour) at the exit $\quad[\mathrm{kg} / \mathrm{kg}]$
$\Phi_{\mathrm{v}, \mathrm{av}}=$ average void fraction in the vessel $\left[\mathrm{m}^{3} / \mathrm{m}^{3}\right]$

## Rise liquid level

After a (sudden) depressurisation the liquid in the vessel will flash, and due to the presence of vapour bubbles in the tank the liquid will expand, necessitating a redefinition of liquid height.
The correlation of M ayinger [B elore, 1986] may be used for the estimation of the void fraction in the liquid phase in vessels. The procedure may also be used to determine the rise of the liquid level for outflow through the side wall of the vessel, in order to check if two-phase outflow will occur.

T he void fraction or hold-up in a flashing liquid due to depressurisation is calculated using the following procedure [Belore,1986].

T he superficial vapour velocity is given by

$$
\begin{equation*}
\mathrm{u}_{\mathrm{V}, 0}=\mathrm{q}_{\mathrm{S}} /\left(\rho_{\mathrm{V}} \times \mathrm{A}_{\mathrm{L}}\right) \tag{m/s}
\end{equation*}
$$

The surface tension at boiling point, may be calculated using Walden's rule [Perry, 1973]:

$$
\begin{equation*}
\sigma=C_{\sigma} \times L_{v}\left(T_{B}\right) \times \rho_{L} \tag{N/m}
\end{equation*}
$$

with

$$
C_{\sigma}=6.56 \times 10^{-7} \mathrm{~m}
$$

The ratio of the liquid kinematic viscosity to the gas kinematic viscosity at boiling point can be calculated by using Arrhenius's relation for liquid viscosity [Perry, 1973] and Arnold's correlation for gas viscosity [Perry, 1973], resulting in

$$
\begin{equation*}
v_{\mathrm{L}} / v_{\mathrm{V}}=\mathrm{C}_{\mathrm{AA}} \times\left(\mu_{\mathrm{i}} \times 10^{3}\right)^{1 / 6} \times \rho_{\mathrm{V}} \times\left(\mathrm{T}+1.47 \times \mathrm{T}_{\mathrm{B}}\right) /\left(\rho_{\mathrm{L}}^{7 / 6} \times \mathrm{T}^{3 / 2}\right)(-) \tag{2.67}
\end{equation*}
$$

with

$$
\mathrm{C}_{\mathrm{AA}}=37\left[\mathrm{~m}^{-1 / 2} \cdot \mathrm{kmol}^{1 / 6} \mathrm{~K}^{1 / 2}\right]
$$

For convenience we define

$$
\begin{equation*}
C_{\phi v}=\sqrt{\sigma /\left(g \times\left(\rho_{\mathrm{L}}-\rho_{\mathrm{V}}\right)\right)} \tag{m}
\end{equation*}
$$

The void fraction is given by

$$
\begin{array}{r}
\Phi_{\mathrm{V}}=0.73 \times\left(\mathrm{u}_{\mathrm{V}, 0}{ }^{2} /\left(\mathrm{g} \times \mathrm{C}_{\Phi \mathrm{V}}\right)\right)^{0.376} \times\left(\mathrm{C}_{\Phi \mathrm{V}} / \mathrm{d}_{\mathrm{V}}\right)^{0.176} \times\left(\rho_{\mathrm{L}} /\left(\rho_{\mathrm{L}}-\rho_{\mathrm{V}}\right)\right)^{0.585} \times\left(v_{\mathrm{L}} / v_{\mathrm{V}}\right)^{0.256} \\
\left(\mathrm{~m}^{3} / \mathrm{m}^{3}\right)(2.68 \mathrm{~b})
\end{array}
$$

The liquid with bubbles will expand to a new volume

$$
\begin{equation*}
V_{L, E}=V_{L, 0} /\left(1-\Phi_{\mathrm{V}}\right) \tag{2.69}
\end{equation*}
$$

$$
\left(m^{3}\right)
$$

The increased liquid height can be estimated by using the inverse function between liquid volume and liquid height for the specific geometry of the vessel (see paragraph 2.5.4.1), written in generalised form

$$
\begin{equation*}
h_{L, i}=F^{-1}\left(V_{L, i}\right) \tag{m}
\end{equation*}
$$

Where

| $\Phi_{\mathrm{v}}$ | $=$ void fraction | $\left[\mathrm{m}^{3} / \mathrm{m}^{3}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{q}_{\mathrm{S}}$ | $=$ discharge rate | $[\mathrm{kg} / \mathrm{s}]$ |
| $\mathrm{A}_{\mathrm{L}}$ | $=$ normal liquid surface in the vessel | $\left[\mathrm{m}^{2}\right]$ |
| $\mathrm{d}_{\mathrm{v}}$ | $=$ vessel diameter | $[\mathrm{m}]$ |
| T | $=$ liquid/vapour temperature | $[\mathrm{K}]$ |
| $\mu_{\mathrm{i}}$ | $=$ mol weight chemical i | $[\mathrm{kg} / \mathrm{mol}]$ |
| $\rho_{\mathrm{L}}$ | $=$ liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\rho_{\mathrm{V}}$ | $=$ vapour density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{L}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{B}}\right)$ | $=$ heat of vaporisation at boiling point | $[\mathrm{J} / \mathrm{kg}]$ |
| $\mathrm{T}_{\mathrm{B}}$ | $=$ normal boiling point | $[\mathrm{K}]$ |
| $\mathrm{u}_{\mathrm{V}, 0}$ | $=$ superficial vapour velocity | $[\mathrm{m} / \mathrm{s}]$ |
| $\sigma$ | $=$ surface tension | $[\mathrm{N} / \mathrm{m}]$ |
| g | $=$ gravitational acceleration | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ |
| $v_{\mathrm{L}}$ | $=$ liquid kinematic viscosity | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| $v_{\mathrm{V}}$ | $=$ vapour kinematic viscosity | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| $\mathrm{V}_{\mathrm{L}, \mathrm{E}}$ | $=$ expanded ‘liquid' volume in the vessel | $\left[\mathrm{m}^{3}\right]$ |
| $\mathrm{V}_{\mathrm{L}, \mathrm{O}}$ | $=$ initial liquid volume in the vessel | $\left[\mathrm{m}^{3}\right]$ |

### 2.5.3.3 Vessel dynamics related to outflow type

The initial and termination conditions for all type of outflows from vessel filled with pressurised liquefied gas

The initial condition of the vessel ( $\mathrm{i}=1$ ) is given by its temperature $\mathrm{T}_{1}$, filling degree $\phi$, and vessel volume V.
The initial vapour mass $Q_{V, 1}$ and liquid mass $Q_{L, 1}$ in the vessel can easily be derived, given the filling degree $\phi$ and the storage temperature, by

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{L}, 1}=\phi \times \mathrm{V} \times \rho_{\mathrm{L}, 1}  \tag{kg}\\
& \mathrm{Q}_{\mathrm{V}, 1}=(1-\phi) \times \mathrm{V} \times \rho_{\mathrm{V}, 1} \tag{kg}
\end{align*}
$$

with

$$
\begin{aligned}
& \rho_{\mathrm{L}, 1}=\rho_{\mathrm{L}}\left(\mathrm{~T}_{1}\right) \\
& \rho_{\mathrm{V}, 1}=\rho_{\mathrm{V}}\left(\mathrm{~T}_{1}\right)
\end{aligned}
$$

The duration of $\delta t$ may be chosen freely in principle, and depends of the number of time-steps $\mathrm{N}_{\mathrm{t}}$. W hen one wishes to estimate the mass flow rate and vessel conditions at time $t_{\text {end }}$, then the size of time step $\delta t$ is given by

$$
\begin{equation*}
\delta t=t_{\text {end }} / N_{t} \tag{s}
\end{equation*}
$$

$t$ = time from the start of the outflow [s]
The larger the number of steps, the higher the accuracy of the model, but the more time needed for the calculation. The choice $\mathrm{N}_{\mathrm{t}}=50$ will be appropriate for most calculations.
The numerical procedures given should be repeated as long as the constraints are valid, namely

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}<\mathrm{t}_{\text {end }} \quad \mathrm{P}>\mathrm{P}_{\mathrm{a}} \quad \mathrm{~T}>\mathrm{T}_{\mathrm{m}} \tag{2.73a}
\end{equation*}
$$

In case of liquid outflow, an additional constraint for the liquid level is active, namely

$$
\begin{equation*}
h_{L}>h_{\text {hole }} \tag{2.73b}
\end{equation*}
$$

Every time-step the criteria of DIERS and M ayinger should be checked. During the blow-down the amount of liquid may decrease so that the swelled liquid level will drop and pure vapour outflow may become apparent again eventually. In case of top venting the churn flow may change into bubbly flow, or the two-phase flow may disengage.

If the flow type changes during the outflow, then we have to switch to the appropriate vessel dynamics model. The calculation restarts with the vessel conditions at the moment of the switch.

1. Vessel dynamics pure vapour outflow (quality $\Phi_{m}=1$ )

This version of modelling of the dynamics of a vessel with pressurised liquefied gas aims at predicting the decrease in temperature and liquid mass during outflow of only vapour. The vessel dynamics are mainly controlled by the evaporation of the pressurised liquefied gas, which is assumed to be at saturated vapour pressure initially.

In case no two-phase flow is apparent inside the vessel when top venting, or the rise of the expanded liquid is below the hole in the vessel wall, only vapour outflow will be at hand. Due to the outflow of vapour the vessel depressurises. This causes the liquefied gas to evaporate, and subsequently the temperature will decrease and so will the saturated vapour pressure.
The basic assumptions of the model are:

1. Liquid mass is removed by evaporation only.
2. The vapour phase is in thermodynamic equilibrium with its liquid phase, which means that the actual vapour pressure is equal to the saturated vapour pressure at liquid temperature.
3. The heat capacity and volumetric work done by the vapour is negligibly small relative to the heat of vaporisation.
4. The heat of vaporisation is drawn from the superheat of the pressurised liquefied gas only: the heat capacity of the vessel is neglected.
5. The vapour and liquid phase are homogeneous.
6. Pure vapour from the vapour section is flowing out of the vessel.

The invariant condition controlling the numerical solution is set by the requirement that the vapour volume and the liquid volume together equal the vessel volume. The densities of both phases and thus their temperatures at present vapour pressure have to be adapted accordingly.

N umerical procedure: pure vapour outflow

Starting every step at time $t_{i}$ in the iteration with a condition in the vessel given by $\mathrm{T}_{\mathrm{i}}$, $\mathrm{Q}_{\mathrm{L}, \mathrm{i}}$ and $\mathrm{Q}_{\mathrm{V}, \mathrm{i}}$, the following procedure aims at calculation of the condition in the vessel at the end of the small time-step $\delta t$, given by $T_{i+1}, Q_{L, i+1}$ and $Q_{V, i+1}$.

Assuming thermodynamic equilibrium, the pressure in the vessel can be estimated by

$$
\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{v}}\left(\mathrm{~T}_{\mathrm{i}}\right) \quad\left(\mathrm{N} / \mathrm{m}^{2}\right)
$$

Let us say that the outflow rate $q_{s, i}$ is given by a generalised function $f$, depending on whether the outflow is through a hole (see paragraph 2.5.2.3) or a pipe (see paragraph 2.5.2.4)

$$
\begin{equation*}
q_{s, i}=f\left(P_{i}, T_{i}, Q_{L, i}, Q_{V, i}, \ldots\right) \tag{kg/s}
\end{equation*}
$$

G uessing a new temperature $\mathrm{T}_{\mathrm{i}+1}$ results in a temperature decrease of

$$
\begin{equation*}
\delta T=T_{i+1}-T_{i} \tag{K}
\end{equation*}
$$

The law of heat conservation applied on the evaporation of liquid, results in

$$
\begin{equation*}
Q_{L, i+1}=Q_{L, i} \times\left(1-C_{p, L} / L_{v} \times \delta T\right) \tag{kg}
\end{equation*}
$$

Application of the law of conservation of mass gives

$$
\begin{equation*}
Q_{V, i+1}=\left(Q_{L, i}-Q_{L, i+1}\right)+Q_{V, i}-q_{s, i} \times \delta t \tag{kg}
\end{equation*}
$$

The new temperature $\mathrm{T}_{\mathrm{i}+1}$ for any time-step can be found by means of the invariant vessel volume.
T he evaporating liquid has to supply vapour to the vapour section in such an amount that the following condition must be fulfilled

$$
\begin{equation*}
V=Q_{L, i+1} / \rho_{L}\left(T_{i+1}\right)+Q_{V, i+1} / \rho_{V}\left(T_{i+1}\right) \tag{2.79}
\end{equation*}
$$

If not, another guess for temperature $\mathrm{T}_{\mathrm{i}+1}$ should be made.
The set of four equations (2.76-2.79) mentioned above can also be solved by a rootfinding procedure

$$
\begin{equation*}
f(\delta T)=V-Q_{L, i+1} / \rho_{L}\left(T_{i+1}\right)+Q_{V, i+1} / \rho_{V}\left(T_{i+1}\right) \rightarrow 0 \quad\left(m^{3}\right) \tag{2.79a}
\end{equation*}
$$

The temperature range in which the root $\mathrm{T}_{\mathrm{i}+1}$ can be found depends on the size of the time-step. If the number of time-steps $N_{t}=50$, a value for $\delta T \approx 10$ will suffice.

Thetime from the start of the release must be increased with one time-step after every pass through this numerical procedure

$$
\begin{equation*}
t_{i+1}=t_{i}+\delta t \tag{s}
\end{equation*}
$$

The new condition of the vessel at time $t_{i+1}$ is given by: $T_{i+1}, Q_{L, i+1}$ and $Q_{V, i+1}$

This numerical procedure has to be repeated until the termination conditions will have been satisfied. Every time-step the flow type may be checked.
2. V essel dynamics in case of ( initially) two-phase outflow (quality $0<\Phi_{\mathrm{m}}<1$ )

This version of the modelling of the dynamics of a vessel with pressurised liquefied gas aims at predicting the decrease in temperature and mass during the two-phase outflow.

In case two-phase flow is apparent inside the vessel when top venting, or the rise of the expanded liquid is above the hole in the vessel wall, see paragraph 2.5.3.2, twophase outflow will be at hand. The two-phase outflow will start after the vent of the gas initially apparent in the vapour section. The vapour initially apparent above the liquid is assumed to be driven out by the rising liquid acting like a piston. The duration of the blow-out of the vapour can be estimated by

$$
\mathrm{t}_{\mathrm{v}}=\mathrm{Q}_{\mathrm{v}, 0} / \mathrm{q}_{\mathrm{s}, \Phi \mathrm{~m}=1}
$$

$t_{v} \quad=$ duration vapour blowing out
$\mathrm{Q}_{\mathrm{v}, 0}=$ initial vapour mass in vessel
[s] [kg]

The initial mass flow rate of only vapour can be calculated by equation (2.22) for orifices and the set of equations of subsection 2.5.2.5. for pipes, based on the saturated vapour pressure $P_{v}{ }^{\circ}$ in the vessel.

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}, \Phi \mathrm{~m}=1}=\mathrm{q}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{v}}{ }^{\circ}\right) \tag{kg/s}
\end{equation*}
$$

$q_{\mathrm{s}, \Phi \mathrm{m}=1}=$ initial mass flow rate vapour only $\quad[\mathrm{kg} / \mathrm{s}]$
The model for two-phase outflow from a vessel is quite similar to the one for outflow of pure vapour, except for the first assumption.

## 2a. H ole in side wall

In case of a hole in the side-wall of the vessel the two-phase mixture inside the vessel is considered to be homogeneous, and the quality of the outflowing material is assumed to be identical to that of the vessel
This assumption forces the quality $\Phi_{m}$, i.e. vapour and liquid mass ratio, to be constant during the outflow. This leads to some additional statements to the procedure for outflow of pure vapour.

The basic assumptions of the model are:

1. the quality of the two-phase outflow just leaving the vessel corresponds to the average quality inside the vessel,
2. the vapour phase is in thermodynamic equilibrium with its liquid phase, meaning that the actual vapour pressure is equal to the saturated vapour pressure at liquid temperature,
3. the heat capacity and volumetric work done by the vapour is negligibly small relative to the heat of vaporisation,
4. the heat of vaporisation is drawn from the super heat of the pressurised liquefied gas only: the heat capacity of the vessel is neglected,
5. the expanded boiling liquid has a homogeneous void fraction.

N umerical procedure: two-phase outflow

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{\mathrm{L}, \mathrm{i}}+\mathrm{Q}_{\mathrm{V}, \mathrm{i}}  \tag{kg}\\
& \xi_{\mathrm{i}}=\mathrm{Q}_{\mathrm{L}, \mathrm{i}} / \mathrm{Q}_{\mathrm{i}} \tag{-}
\end{align*}
$$

Applying the law of conservation of mass gives simply

$$
\begin{equation*}
Q_{i+1}=Q_{i}-q_{s} \delta t \tag{kg}
\end{equation*}
$$

Forcing initially the quality to be constant results in

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{L}, \mathrm{i}+1}=\mathrm{Q}_{\mathrm{i}+1} \times \xi_{\mathrm{i}}  \tag{kg}\\
& \mathrm{Q}_{\mathrm{V}, \mathrm{i}+1}=\mathrm{Q}_{\mathrm{i}+1} \times\left(1-\xi_{\mathrm{i}}\right) \tag{2.86I}
\end{align*}
$$

Due to evaporation of liquid, the vapour mass fraction inside the vessel will change. The law of heat conservation applied to the evaporation of liquid results in an adaption of the earlier calculated (by equation (2.86)) liquid mass by

$$
\begin{equation*}
Q_{L, i+1}=Q_{L, i+1} \times\left(1-C_{p, L} / L_{v} \times \delta T\right) \tag{kg}
\end{equation*}
$$

This set of equations replaces equations (2.77) and (2.78) in the numerical procedure concerning vessel dynamics in case of a pure vapour outflow.
The mass flow rate $\mathrm{q}_{\mathrm{s}}$ must be determined by the equations in paragraph 2.5.3.4 valid for champagne flow.
The other steps are the same as in the case of outflow of pure vapour.

## 2b. Top venting

In case of top venting, the basic assumptions of the model are the same except for the first one:

1. the quality of the two-phase outflow just leaving the vessel $\Phi_{\mathrm{m}, \mathrm{e}}$ is determined by the outflow model.

In the numerical procedure, equations (2.83) - (2.85) are not relevant anymore, while equations (2.86) and (2.87) have to be adapted.
A pplying the law of conservation of mass simply gives

$$
\begin{equation*}
Q_{L, i+1}=Q_{L, i}-q_{s} \times\left(1-\Phi_{m, e}\right) \times \delta t \tag{kg}
\end{equation*}
$$

$$
\begin{equation*}
Q_{\mathrm{V}, i+1}=\mathrm{Q}_{\mathrm{V}, \mathrm{i}}-\mathrm{q}_{\mathrm{s}} \times \Phi_{\mathrm{m}, \mathrm{e}} \times \delta \mathrm{t} \tag{kg}
\end{equation*}
$$

For this case equation (2.88) still holds.
The mass flow rate $q_{s}$ must be determined by the equations in paragraph 2.5.3.4, valid for top venting.
3. Vessel dynamics liquid outflow (quality $\Phi_{\mathrm{m}}=0$ )

This version of the modelling of the dynamics of a vessel with pressurised liquefied gas aims at predicting the decrease in temperature and liquid mass during the outflow of a pressurised liquefied gas. The opening in the vessel should be under the (unexpanded) liquid level inside the vessel.

The model for two-phase outflow from a vessel is quite similar to the one for outflow of pure vapour, except for the first assumption.

The basic assumptions of the model are:

1. vapour mass is added to the vapour section by evaporation of liquid,
2. the vapour phase is in thermodynamic equilibrium with its liquid phase, which means that the actual vapour pressure is equal to the saturated vapour pressure at liquid temperature,
3. the heat capacity and volumetric work done by the vapour is negligible small relative to the heat of vaporisation,
4. the heat of vaporisation is drawn from the super heat of the pressurised liquefied gas only: heat capacity of the vessel is neglected,
5. the vapour and liquid phase are homogeneous,
6. pure liquid is flowing out of the liquid section of the vessel, i.e. the flashing of liquid takes place outside the vessel.

N umerical procedure: liquid outflow
Because the liquid volume inside the vessel decreases, the enlarging vapour section has to be refilled by vapour through evaporation of liquid

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{V}, \mathrm{i}+1}=\mathrm{Q}_{\mathrm{V}, \mathrm{i}}+\mathrm{Q}_{\mathrm{L}, \mathrm{i}} \times \mathrm{C}_{\mathrm{p}, \mathrm{~L}} / \mathrm{L}_{\mathrm{v}} \times \delta \mathrm{T} \tag{kg}
\end{equation*}
$$

The conservation applied to the evaporation of liquid results in an adaption of the earlier calculated liquid mass, namely

$$
\begin{equation*}
Q_{L, i+1}=Q_{L, 1}-q_{S} \times \Delta t+\left(Q_{V, i+1}-Q_{V, i}\right) \tag{2.90}
\end{equation*}
$$

The changes in liquid level can be calculated with the equations given for liquids in paragraph 2.5.4.1.

These equations replace equations (2.77) and (2.78) in the numerical procedure concerning the vessel dynamics in case of a pure vapour outflow.
The mass flow rate $q_{s}$ must be determined by the equations in paragraph 2.5.3.3 valid for two-phase flow in pipes (paragraph 2.5.3.4).
The other steps are the same as in the case of outflow of pure vapour.

### 2.5.3.4 Outflow of pressurised liquefied gas through holes

## V apour outflow

In case of pure vapour outflow from a vessel, the relation for gas flow through orifices can be applied (see paragraph 2.5.2.3).

Two-phase outflow through a hole: Champagne outflow

T he standard relations for liquid flow through orifices can be applied; see paragraph 2.5.4.2. H owever the fluid is assumed to have a density as a function of the vapour mass fraction [W orldBank, 1988].

So the mass flow rate can be estimated by

$$
\begin{equation*}
q_{s}=C_{d} \times A \times \sqrt{\left(2\left(P_{0}-P_{a}\right) \times \rho_{F}\right)} \quad(\mathrm{kg} / \mathrm{s}) \tag{2.91}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{\mathrm{F}}=1 /\left(\Phi_{\mathrm{m}} / \rho_{\mathrm{V}}+\left(1-\Phi_{\mathrm{m}}\right) / \rho_{\mathrm{L}}\right) \quad\left(\mathrm{kg} / \mathrm{m}^{3}\right) \tag{2.92}
\end{equation*}
$$

$\Phi_{\mathrm{m}}=$ quality or vapour mass fraction in the two-phase flow [-]
$\rho_{F} \quad=$ average fluid density
$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

In case of liquid outflow from a vessel, the standard relations for liquid flow through orifices can be applied (see paragraph 2.5.4.2).

### 2.5.3.5 Outflow of pressurised liquefied gas through piping

### 2.5.3.5.1 Vapour flow in piping

The relation for gas flow through piping can be applied (see paragraph 2.5.2.4).

### 2.5.3.5.2 Two-phase flow in piping: introduction

In general for those situations they have been validated for, the so-called 'H omogeneous Equilibrium M odels' (HEM) are generally accepted and are widely used [K ukkonen, 1990]. In particular the homogeneous equilibrium model T PDIS [K ukkonen, 1990] will be described here in detail.

## Two-phase flow in piping by HEM (TPDIS) [Kukkonen, 1990]

TPDIS is an acronym for 'T wo-Phase D IScharge of liquefied gases through a pipe'. The description of the TPDIS model has been taken from 'M odelling source terms for the atmospheric dispersion of hazardous substances', D issertations No. 34, T he Finnish Society of Sciences and Letters, 1990, by K ukkonen.
The complete specification of the model will be concise and will use results that have been derived by others. References made in the original publication by K ukkonen, [K ukkonen, 1990] will not be repeated here.

The modelling of the two-phase flow in pipes aims at predicting the mass flow rate, the velocity, the mass fraction of vapour (the quality) and the thermodynamic state of the outflowing fluid as a function of the initial conditions at the upstream end of the piping.
The two-phase pipe flow model T PDIS has been generalised, in particular to allow for the influence of gravity on two-phase flow and to include a more detailed description of the flow friction at pipe walls. Especially for refrigerated and semirefrigerated kinds of storages gravity may be an important driving term.

TPDIS: basic assumptions
In the model the flow has been divided into three flow regimes:

1. superheated liquid,
2. non-equilibrium evaporating and expanding two-phase fluid and,
3. equilibrium two-phase fluid.

When the stagnant pressure in the vessel is higher than the saturation pressure at present temperature, the (sub-cooled) liquid will not vaporise in the pipe at first.
Due to the pressure drop in the pipe the pressure will become lower than the saturation pressure at some point in the pipe. D ue to nucleating delay it will take some time, and thus a certain length along the pipe, to reach thermodynamic equilibrium. Homogeneous equilibrium flow has been assumed in the third flow regime. This implies that the fluid is a homogeneous mixture of vapour and liquid, and that the phases move with the same velocity. F or long pipes, the length of the third regime may be nearly equal to the pipe length.
The process is assumed to be adiabatic. This is a reasonable assumption, as the outflow is very rapid and the heat energy conducted through the pipe walls is therefore much less than the energy of the phase transitions.


Figure 2.10 Two-phase flow regimes assumed in the discharge model (Nyren and Winter, 1987)

N ote that particularly the size of regime 2 'expanding two-phase fluid' in figure 2.9 has been exagerated, and is in reality small.

N umerical procedure in case of two-phase flow in a pipe
F or convenience the scheme of the numerical procedure of the TPDIS model is given before the description of the model equations.

Diagram 2.7 Numerical procedure TPDIS
I. The critical mass flow rate $\mathrm{q}_{\mathrm{s}}$ at the pipe outlet may be computed by maximising numerically the right-hand side of equation (2.107) in terms of outlet pressure $\mathrm{P}_{\mathrm{e}}$.
II. The specific volume of the fluid is computed from equations (2.110) and (2.112).
III. The friction is computed by equation (2.99).

Friction is one of the factors determining the flow velocity in the pipe.
As the friction factor depends on the flow velocity and the quality, a numerical iterative procedure should to be applied.

The model requires thermodynamic data, preferably in the form of correlations of the temperature. The properties of a few chemicals: ammonia, chlorine, sulphur dioxide, propane and hydrogen fluoride, are given as a function of temperature in the saturated state in appendix 2.1. These functions have the original form from the publication of Kukkonen [1990]. The maximum deviation of the numerical correlations from the original data is approximately $2 \%$.

## TPDIS: initial flow regimes 1 and 2

In HEM the flow is usually taken to be isentropic, which means an adiabatic and reversible flow. When the conduction of heat and the friction effects can be neglected, and assuming also that the process is isentropic, we can write the Bernoulli equation in the following form

$$
\begin{equation*}
u^{2} / 2=C_{d}^{2} \quad x\left(\int v_{F} \times d P+g \times h_{f}\right) \quad\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right) \tag{2.93}
\end{equation*}
$$

where

| u | $=$ fluid flow velocity | $[\mathrm{m} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{d}}$ | $=$ discharge coefficient | $[-]$ |
| $\mathrm{v}_{\mathrm{F}}$ | $=$ specific volume of the fluid | $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ |
| P | $=$ pressure | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| g | $=$ gravitational acceleration | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ |
| $\mathrm{h}_{\mathrm{f}}$ | $=$ fluid height | $[\mathrm{m}]$ |

u = fluid flow velocity
$C_{d}=$ discharge coefficient
$\mathrm{V}_{\mathrm{F}} \quad=$ specific volume of the fluid
g $\quad=$ gravitational acceleration
$\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$h_{f} \quad=$ fluid height
[m]

The discharge coefficient $\left(C_{d}\right)$ is a measure for pressure loss of the liquid flow at the pipe inlet ( not related to the outflow at the pipe exit). T he pipe is assumed to have a uniform bore.
The ratio $q_{s} / A_{p}$ is called the mass flux $G$ defined by

$$
\mathrm{G}=\mathrm{q}_{\mathrm{s}} / \mathrm{A}_{\mathrm{p}}=\mathrm{u} / \mathrm{v}_{\mathrm{F}} \quad\left(\mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

where
$\mathrm{q}_{\mathrm{s}} \quad=$ mass flow rate (discharge rate) $[\mathrm{kg} / \mathrm{s}]$
$\mathrm{A}_{\mathrm{p}}=$ cross-sectional area of the pipe $\left[\mathrm{m}^{2}\right]$
For very short pipes, smaller than 0.1 m , the discharge of pressurised liquefied gases can be assumed to remain in liquid form. F or liquid flow, the fluid is incompressible and the equation (2.93) reduces in flow regimes 1 and 2 to the form of

$$
\begin{equation*}
\mathrm{q}_{\mathrm{S}}=\mathrm{C}_{\mathrm{d}} \times \mathrm{A}_{\mathrm{p}} / \mathrm{v}_{\mathrm{L}} \times \sqrt{ }\left(2\left(\mathrm{v}_{\mathrm{L}} \times\left(\mathrm{P}_{0^{-}}-\mathrm{P}_{2}\right)+\mathrm{g} \times \Delta \mathrm{h}_{\mathrm{L}, 2}\right)\right) \tag{2.95}
\end{equation*}
$$

where

| $\mathrm{v}_{\mathrm{L}}=$ specific volume of the liquid phase | $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{P}_{0}=$ initial pressure in the vessel | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\mathrm{P}_{2}=$ pressure at the end of flow regime 2 | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\Delta \mathrm{h}_{\mathrm{L}, 2}=$ liquid height difference in the flow regime 2 | $[\mathrm{m}]$ |

The vertical coordinate axis is chosen to be in the upward direction, and

$$
\begin{equation*}
\Delta h_{L, 2}=h_{L, 0}-h_{L, 2} \tag{m}
\end{equation*}
$$

where
$\begin{array}{lll}h_{L, 0}=\text { liquid height pipe inlet } & {[\mathrm{m}]} \\ h_{L, 2}=\text { liquid height pipe at end of flow regime } 2 & {[\mathrm{~m}]}\end{array}$
Equation (2.95) gives the mass flow rate at the end of the flow regime 2. This equation can also be applied in estimating liquid discharges through breaches in container wall or through very short pipes.

## TPDIS: mass flux equation

In the third regime, the conservation of the total energy of the fluid gives

$$
\begin{equation*}
v_{F} \times d P+d\left(u^{2} / 2\right)+u^{2} \times f_{D} /\left(2 \times d_{p}\right) \times d x+g \times d h_{L}=0 \quad\left(m^{2} / s^{2}\right) \tag{2.97}
\end{equation*}
$$

where

| $d_{p}$ | $=$ inner pipe diameter | $[\mathrm{m}]$ |
| :--- | :--- | :--- |
| $f_{D}$ | $=$ friction factor | $[-]$ |
| $x$ | $=$ length variable along the pipe | $[\mathrm{m}]$ |
| $\mathrm{v}_{\mathrm{F}}$ | $=$ specific volume of the fluid | $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ |

The first term in equation (2.97) is the energy per unit mass due to change of state of the fluid. $T$ he second term is the kinetic energy, and the third term is the energy loss due to flow friction at pipe walls and the fourth term is the potential energy.
The third term in equation (2.97) can be derived from the theory of the turbulent boundary layer flows, applied to pipes by L andau and Lifschitz. It has been assumed that the laminar friction forces are in general much smaller than the forces governing the turbulent energy dissipation.
The friction factor is a function of the roughness of the pipe divided by the pipe diameter $\varepsilon / d_{p}$, and the Reynolds number Re.
The friction factor for turbulent flow in smooth and rough pipes can be computed from the C olebrook-W hite law for the transition zone

$$
\begin{equation*}
1 / \sqrt{ } f_{D}=-2 \times{ }^{10} \log \left(2.51 /\left(\operatorname{Re} \times \sqrt{ } f_{D}\right)+\varepsilon /\left(3.715 \times d_{p}\right)\right) \tag{-}
\end{equation*}
$$

Equation (2.98) is an implicit equation for $f_{D}$. Chen has shown that the following explicit equation gives the same numerical results with an accuracy greater than $0.5 \%$

$$
\begin{equation*}
1 / \sqrt{f_{D}}=-2.0 \times{ }^{10} \log \left(\left(\frac{\varepsilon}{d_{p}}\right) \times \frac{1}{C_{1}}-\frac{2 \times C_{2}}{R e} \times{ }^{10} \log \left(\left(\frac{\varepsilon}{d_{p}}\right)^{C_{3}} \times \frac{1}{C_{4}}+\frac{C_{5}}{R e^{C_{6}}}\right)\right) \tag{2.99}
\end{equation*}
$$

(-)
with
$C_{1}=3.7065$
$C_{2}=2.5226$
$\mathrm{C}_{3}=1.1098$
$\mathrm{C}_{4}=2.8257$
$\mathrm{C}_{5}=5.8506$
$C_{6}=0.8981$
This equation is valid for $4000<\operatorname{Re}<10^{7}$.

The Reynolds number is given by

$$
\begin{equation*}
\mathrm{Re}=\mathrm{u} \times \mathrm{d}_{\mathrm{p}} \times \rho_{\mathrm{tp}} / \eta_{\mathrm{tp}} \tag{-}
\end{equation*}
$$

where

| u | $=$ fluid flow velocity | $[\mathrm{m} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| $\mathrm{d}_{\mathrm{p}}$ | $=$ pipe diameter | $[\mathrm{m}]$ |
| $\rho_{\mathrm{tp}}$ | $=$ density two-phase fluid | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\eta_{\mathrm{tp}}$ | $=$ dynamic viscosity two-phase fluid | $\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right]$ |

The dynamic viscosity is given by

$$
\begin{equation*}
\eta_{t p}=\eta_{\mathrm{L}} \times\left(1-\Phi_{\mathrm{m}} \times\left(1-\left(\eta_{\mathrm{L}} / \eta_{\mathrm{V}}\right)\right)\right) \tag{-}
\end{equation*}
$$

where

| $\eta_{\mathrm{L}}=$ | dynamic viscosity of liquid phase | $\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right]$ |
| :--- | :--- | :--- | :--- |
| $\eta_{\mathrm{V}}=$ | dynamic viscosity of vapour phase | $\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right]$ |
| $\Phi_{\mathrm{m}}=$ | quality or mass fraction of vapour | $[-]$ |
|  | in two-phase mixture |  |
|  |  |  |
| $\Phi_{\mathrm{m}, \mathrm{e}}$ can be found by equation (2.112). |  |  |

In integrating equation (2.97) over the third regime, unsolvable integrals of the specific volume and the density appear. T hese integrals can be estimated as follows. We define the volume and density ratio parameters $\mathrm{C}_{\mathrm{Ar}}$ and $\mathrm{C}_{\mathrm{Br}}$

$$
\begin{array}{ll}
\int \mathrm{v}_{\mathrm{F}} \times \mathrm{dx}=\mathrm{C}_{\mathrm{Ar}} \times \mathrm{v}_{\mathrm{F}, \mathrm{e}} \times \mathrm{I}_{\mathrm{p}} \\
-\int \rho_{\mathrm{F}} \cdot d h_{\mathrm{L}}=C_{B r} \times \rho_{\mathrm{L}} \times \Delta h_{\mathrm{L}, 3}
\end{array} \quad\left(\mathrm{~m}^{4} / \mathrm{kg}\right)
$$

with

$$
\begin{equation*}
\Delta h_{\mathrm{L}, 3}=\mathrm{h}_{\mathrm{L}, 2^{2}}-\mathrm{h}_{\mathrm{L}, \mathrm{e}} \tag{m}
\end{equation*}
$$

where

| $\mathrm{v}_{\mathrm{F}, \mathrm{e}}=$ specific volume fluid at the outlet | $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ |  |
| :--- | :--- | :--- |
| $\rho_{\mathrm{F}}$ | $=$ density fluid | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\rho_{\mathrm{L}}$ | $=$ liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{I}_{\mathrm{p}}$ | $=$ pipe length | $[\mathrm{m}]$ |
| $\mathrm{h}_{\mathrm{L}, 2}=$ height pipe at end of flow regime 2 | $[\mathrm{~m}]$ |  |
| $\mathrm{h}_{\mathrm{L}, \mathrm{e}}=$ height pipe outlet | $[\mathrm{m}]$ |  |
| $\Delta \mathrm{h}_{\mathrm{L}, 3}=$ height difference in third regime | $[\mathrm{m}]$ |  |

The volume and density ratio parameters are measures of the rate of evaporation in the equilibrium flow regime. As the fluid is initially liquid and the specific volume of the fluid increases in the equilibrium flow regime, the following limits are obtained

$$
\begin{align*}
& \text { if } \mathrm{I}_{\mathrm{p}}->0 \text { then } \mathrm{C}_{\mathrm{Ar}} \text { and } \mathrm{C}_{\mathrm{Br}}->1.0  \tag{2.106a}\\
& \text { if } \mathrm{I}_{\mathrm{p}}->\infty \text { then } \mathrm{C}_{\mathrm{Ar}} \text { and } \mathrm{C}_{\mathrm{Br}}->0.5 \tag{2.106b}
\end{align*}
$$

The lower limits of $\mathrm{C}_{\mathrm{Ar}}$ and $\mathrm{C}_{\mathrm{Br}}$ are only approximative; possible values for $\mathrm{C}_{\mathrm{Ar}}$ and $\mathrm{C}_{\mathrm{Br}}$ are between these limits.
If there is phase equilibrium in the tank and the pipe is relatively short, let us say within a few metres, the change in the specific volume of the fluid is relatively small. Numerical estimates show that the volume ratio parameter is in the range $0.7<\mathrm{C}_{\mathrm{Ar}}<0.9$. If there is phase equilibrium in the tank and the pipe is relatively long, $0.5<\mathrm{C}_{\mathrm{Ar}}<0.7$. If there is overpressure in the tank relative to the saturation vapour pressure, $C_{A r} \approx 1.0$. These values apply approximately also for the density ratio parameter $\mathrm{C}_{\mathrm{Br}}$. The ratio parameters $\mathrm{C}_{\mathrm{Ar}}$ and $\mathrm{C}_{\mathrm{Br}}$ are computed in the model from numerical correlations, based on the values mentioned above.

The following correlations are suggested:

$$
\begin{array}{ll}
\text { if } 0<=I_{p}<=3 & C_{A r}=C_{B r}=1-0.1 \times I_{p} \\
\text { if } 3<I_{p}<=20 & C_{A r}=C_{B r}=0.7-\left(I_{p}-3\right) \times 0.2 / 17 \\
\text { if } I_{p}>20 & C_{A r}=C_{B r}=0.5 \tag{2.106e}
\end{array}
$$

Thus $C_{A r}$ and $C_{B r}$ decrease linearly from 1 to 0.7 over the first three meters pipe length ( 2.106 c ) and have a constant value of 0.5 above 20 meters ( 2.106 e ). A long the intermediate region the parameters decrease linearly from 0.7 to 0.5 (2.106d).

The values of the volume ratio parameter $\mathrm{C}_{\mathrm{Ar}}$ are not known precisely in the model. H owever, it was found that the numerical results are not sensitive to variations in this parameter; it can be shown that inaccuracies in estimating $C_{\text {Ar }}$ cause only a few per cent error in the mass flux values. The same result also applies to variations in the density ratio parameter $\mathrm{C}_{\mathrm{Br}}$.

Equation (2.97) can now be integrated over regime 3, using the definitions (2.103) and (2.104). Finally, combination with equation (2.95) yields the following equation for the mass flux density $\mathrm{q}_{\mathrm{s}} / \mathrm{A}_{\mathrm{p}}$ at the outlet

$$
\begin{array}{r}
\left(\frac{q_{S}\left(P_{e}\right)}{A_{p}}\right)^{2}=\frac{\left(P_{0}-P_{e}\right)+\frac{g}{\nabla_{L}} \times\left(\Delta h_{L, 2}+C_{B r} \times \Delta h_{L, 3}\right)}{\left[v_{\left.\left.F, e^{(P} e^{\prime}\right) \times\left\{1+\left(I_{p} \times f_{D} \times C_{A r} /\left(2 \times d_{p}\right)\right)+\Sigma\left(K_{i} \times \tau_{i} / 2\right)\right\}-v_{L}\left(P_{e}\right) / C_{d} \times\left(1-1 /\left(2 \times C_{d}\right)\right)\right]}\right.} \begin{array}{r}
\left(\mathrm{kg}^{2} /\left(\mathrm{m}^{4} \cdot \mathrm{~s}^{2}\right)\right)
\end{array}
\end{array}
$$

with

$$
\begin{equation*}
\tau_{i}=v_{F, i} / v_{F, e} \tag{-}
\end{equation*}
$$

where
$\mathrm{K}_{\mathrm{i}} \quad=$ resistance coefficient [-]
$\mathrm{P}_{\mathrm{e}} \quad=$ pressure at the pipe exit
$\mathrm{v}_{\mathrm{vi}} \quad=$ specific volume at resistance site pipe
$v_{\text {ve }} \quad=$ specific volume at the exit
[ $\mathrm{m}^{3} / \mathrm{kg}$ ]
$\tau_{i} \quad=$ specific volume ratio
[-]

The critical mass flow rate $q_{s}$ at the pipe outlet may be computed by numerically maximising the right-hand side of equation (2.107) in terms of the outlet pressure $\mathrm{P}_{\mathrm{e}}$.

The values of the resistance coefficients are determined by the geometrical structure of the pipe system. In subsection 2.5.5 resistance coefficients have been given.

The gravity term increases the mass flux for a downward flow ( $h_{L}>0, h_{2}>0$ ) and decreases it for an upward flow. The parameter $C_{B r}$ describes the reduced effect of gravity on two-phase flow, due to fluid vaporisation. T he effective density of the fluid in regime 3 is given by $\mathrm{C}_{\mathrm{Br}} / \mathrm{v}_{\mathrm{L}}$

The influence of gravity on two-phase pipe flow depends on the height difference during flow, on the physical properties of the chemical and on the pressure in the container. Clearly, gravity is more important for small container pressures. For instance, for chlorine releases at $15{ }^{\circ} \mathrm{C}$, assuming pipe lengths of $1-5 \mathrm{~m}$ and pipe inclination angles from $10^{\circ}$ to $20^{\circ}$, the effect of gravity on the mass flux is approximately $10 \%$.

TPDIS: specific volume and the quality

The discharge rate can be solved from equation (2.107) using the critical flow condition if the specific volume of the two-phase fluid as a function of pressure $v_{e}\left(\mathrm{P}_{\mathrm{e}}\right)$ is known.
The mass flow rate is critical when

$$
\left(\mathrm{dq}_{\mathrm{s}} / \mathrm{dP}_{\mathrm{e}}\right)_{\mathrm{c}}=0
$$

The critical exit pressure is less than the reservoir stagnation pressure and higher than the ambient pressure at pipe exit.
The specific volume of the two-phase fluid at the exit aperture can be written in terms of the vapour and liquid phase specific volumes by

$$
\begin{equation*}
\mathrm{v}_{\mathrm{F}, \mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right)=\Phi_{\mathrm{m}, \mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right) \times \mathrm{v}_{\mathrm{Vs}}\left(\mathrm{P}_{\mathrm{e}}\right)+\left(1-\Phi_{\mathrm{m}, \mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right)\right) \times \mathrm{v}_{\mathrm{Ls}}\left(\mathrm{P}_{\mathrm{e}}\right) \quad\left(\mathrm{m}^{3} / \mathrm{kg}\right) \tag{2.110}
\end{equation*}
$$

where
$\Phi_{\mathrm{m}, \mathrm{e}}=$ vapour mass fraction (quality) at pipe outlet $\quad[-]$
$\mathrm{V}_{\mathrm{F}, \mathrm{e}}=$ specific fluid volume at pipe outlet $\quad\left[\mathrm{m}^{3} / \mathrm{kg}\right]$
$v_{V_{s}}\left(\mathrm{P}_{\mathrm{e}}\right)=$ specific saturated vapour volume at pipe outlet $\quad\left[\mathrm{m}^{3} / \mathrm{kg}\right]$
$v_{L s}\left(P_{e}\right)=$ specific saturated liquid volume at pipe outlet $\quad\left[\mathrm{m}^{3} / \mathrm{kg}\right]$
The compressibility of the vapour and liquid phases has also been taken into account, as the saturation state properties have been used.
The mass fraction of vapour phase at the pipe outlet can be computed using the isentropic assumption

$$
S_{\mathrm{L}}\left(\mathrm{~T}_{0}, \mathrm{P}_{0}\right)=\Phi_{\mathrm{m}, \mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right) \times \mathrm{S}_{\mathrm{vs}}\left(\mathrm{P}_{\mathrm{e}}\right)+\left(1-\Phi_{\mathrm{m}, \mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right)\right) \times \mathrm{S}_{\mathrm{Ls}}\left(\mathrm{P}_{\mathrm{e}}\right)
$$

where
$S_{L}\left(T_{0}, P_{0}\right)=$ specific entropy liquid phase at initial conditions $\quad[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$
$\mathrm{S}_{\mathrm{Ls}}\left(\mathrm{P}_{\mathrm{e}}\right) \quad=$ specific entropy saturated liquid phase at pipe outlet $\quad[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$
$\mathrm{S}_{\mathrm{V}}\left(\mathrm{P}_{\mathrm{e}}\right) \quad=$ specific entropy saturated vapour phase at pipe outlet $\quad[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$
In appendix 2.2 of this section entropy and enthalpy have been given for a few compounds as a function of temperature.

It can be shown that this yields

$$
\begin{equation*}
\Phi_{\mathrm{m}, \mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right)=\mathrm{T}_{\mathrm{e}, \mathrm{~s}}\left(\mathrm{P}_{\mathrm{e}}\right) / \mathrm{L}_{\mathrm{v}, \mathrm{e}}\left(\mathrm{P}_{\mathrm{e}}\right) \times\left(\mathrm{S}_{\mathrm{Ls}}\left(\mathrm{P}_{0}\right)-\mathrm{S}_{\mathrm{Ls}}\left(\mathrm{P}_{\mathrm{e}}\right)\right) \tag{-}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
\mathrm{L}_{\mathrm{v}, \mathrm{e}} & =\text { heat of evaporation of the liquid at pipe outlet } & & {[\mathrm{J} / \mathrm{kg}]} \\
\mathrm{T}_{\mathrm{e}, \mathrm{~s}}\left(\mathrm{P}_{\mathrm{e}}\right)= & \text { saturated fluid temperature at pipe outlet } & & {[\mathrm{K}]} \\
& \text { at exit pressure }
\end{array}
$$

The saturated fluid temperature at pipe outlet at given exit pressure $T_{e s}\left(\mathrm{P}_{\mathrm{e}}\right)$ can be found through the saturation curve. By the assumption of thermodynamic equilibrium the saturation pressure equals the exit pressure

$$
\begin{equation*}
\mathrm{P}_{\mathrm{v}}^{\circ}\left(\mathrm{T}_{\mathrm{e}, \mathrm{~s}}\right)=\mathrm{P}_{\mathrm{e}} \quad\left(\mathrm{~N} / \mathrm{m}^{2}\right) \tag{2.113}
\end{equation*}
$$

It must be stated that the TPDIS model predicts rather high exit pressures.

The influence of the pipe geometry and the fluid properties on the mass flux
Figure 2.11 shows the influence of pipe length and pipe diameter on the mass flow rate. $T$ he ambient temperature has been set at $15{ }^{\circ} \mathrm{C}$.


Figure 2.11 The mass flow rate versus pipe length in a chlorine discharge, for various pipe diameters [Kukkonen, 1990]

The decrease in mass flux with pipe length is mainly due to flow friction. The effect of flow friction depends on the relative roughness of the pipe wall ( $\varepsilon / \mathrm{d}_{\mathrm{p}}$ ), and on the Reynolds number. The influence of flow friction on the mass flux is typically less than $10 \%$ for short pipes ( $l_{p}<2 \mathrm{~m}$ ); however, its influence may be much greater for pipelines. C hanging the roughness of the pipe wall in the range from 0.01 millimetre to 0.1 millimetre (the assumed value was 0.05 millimetre) causes a change of approximately $10 \%$ in the mass flow rate.

### 2.5.3.6 Non-stationary two-phase propane flow in pipelines

The modelling of the two-phase flow through pipelines aims at predicting the mass flow rate as a function of time depending on the initial conditions.

Transient release from full bore ruptured pipelines

The model given by M orrow [1983] has been derived for propane, but could be generalised by using appropriate physical properties.
The model has been designed for initial pipeline pressures at the location of the break that are (much) higher than the saturation pressure [D odge, 1996].
The model estimates the mass flow rate from one side of the ruptured pipeline.
This model is used for the entire region of two-phase flow within the pipeline. At the point of pipe rupture, the upstream and downstream end of the pipe are assumed to be totally separated so that the flow rates coming from the upstream and downstream pipe regions are independent. Both flows are determined initially on the basis of choked flow at the pipe exit. As time progresses, the flow rate diminishes until choking (equivalent to sonic flow in a perfect gas discharge) no longer occurs.
The model of $F$ auske is used to determine the correlation of pressure just inside the pipe exit and flow rate during choked flow. An analysis of two-phase flow pressure gradient and void fraction (vapour volume) has been developed to provide the mass depletion in the pipe as a function of exit flow rate and pressure. These correlations for exit flow and pipe flow together allow correlations for exit flow versus time after rupture.

The basic assumptions are briefly as follows. The F auske equation for critical flow at the exit $\mathrm{G}_{\mathrm{cr}}$ of a full pipe break is used.
A way from the point of rupture, the frictional pressure drop of the pipeline is given by the F anning equation, which has been explained in subsection 2.5.5.
T he slip ratio used, i.e. the ratio of vapour velocity to liquid velocity, can be calculated using the relation of F auske

$$
\begin{equation*}
u_{V} / u_{L}=\sqrt{ }\left(\rho_{\mathrm{L}} / \rho_{\mathrm{V}}\right) \tag{-}
\end{equation*}
$$

The thermodynamic properties $H_{L, 0}, H_{L}, L_{V}$ and $v_{L}$ are relatively insensitive to changes in pressure. This makes it possible, though not necessary, to correlate some terms of the equations with a simple (intermediate) polynomial function $F_{i}(P)$. By doing this, computation time can be saved. For propane the coefficients of these correlations are given.

## Intermezzo

The F auske equation for critical flow at the exit $\mathrm{G}_{\mathrm{cr}}$ of a full pipe break is given by equation (2.115).
Together with the subsequent equations up to and including equation (2.121) the critical flow can be estimated as a function of the unknown exit pressure $\mathrm{P}_{\mathrm{e}}$.

$$
\begin{align*}
1 / G_{c r}^{2}= & -d \Phi_{\mathrm{m}} / \mathrm{dP} \times \\
& \left\{-2 \mathrm{v}_{\mathrm{L}}+2 \sqrt{ }\left(\mathrm{v}_{\mathrm{L}} \times \mathrm{v}_{\mathrm{V}}\right)-4 \Phi_{\mathrm{m}} \times \sqrt{ }\left(\mathrm{v}_{\mathrm{L}} \times \mathrm{v}_{\mathrm{V}}\right)+2 \Phi_{\mathrm{m}} \times \mathrm{v}_{\mathrm{L}}+2 \Phi_{\mathrm{m}} \times \mathrm{v}_{\mathrm{V}}\right\} \\
& -d \mathrm{v}_{\mathrm{V}} / \mathrm{dP} \times\left\{\Phi_{\mathrm{m}} \times \sqrt{ }\left(\mathrm{v}_{\mathrm{L}} / \mathrm{v}_{\mathrm{V}}\right)-\Phi_{\mathrm{m}}^{2} \times \sqrt{ }\left(\mathrm{v}_{\mathrm{L}} / \mathrm{v}_{\mathrm{V}}\right)+\Phi_{\mathrm{m}}^{2}\right\} \quad\left(\frac{\mathrm{m}^{4} \mathrm{~s}^{2}}{\mathrm{~kg}^{2}}\right) \tag{2.115}
\end{align*}
$$

with

$$
\begin{equation*}
\Phi_{\mathrm{m}}=\left(\mathrm{H}_{\mathrm{L}, 0^{-}}-\mathrm{H}_{\mathrm{L}}\right) / \mathrm{L}_{\mathrm{v}} \tag{-}
\end{equation*}
$$

The derative of quality $\Phi_{m}$ with respect to pressure is found from the derative of liquid enthalpy, latent heat and vapour specific volume, by

$$
\begin{array}{r}
\mathrm{d} \Phi_{\mathrm{m}} / \mathrm{dP}=-1 / \mathrm{L}_{\mathrm{v}} \times\left\{\mathrm{dH} \mathrm{~L}_{\mathrm{L}} / \mathrm{dP}+\Phi_{\mathrm{m}} \times\left(\mathrm{dL} \mathrm{~L}_{\mathrm{v}} / \mathrm{dP}\right)+0.5 \times \Phi_{\mathrm{m}} \times \mathrm{u}_{\mathrm{L}}{ }^{2} / \mathrm{v}_{\mathrm{L}} \times\left(\mathrm{d} \mathrm{v}_{\mathrm{V}} / \mathrm{dP}\right)\right\} \\
\left(\mathrm{m}^{2} / \mathrm{N}\right) \tag{2.117}
\end{array}
$$

The thermodynamic properties $H_{L, 0}, H_{L}, L_{V}$ and $V_{L}$ are relatively insensitive to changes in pressure, so that

$$
\begin{equation*}
\mathrm{d} \Phi_{\mathrm{m}} / \mathrm{dP} \approx-0.5 / \mathrm{L}_{\mathrm{v}} \times \Phi_{\mathrm{m}} \times \mathrm{u}_{\mathrm{L}}^{2} / \mathrm{v}_{\mathrm{L}} \times\left(\mathrm{dv}_{\mathrm{v}} / \mathrm{dP}\right) \quad\left(\mathrm{m}^{2} / \mathrm{N}\right) \tag{2.117a}
\end{equation*}
$$

A method for expressing $u_{L}$ as a function of pressure makes use of the slip ratio used by F auske. $T$ he following equation can be inferred:

$$
\begin{align*}
\mathrm{F}_{1}(\mathrm{P}) & =\left(\mathrm{q}_{\mathrm{S}} \times \mathrm{v}_{\mathrm{L}} /\left(\mathrm{A} \times \mathrm{u}_{\mathrm{L}}\right)\right)^{2} \\
& =\left(\frac{\left(\mathrm{L}_{\mathrm{v}} /\left(\mathrm{H}_{\mathrm{L}, 0}-\mathrm{H}_{\mathrm{L}}\right)\right) \times \sqrt{\left(\mathrm{v}_{\mathrm{L}} / \mathrm{v}_{\mathrm{V}}\right)}}{1+\left(\mathrm{L}_{\mathrm{v}} /\left(\mathrm{H}_{\mathrm{L}, 0}-\mathrm{H}_{\mathrm{L}}\right)-1\right) \times \sqrt{\left(\mathrm{v}_{\mathrm{L}} / \mathrm{v}_{\mathrm{V}}\right)}}\right)^{2} \tag{-}
\end{align*}
$$

The value of the bracketed term is influenced primarily by $v_{V}(P)$, the other thermodynamic quantities are relatively insensitive to changes in pressure.
$N$ ote that the right-hand term of equation (2.118) is dimensionless.
Coefficients $C_{i}$ can be calculated by the polynomial approximation of the intermediate function $F_{1}(P)$ which includes only thermodynamic quantities:

$$
\begin{equation*}
\mathrm{F}_{1}(\mathrm{P}) \approx \mathrm{C}_{\mathrm{C} 1}+\mathrm{C}_{\mathrm{C} 2} \times \mathrm{P}+\mathrm{C}_{\mathrm{C} 3} \times \mathrm{P}^{2}+\mathrm{C}_{\mathrm{C} 4} \times \mathrm{P}^{3} \tag{-}
\end{equation*}
$$

For propane:
$\mathrm{C}_{\mathrm{C1}}=-0.0081$
$\mathrm{C}_{\mathrm{C} 2}=3.1785 \times 10^{-7}$
$\mathrm{C}_{\mathrm{C} 3}=1.8820 \times 10^{-13}$
[( $\left.\left.\mathrm{m}^{2} / \mathrm{N}\right)\right]$
$C_{C 4}=9.4027 \times 10^{-19}$

Equation (2.117) and (2.117a) contain a factor ( $\mathrm{dv}_{\mathrm{v}} / \mathrm{dP}$ ).
T he non-stationary flow in a pipeline of a pressurized liquefied gas may be considered as an adiabatic process. This means that we are looking for a function $f(P, T)$ which satisfies the following equation

$$
\begin{equation*}
(d v / d P)_{s}=f(P, T) \tag{2.119}
\end{equation*}
$$

$$
\left(m^{4} \cdot s^{2} / \mathrm{kg}^{2}\right)
$$

Combining equations (2.9c) and (2.39a) shows the relationship between the differential and the speed of sound in the vapour phase

$$
\begin{equation*}
(d v / d P)_{s}=-1 /\left(\rho_{v} \times u_{s, v}\right)^{2} \quad\left(m^{4} \cdot s^{2} / \mathrm{kg}^{2}\right) \tag{2.120}
\end{equation*}
$$

By equation (2.39c) the speed of sound in the vapour phase can be estimated. H owever, being stored as a pressurized liquefied gas the approximation by perfect gas behaviour may not be accurate. The introduction of the compressibility factor $z$ for non-ideal gases shifts the problem towards finding an expression for $z=z(P, T)$.
In the original publication M orrow [1983] referred to Starling [1983] who presented an equation of state for several chemicals, like butane, carbon dioxide, ethane, ethene, hydrogen sulphide, methane, and propane. D ata for other chemicals, like for instance ammonia, can be found in [Edminster, 1984].

The unknown exit pressure $P_{e}$ can be estimated if a boundary condition for the mass flow rate at the exit $\mathrm{q}_{\mathrm{s}, \mathrm{e}}$ is given, which could be a function of the exit pressure $\mathrm{P}_{\mathrm{e}}$ too. Then it is possible to calculate the exit pressure $P_{e}$ corresponding to $q_{s, e}$ by a rootfinding numerical routine, solving the following equation

$$
\begin{equation*}
\mathrm{G}_{\mathrm{cr}}-\mathrm{q}_{\mathrm{s}, \mathrm{e}} / \mathrm{A}_{\mathrm{p}}=0 \tag{2.121}
\end{equation*}
$$

$N$ ote that exit pressure $P_{e}$ will be somewhere between the ambient pressure $P_{a}$ and the saturation pressure $\mathrm{P}_{\mathrm{v}}{ }^{\circ}\left(\mathrm{T}_{0}\right)$.

Where

| $\mathrm{A}_{\mathrm{p}}=$ pipe cross-sectional area | [ $\mathrm{m}^{2}$ ] |
| :---: | :---: |
| $\mathrm{G}_{\mathrm{cr}}=$ critical mass flux at the exit | [ $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ ] |
| $H_{L}=$ specific enthalpy of saturated liquid | [ $\mathrm{J} / \mathrm{kg}$ ] |
| $H_{L, 0}=$ specific enthalpy of saturated liquid at initial storage temperature | [J/kg] |
| $\mathrm{L}_{\mathrm{v}} \quad=$ latent heat of vaporisation | [J/kg] |
| $\mathrm{P}=$ pressure | [ $\mathrm{N} / \mathrm{m}^{2}$ ] |
| $\mathrm{P}_{\mathrm{a}}=$ ambient pressure | [ $\mathrm{N} / \mathrm{m}^{2}$ ] |
| $\mathrm{P}_{\mathrm{e}}{ }^{\text {a }}$ = exit pressure | [ $\mathrm{N} / \mathrm{m}^{2}$ ] |
| $\mathrm{P}_{\mathrm{v}}{ }^{\circ}(\mathrm{T})=$ saturation pressure | [ $\mathrm{N} / \mathrm{m}^{2}$ ] |
| $\mathrm{q}_{\mathrm{s}} \quad=$ mass flow rate | [ $\mathrm{kg} / \mathrm{s}$ ] |
| $\mathrm{q}_{\mathrm{s}, \mathrm{e}}=$ mass flow rate at the exit | [kg/s] |
| $\mathrm{u}_{\mathrm{v}} \quad=$ vapour velocity | [m/s] |
| $\mathrm{u}_{\mathrm{L}} \quad=$ liquid velocity | [m/s] |
| $u_{s, v}=$ speed of sound in vapour | [m/s] |
| $\mathrm{T}_{0}=$ initial temperature | [K] |
| $\Phi_{\mathrm{m}}=$ quality | [-] |
| $\rho_{\mathrm{L}} \quad=$ liquid density | [kg/m ${ }^{3}$ ] |
| $\rho_{V} \quad=$ vapour density | [ $\mathrm{kg} / \mathrm{m}^{3}$ ] |
| $\mathrm{v}_{\mathrm{L}} \quad=$ specific volume saturated liquid | [ $\mathrm{m}^{3} / \mathrm{kg}$ ] |
| $\mathrm{v}_{\mathrm{V}} \quad=$ specific volume vapour | [ $\mathrm{m}^{3} / \mathrm{kg}$ ] |

N umerical procedure in case of two-phase propane flow from complete ruptured pipelines

1. When the initial pressure $P_{0}$ in the pipeline is much higher than the saturation pressure, the initial discharge flow rate $(\mathrm{t}=0)$ at the pipe break location can be estimated by assuming sonic liquid outflow through the end of the pipe [D odge, 1996]

$$
\begin{equation*}
q_{s, e, 1}=A_{p} \times\left(P_{0}-P_{e}\right) / u_{s, L} \tag{kg/s}
\end{equation*}
$$

where
$\mathrm{P}_{0}=$ initial pressure in the pipeline $\quad\left[\mathrm{N} / \mathrm{m}^{2}\right]$
$u_{s, L}=$ speed of sound in liquid $[\mathrm{m} / \mathrm{s}]$

The initial estimate of mass flow is based on an acoustic decompression of the compressed liquid in the pipeline at the break location.

T he speed of sound in chemicals that are commonly stored as a pressure liquefied gas, like propane, ammonia and chlorine, is not easily found in literature as is its pressure dependency.
The speed of sound in the liquid phase of a few chemicals stored as a pressure liquefied gas at a temperature of 288.15 K [NIST] are presented in the table:

| chemical | $\mathbf{P}_{\mathbf{5}}{ }^{\circ}(\mathbf{T})$ <br> $\left(10^{5} \cdot \mathbf{N} / \mathbf{m}^{2}\right)$ | $\mathbf{u}_{\mathbf{s}, \mathbf{L}}$ <br> $(\mathbf{m} / \mathbf{s})$ |
| :--- | :---: | :---: |
| propane | 7.31 | 786.2 |
| propene | 8.91 | 715.1 |
| ammonia | 7.27 | 1361 |
| butane | 1.82 | 950.6 |

M ost liquids have a speed of sound between $900 \mathrm{~m} / \mathrm{s}$ and $1500 \mathrm{~m} / \mathrm{s}$, and on the average about $1250 \mathrm{~m} / \mathrm{s}$. Liquid propane and propene are both one of the exceptions. An increase of pressure will increase the speed of sound. In most cases a pressure increase of about 100 bars will increase the speed of sound in liquids about 5-15\%. So, when the initial mass flow rate calculated by equation (2.121) is based on the sound speed at moderate pressures conditions, the estimate will be somewhat conservative.

U se the scheme presented in the intermezzo above, equations (2.115-2.121), to estimate the unknown exit pressure, and the initial discharge flow rate $\mathrm{q}_{\mathrm{s}, \mathrm{e}, \mathrm{I}}$ implicitly.

In case of propane outflow a better estimate for the initial mass flow rate for moderate pressures could be calculated by T am's model, equation (2.137). F or other chemicals at moderate pressures the correction factor (2.137b) could be applied.
2. Assume a lower value for the exit mass flow rate

$$
\begin{equation*}
q_{s, e, 2}=0.95 \times q_{s, e, 1} \tag{kg/s}
\end{equation*}
$$

3. Calculate the average flow rate at the exit

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}, \mathrm{e}_{\mathrm{av}}}=0.5 \cdot\left(\mathrm{q}_{\mathrm{s}, \mathrm{e}, 1}+\mathrm{q}_{\mathrm{s}, \mathrm{e}, 2}\right) \tag{kg/s}
\end{equation*}
$$

4. Calculate the new exit pressure $\mathrm{P}_{\mathrm{e}}$ corresponding to $\mathrm{q}_{\mathrm{s}, \mathrm{e}, 2}$, by the scheme presented in the intermezzo, equations (2.115-2.121), using the following boundary condition
$\mathrm{G}_{\mathrm{cr}}=\mathrm{q}_{\mathrm{s}, \mathrm{e}, \mathrm{e}} / \mathrm{A}_{\mathrm{p}}$
$\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)(2.125)$
5. C alculate the distance to the interface $\Delta \mathrm{l}_{\mathrm{i}}$, from

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{i}}=\frac{3 \times \mathrm{d}_{\mathrm{p}} \times \mathrm{A}_{\mathrm{p}}^{2} \times\left[\mathrm{F}_{2}\left(\mathrm{P}_{\mathrm{i}}\right)-\mathrm{F}_{2}\left(\mathrm{P}_{\mathrm{e}}\right)\right]}{2 \times \mathrm{f}_{\mathrm{F}} \times \mathrm{v}_{\mathrm{L}} \times \mathrm{q}_{\mathrm{S}, \mathrm{e}_{2}}^{2}} \tag{m}
\end{equation*}
$$

with intermediate correlation $\mathrm{F}_{2}$

$$
\begin{equation*}
\mathrm{F}_{2}(\mathrm{P})=\mathrm{C}_{1} \times \mathrm{P}+\mathrm{C}_{2} / 2 \times \mathrm{P}^{2}+\mathrm{C}_{3} / 3 \times \mathrm{P}^{3}+\mathrm{C}_{4} / 4 \times \mathrm{P}^{4} \quad\left(\mathrm{~N} / \mathrm{m}^{2}\right) \tag{2.127}
\end{equation*}
$$

The upstream flow rate at interface where two-phase flow starts $\mathrm{q}_{\mathrm{s}, \text { us }}$ is set to be zero after the pumps are shut down.
$N$ ote that the intermediate function $F_{2}$ is the integral of intermediate function $F_{1}$ given by equation (2.118a).

## Where

| $d_{p}$ | $=$ inner pipe diameter | $[\mathrm{m}]$ |
| :--- | :--- | :--- |
| $\mathrm{f}_{\mathrm{F}}$ | $=$ Fanning friction factor | $[-]$ |
| $\mathrm{u}_{\mathrm{L}}$ | $=$ velocity liquid phase | $[\mathrm{m} / \mathrm{s}]$ |
| $\Delta \mathrm{I}_{\mathrm{i}}$ | $=$ distance from rupture to interface | $[\mathrm{m}]$ |

6. Neglecting the vapour density in comparison with liquid density, the mass removed from the pipeline $\mathrm{Q}_{\mathrm{yi}, 2}$ can be calculated by equation

$$
\begin{equation*}
Q_{\mathrm{yi}, 2}=\frac{3 \times \mathrm{d}_{\mathrm{p}} \times \mathrm{A}_{\mathrm{p}}^{3} \times\left[\mathrm{F}_{4}\left(\mathrm{P}_{\mathrm{i}}\right)-\mathrm{F}_{4}\left(\mathrm{P}_{\mathrm{e}}\right)\right]}{2 \times \mathrm{f}_{\mathrm{F}} \times \mathrm{v}_{\mathrm{L}}^{2} \times \mathrm{q}_{\mathrm{s}, \mathrm{e}}^{2}} \tag{kg}
\end{equation*}
$$

with

$$
\mathrm{F}_{4}(\mathrm{P})=\mathrm{C}_{\mathrm{B} 1} \times \mathrm{P}+\mathrm{C}_{\mathrm{B} 2} / 2 \times \mathrm{P}^{2}+\mathrm{C}_{\mathrm{B} 3} / 3 \times \mathrm{P}^{3}+\mathrm{C}_{\mathrm{B} 4} / 4 \times \mathrm{P}^{4}+\underset{\left(\mathrm{N} / \mathrm{m}^{2}\right)}{\mathrm{C}_{\mathrm{B}} / 5} \times \mathrm{P}^{5}
$$

$\mathrm{Q}_{\mathrm{yi}} \quad=$ quantity of mass removed from pipeline by void formation
$N$ ote that initially $\mathrm{Q}_{\mathrm{y}, 1}=0$.

The coefficients $C_{B i}$ can be calculated by the polynomial approximation of the intermediate function $F_{3}(P)$ which includes only thermodynamic quantities.

$$
\begin{align*}
\mathrm{F}_{3}(\mathrm{P}) & =\Phi_{\mathrm{V}} \times \mathrm{F}_{1}  \tag{2.129}\\
& =\mathrm{F}_{1} /\left[1+\left(\mathrm{L}_{\mathrm{V}} /\left(\mathrm{H}_{\mathrm{L}, 0}-\mathrm{H}_{\mathrm{L}}\right)-1\right) \times \sqrt{ }\left(\mathrm{v}_{\mathrm{L}} / \mathrm{v}_{\mathrm{V}}\right)\right]  \tag{-}\\
\mathrm{F}_{3}(\mathrm{P}) & \approx \mathrm{C}_{\mathrm{B} 1}+\mathrm{C}_{\mathrm{B} 2} \times \mathrm{P}+\mathrm{C}_{\mathrm{B} 3} \times \mathrm{P}^{2}+\mathrm{C}_{\mathrm{B} 4} \times \mathrm{P}^{3}+\mathrm{C}_{\mathrm{B} 5} \times \mathrm{P}^{4} \tag{-}
\end{align*}
$$

The intermediate function $F_{4}$ is the integral of intermediate function $F_{3}$. $N$ ote that the right-hand term of equation (2.129) is dimensionless. $T$ he value of the bracketed term is influenced primarily by $v_{V}(P)$.

For propane:

| $\mathrm{C}_{\mathrm{B} 1}$ | $-5.5695 \times 10^{-3}$ | [-] |
| :---: | :---: | :---: |
| $\mathrm{C}_{\text {B2 }}$ | $2.94896 \times 10^{-7}$ | [ $\left(\mathrm{m}^{2} / \mathrm{N}\right)$ ] |
| $\mathrm{C}_{\text {B }}$ | $=-1.27218 \times 10^{-13}$ | $\left[\left(\mathrm{m}^{2} / \mathrm{N}\right)^{2}\right]$ |
| $\mathrm{C}_{\text {B4 }}$ | $=1.34158 \times 10^{-18}$ | $\left[\left(\mathrm{m}^{2} / \mathrm{N}\right)^{3}\right]$ |
| $\mathrm{C}_{85}$ | $-1.8414 \times 10^{-24}$ | $\left[\left(\mathrm{m}^{2} / \mathrm{N}\right)^{4}\right]$ |

7. C alculate the time increment in step i for mass removed

$$
\begin{equation*}
\Delta t_{i}=\left(Q_{y i, 2}-Q_{y i, 1}\right) / q_{s, e, a v} \tag{s}
\end{equation*}
$$

8. The exit mass flow rate at the beginning of the next time step $q_{s, e, l}$ must be set equal to the exit mass flow rate at the end of the previous time step $q_{s, e, 2}$.

Repeat the numerical procedure for each new time-step by starting again with step 2 , until the distance to the interface $\Delta l_{i}$ is larger than the pipelength $L_{p}$ or if timet is smaller than the specified time for which the outflow rate or the conditions in the pipeline must be estimated.

N ote that the time after the rupture is given by

$$
\begin{equation*}
\mathrm{t}=\Sigma \Delta \mathrm{t}_{\mathrm{i}} \tag{s}
\end{equation*}
$$

By comparing the initial mass content in the pipeline with the mass removed $\mathrm{Q}_{\mathrm{yi}, 2}$ it may appear that the pipeline is not empty after the last time step. If so, it is recommended to continue the predicted mass flow rate of the last time step until all remaining mass will be removed. The duration of this stage of the release is given by

$$
\begin{equation*}
\Delta t_{E}=\left(\rho_{0} \times A_{p} \times L_{p}-Q_{y i, 2}\right) / q_{s, e, 2} \tag{s}
\end{equation*}
$$

where

| $\Delta t_{\mathrm{E}}$ | $=$ | duration release remaining liquid | $[\mathrm{s}]$ |
| :--- | :--- | :--- | :--- |
| $\rho_{0}$ | $=$ | initial liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |

Remark
If the pipeline has been ruptured in the middle ('double' guillotine break), then the overall mass flow rate from the pipeline is twice the calculated value by this model.

In case the rupture is near one of the pipe ends or an isolation valve, both parts of the original pipeline should be regarded as two independent sources.

The way M orrow accounted for pumping rate in the pipeline apparent before the break, is not correct.
D odge [1996] has given several useful comments on M orrow's model, amongst others on how to cope with a pumping rate in the pipeline.
In case of a 'double' guillotine break to the first order the pumping rate does not influence the venting rate, and to account for the pumping rate to consider second order effects would make the computational model much more complicated. In case of a guillotine break the fluid vents from both the upstream and downstream sides of the guillotine break.
On the upstream side, the pumping rate (which is in the same direction as the venting flow) adds to the initial estimate of the venting rate, and thus it will increase all the subsequent computations of upstream venting rate from Fauske's model. On the downstream side, the pumping rate ( which is in the opposite direction as the venting flow) subtracts from the initial estimate of the venting rate, and thus it will decrease all the subsequent computations of downstream venting rate from Fauske's model. The net effect is that the pumping rate tends to cancel out of the venting rate calculations (but not quite) when the upstream and downstream venting rates are added together.
For this reason the pumping rate for the 'double' guillotine break case can be neglected, certainly at the early stages of the release.

Transient release from leaking or (partially) ruptured propane pipelines
A simple exponential correlation has been fitted against experiments with 100 metre propane pipeline of 0.150 m diameter and 0.05 m diameter orifice plate [T am, 1990]. A characteristic of the transient releases in the test data was found to be that the total mass of propane inside the test line decreases exponentially with time after a period of flow establishment. The flow establishment lasted from less than 1 to about 5 seconds, depending on the size of the test orifice. The release rate does not decay exponentially in this period. In the experiments the duration of the established flow was 20 seconds or more, again depending on the orifice size.

The model for the transient releases rate is given by

$$
\begin{equation*}
\mathrm{d} \mathrm{Q}(\mathrm{t}) / \mathrm{dt}=-\mathrm{C}_{\alpha} \times \mathrm{Q}(\mathrm{t}) \tag{kg/s}
\end{equation*}
$$

where

| $\mathrm{C}_{\alpha}$ | $=$ constant of decay | $[\mathrm{l} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| Q | $=$ mass content pipeline | $[\mathrm{kg}]$ |
| t | $=$ time from the start of the release | $[\mathrm{s}]$ |

While by definition the mass flow rate from the pipe is given by

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}}(\mathrm{t})=-\mathrm{d} \mathrm{Q}(\mathrm{t}) / \mathrm{dt} \tag{2.132}
\end{equation*}
$$

(kg/s)
the following equation can be inferred from the model as formulated by T am [1990]

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}}(\mathrm{t})=\mathrm{C}_{\alpha} \times \mathrm{Q}_{0} \times \mathrm{e}^{-\mathrm{C} \alpha \cdot \mathrm{t}} \tag{2.133}
\end{equation*}
$$

$\mathrm{q}_{\mathrm{s}}=$ mass flow rate $[\mathrm{kg} / \mathrm{s}]$
The main factors which affect the value of the exponential decay constant were assessed using statistical analysis. T hese factors were the initial fluid conditions, such as fluid temperature, and the test line configurations, such as pipe length and orifice area. The following regression was obtained from the data set

$$
\begin{equation*}
C_{\alpha}=d_{R} 0.25 \times\left(0.22 \times A_{R}-0.13 \times A_{R}^{1.5}+C_{C \alpha} \times\left(T_{0}-288.15\right)\right) \tag{1/s}
\end{equation*}
$$

with

$$
\begin{align*}
& d_{R}=d_{p}[\mathrm{~m}] / 0.05[\mathrm{~m}]  \tag{-}\\
& A_{R}=A_{h} / A_{p} \tag{2.134a}
\end{align*}
$$

and
$C_{C \alpha}=0.00068\left[K^{-1}\right]$
Where
$A_{h} \quad=$ cross-sectional area hole $\quad\left[\mathrm{m}^{2}\right]$
$\mathrm{A}_{\mathrm{p}} \quad=$ cross-sectional area pipe $\quad\left[\mathrm{m}^{2}\right]$
$A_{R} \quad=$ area ratio $\quad[-]$
$d_{p} \quad=$ pipe diameter
$\mathrm{d}_{\mathrm{R}} \quad=$ radius ratio
$\mathrm{T}_{0} \quad=$ initial (absolute) temperature fluid [K]
The deviation between the predictions and the measured results is less than $20 \%$. The experiments did not result in any significant correlation between the initial pressure and the value of the decay constant.

Range of experimental parameters:

| Initial pressure | $\mathrm{P}_{0}\left[\mathrm{~N} / \mathrm{m}^{2}\right]$ | $7.5 \cdot 10^{5}-22 \cdot 10^{5}$ |
| :--- | :--- | :--- |
| Initial temperature | $\mathrm{T}_{0}[\mathrm{~K}]$ | $287.15-297.15$ |
| Pipe diameter | $\mathrm{d}_{\mathrm{p}}[\mathrm{m}]$ | $0.05-0.15$ |
| Area ratio | $\mathrm{A}_{\mathrm{R}}\left[\mathrm{m}^{2} / \mathrm{m}^{2}\right]$ | $0.04-1.0$ |

Although the variation in length of the pipeline has been recognised by T am as a factor governing the exponential decay of the transient release rate, no correlation between the mass flow rate and the pipe length was given.
$N$ ote that equations (2.131) and (2.132) imply that the initial mass flow rate seems to depend on the initial mass content of the pipe, and thus on the length of the pipeline, since

$$
\begin{align*}
q_{0} & =q(t=0)  \tag{2.135}\\
& =C_{\alpha} \times Q(t=0) \tag{kg/s}
\end{align*}
$$

with

$$
\begin{align*}
Q_{0} & =Q(t=0) \\
& =\rho_{L}\left(T_{0}\right) \times V_{p}  \tag{2.136}\\
& =\rho_{L, 0} \times \pi / 4 \times d_{p}^{2} \times L_{p} \tag{kg}
\end{align*}
$$

where
$\mathrm{Q}_{0} \quad=$ initial mass content pipeline
[kg]
$L_{p} \quad=$ length pipeline
$\mathrm{V}_{\mathrm{p}} \quad=$ pipeline volume
$\rho_{p} \quad=$ density propane at initial temperature $T_{0} \quad\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$

This can not be true, which means that the model can not be used for pipe lengths other than 100 m .
H owever, the model can give a good impression of the magnitude of the initial flow rate after the flow establishment region by

$$
\begin{equation*}
\mathrm{q}_{0}=\mathrm{C}_{\alpha} \times \mathrm{C}_{\mathrm{Lp}} \times \rho_{\mathrm{L}, 0} \times \pi / 4 \times \mathrm{d}_{\mathrm{p}}^{2} \tag{2.137}
\end{equation*}
$$

with somewhat artificially

$$
\begin{equation*}
C_{L p}=100 \mathrm{~m} \tag{2.137a}
\end{equation*}
$$

It must be mentioned however, that the duration of the flow establishment will be a function of the length of the pipeline.

In an engineering approach we could define a (general) correction factor $\mathrm{C}_{\mathrm{T} \text { am }}$ by

$$
\begin{equation*}
C_{T a m}=q_{0, T a m} / q_{0, L} \tag{-}
\end{equation*}
$$

with
$q_{0, T a m}=$ propane mass flow rate estimated by equation (2.137)
$\mathrm{q}_{0, \mathrm{~L}} \quad=$ propane mass flow rate estimated by equation (2.199)
This correction factor can be used to improve the estimation of the initial mass flow rate for any pressure liquefied gas assuming pure liquid outflow.
The latter two quantities should be calculated for the same conditions.

### 2.5.3.7 Finite duration spray releases

This section provides the models to describe the behaviour of the two-phase jets into the atmosphere from pressurised liquefied gases. First, the effects associated with the depressurisation of the release to atmospheric pressure are described. Secondly, the possibility of rain-out of droplets to the ground (forming an evaporating pool) is addressed. Therefore, the droplet size is estimated and the evaporation of a droplet falling through the air. Finally the effects of the evaporation of the droplets remaining in the air are described, leading to an effective density and concentration of the vapour/air mixture that will disperse in the atmosphere. T he methodologies are presented stepwise in D iagram 2.8.

Diagram 2.8 Stepwise overview of models to describe two-phase jets

| Step 1 | Calculate the conditions in the jet after flashing in the atmosphere is <br> complete: <br> - flash fraction <br> - jet velocity <br> - radius and density of flashed jet |
| :--- | :--- |
| Step 2 | Calculation of the droplet diameter after flashing |
| Step 3 | Droplet evaporation and rain-out on the ground: <br> First determine if droplets may reach the ground; <br> If so, calculate the liquid mass fraction that will reach the ground. |
| Step 4 | Calculate the conditions in the jet after evaporation of all airborne droplets: <br> - concentration <br> - jet velocity <br> - radius and density of the single-phase jet |

In this section extensive use is made of thermodynamical properties of chemicals. K nowledge is required of the following material properties: density of liquid and vapour as a function of temperature and pressure, enthalpy as a function of temperature, kinematic viscosity of the liquid phase, latent heat, surface tension of the liquid-vapour interface, molar weight, saturation pressure as a function of temperature and the binary diffusion coefficient of the vapour in air. F or a number of chemicals these data are collected in the Annex of this Y ellow Book. In some cases e.g. (the binary diffusion coefficient) approximate values are presented in the text.

## Step 1-C alculate the conditions in the jet after flashing

The outflow conditions can be characterised by the following quantities:

- the pressure at the exit $\mathrm{P}_{\mathrm{e}}\left[\mathrm{N} / \mathrm{m}^{2}\right]$,
- the temperature at the exit $T_{e}(K)$,
- the effective cross-section of the exit opening $A_{e}\left[m^{2}\right]$,
- the total mass flow rate $q_{s, e}[\mathrm{~kg} / \mathrm{s}]$, which is the product of exit cross-section $A_{e}$ [ $\mathrm{m}^{2}$ ] and mass flux $\left[\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$, and
- the vapour mass fraction (or 'quality') at the exit $\Phi_{m, e}$ ( kg vapour per kg two-phase mixture).

In case of outflow through a hole in a vessel wall the exit conditions are identical to the (bulk) conditions in the vessel.
In case of outflow from piping or pipeline the exit conditions refer to the conditions in the pipe before the outflow opening.

The density at the exit $\rho_{\mathrm{e}}\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ can be calculated from the vapour density $\rho_{\mathrm{V}, \mathrm{e}}$ at $\mathrm{P}_{\mathrm{e}}$ and $T_{e}$, the liquid density $\rho_{\mathrm{L}, \mathrm{e}}$ at $\mathrm{T}_{\mathrm{e}}$ and the quality $\Phi_{\mathrm{m}, \mathrm{e}}$ :

$$
\begin{equation*}
\frac{1}{\rho_{\mathrm{e}}}=\frac{\left(1-\Phi_{\mathrm{m}, \mathrm{e}}\right)}{\rho_{\mathrm{L}, \mathrm{e}}}+\frac{\Phi_{\mathrm{m}, \mathrm{e}}}{\rho_{\mathrm{V}, \mathrm{e}}} \quad\left(\mathrm{~m}^{3} / \mathrm{kg}\right) \tag{2.138}
\end{equation*}
$$

After the exit the flow will depressurise to atmospheric pressure and liquid will flash to vapour until the two-phase mixture is at boiling temperature. F rom conservation of momentum and conservation of mass the jet velocity after flashing can be calculated:

$$
\begin{equation*}
u_{f}=\frac{\left(P_{e}-P_{a}\right) A_{e}}{q_{s, e}}+u_{e} \quad(\mathrm{~m} / \mathrm{s}) \tag{2.139}
\end{equation*}
$$

Here $P_{a}$ is the ambient pressure, and $u_{e}$ is the velocity in the exit which follows from the exit density $\rho_{\mathrm{e}}$ and the mass flux. F rom the conservation of total energy the quality after flashing can be calculated:

$$
\begin{equation*}
\Phi_{\mathrm{m}, \mathrm{f}}=1-\frac{\mathrm{H}_{\mathrm{v}, \mathrm{f}}-\mathrm{H}_{\mathrm{v}, \mathrm{e}}+\left(1-\Phi_{\mathrm{m}, \mathrm{e}}\right) \mathrm{L}_{\mathrm{v}, \mathrm{e}}+\frac{1}{2}\left(\mathrm{u}_{\mathrm{f}}^{2}-\mathrm{u}_{\mathrm{e}}^{2}\right)}{\mathrm{L}_{\mathrm{v}, \mathrm{f}}} \tag{2.140}
\end{equation*}
$$

Here, $H_{v, e}$ and $H_{V, f}$ are the vapour enthalpies [J/kg] for the exit temperature and boiling temperature, respectively. $L_{v, e}$ and $L_{v, f}$ are the latent heat of evaporation at exit conditions and after flashing, respectively. T he average jet density after flashing $\rho_{\mathrm{f}}$ is calculated using (2.138) by changing in this formula lower index e by lower index f. $N$ ow the increase of the jet cross-section $A_{f}$ and jet radius $b_{f}$ can be calculated from conservation of mass:

$$
\begin{equation*}
A_{f}=\frac{\rho_{e} u_{e}}{\rho_{f} u_{f}} A_{e} \quad b_{f}=\sqrt{\frac{A_{f}}{\pi}} \quad \quad\left(m^{2} ; m\right) \tag{2.141}
\end{equation*}
$$

## Step 2- Calculation of the droplet diameter after flashing

In order to estimate the possibility of rain-out (droplets from the jet falling to the ground and not contributing directly to the amount of pollutant in the jet), it is necessary to calculate the droplet diameter after flashing.
In reality, all droplets have different diameters. Here, we only calculate a single droplet diameter which will be assumed to be representative of all droplets.
The droplet diameter depends on jet velocity, jet size, viscosity and surface tension. Therefore, use is made of two dimensionless numbers, the Reynolds number $\mathrm{Re}_{f}$ and the Weber number $\mathrm{We}_{\mathrm{f}}$. T he Reynolds number characterises the balance between momentum and kinematic viscosity $v$, the Weber number characterises the balance between momentum and surface tension $\sigma_{s}$ :

$$
\begin{equation*}
R e_{f}=\frac{2 b_{f} u_{f}}{v_{L}} \quad W e_{f}=\frac{2 b_{f} u_{f}^{2} \rho_{L, f}}{\sigma_{s}} \tag{-;-}
\end{equation*}
$$

Here, $b_{f}$ is the jet radius and $u_{f}$ is the jet velocity after flashing, $\rho_{L, f}$ is the density and $v_{\mathrm{L}}$ is the kinematic viscosity of the liquid after flashing, and $\sigma_{\mathrm{s}}$ is the surface tension between the liquid and the vapour.

The droplet size can now be estimated by the following correlations:

- If $W e_{f}<\operatorname{Re}_{f}^{-0.45} \times 10^{6}$ and $T_{e}<1.11 T_{B}$ (where $T_{B}$ is the normal boiling temperature), then:

$$
\begin{equation*}
d_{d}=3.78 b_{f} \sqrt{\left(1+3 \frac{W e^{\frac{1}{2}}}{R e_{f}}\right)} \tag{m}
\end{equation*}
$$

- Else:

$$
\begin{equation*}
d_{d}=C_{d s} \frac{\sigma_{s}}{u_{f}^{2} \rho_{\mathrm{a}}} \tag{m}
\end{equation*}
$$

H ere $\rho_{\mathrm{a}}$ is the density of air (ambient gas).
In the literature values for the constant $\mathrm{C}_{\mathrm{ds}}$ vary between 10 and 20 . H ere a value of 15 is recommended.
Large droplets falling to the ground will break-up according to the second of the above correlations, inserting the free fall velocity $u_{d}$ for $u_{f}$. This requires an iterative solution using the above correlation and formula (2.145) for $u_{d}$ in the following section.

## Step 3 - Droplet evaporation and rain-out on the ground

In this section, first an estimate is made whether droplets originating from the flashing can fall to the ground. If this is the case, the total mass fraction that will fall on the ground is calculated.
The droplets are assumed to have the same diameter: the evolution of the single droplet diameter due to evaporation is therefore assumed to be representative of all droplets.
Estimation of droplet rain-out requires calculation of the rate of evaporation of individual droplets. The evaporation is restricted by a heat flux from the ambient air to the droplet and by the mass flux from the droplet surface into the ambient air. Therefore, the problem depends on convection and diffusion of heat and mass in air. The relevant dimensionless numbers are the Reynolds number $\mathrm{Re}_{\mathrm{d}}$, based on the relative velocity of the droplet through the air, the Schmidt number Sc, the ratio of viscosity to mass diffusion, and the Prandtl number Pr, the ratio between viscosity and heat diffusion. These numbers will be used in the following calculations. The latter two numbers only depend on the properties of air and the released chemical:

$$
\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{u}_{\mathrm{d}} \mathrm{~d}_{\mathrm{d}}}{v_{\mathrm{a}}} \quad \mathrm{Sc}=\frac{v_{\mathrm{a}}}{\mathrm{D}} \quad \operatorname{Pr}=\frac{\mathrm{C}_{\mathrm{p}} \rho_{\mathrm{a}} v_{\mathrm{a}}}{\lambda} \quad(-; ;--) \quad(2.144 \mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

In these definitions, $u_{d}$ is the relative velocity of the droplet in surrounding air. In the following formulae, it is assumed that $u_{d}$ equals the free fall velocity of the droplet. $v_{a}$ is the kinematic viscosity of the ambient air, $d_{d}$ is the droplet diameter. $D$ is the binary diffusion coefficient of the vapour through air. $C_{p}$ is the specific heat, $\rho_{a}$ the density and $\lambda$ is the conductivity of heat of the ambient air. F or the Prandtl number in air at about 288 K one can use $\operatorname{Pr}=0.71$. If no data on the binary diffusion constant D are available, one can also assume $\mathrm{Sc} \approx 0.7$.

The velocity $u_{d}$ is assumed to be the final free fall velocity. F or small droplets, use can be made of Stokes' flow regime which is strictly valid for $R e_{d}<1$, but the results are not sensitive to this assumption:

$$
\begin{equation*}
\mathrm{u}_{\mathrm{d}}=\frac{\rho_{\mathrm{L}, \mathrm{f}} \mathrm{~g}}{18 v_{\mathrm{a}} \rho_{\mathrm{a}}} \mathrm{~d}_{\mathrm{d}}^{2} \tag{m/s}
\end{equation*}
$$

Here $\rho_{\mathrm{L}, \mathrm{f}}$ is the density of the droplet at boiling temperature (i.e. the condition after flashing), and $g$ is the acceleration of gravity ( $\mathrm{g} \approx 9.8 \mathrm{~ms}^{-2}$ ).
F or the calculation of the evaporation from the droplet, first a coefficient $k_{B}$ is defined which governs the evaporation at the droplets' surface:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{B}}=\frac{4 \mu_{\mathrm{i}} \mathrm{D} \mathrm{P}_{\mathrm{a}}}{\rho_{\mathrm{L}, \mathrm{f}} R T_{\mathrm{a}}} \ln \left(1-\frac{\mathrm{P}_{\mathrm{s}}\left(\mathrm{~T}_{\mathrm{d}}\right)}{\mathrm{P}_{\mathrm{a}}}\right) \tag{2.146}
\end{equation*}
$$

H ere, $\mu_{\mathrm{i}}$ is the molar weight of the released chemicals, $\mathrm{P}_{\mathrm{a}}$ is the ambient pressure, R the universal gas constant $\left(R=8.31434 \mathrm{~J} \times \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right), \mathrm{T}_{\mathrm{a}}$ is the ambient temperature, and $P_{v}{ }^{\circ}\left(T_{d}\right)$ is the saturation pressure of the released chemical at the droplet temperature.

N ow, first the temperature difference between the ambient air and the droplet needs to be calculated. This so-called temperature depression maintains the required heat flux from the air to the droplet in order to enable the evaporation. $T$ his requires the iterative solution of the following equation. The solution needs to be iterative as the saturation pressure $P_{v}{ }^{\circ}$ as included in the evaluation of $k_{B}$, is strongly dependent on the droplet temperature $T_{d}$. It is not necessary to evaluate the droplet density $\rho_{\mathrm{L}}$ and the Reynolds number $\mathrm{Re}_{\mathrm{d}}$ for each iteration:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{d}}=\mathrm{T}_{\mathrm{a}}-\frac{\mathrm{L}_{\mathrm{v}, \mathrm{~d}} \mathrm{k}_{\mathrm{B}} \rho_{\mathrm{L}, \mathrm{f}}\left[1+0.28 \operatorname{Re}_{\mathrm{d}}{ }^{\frac{1}{2}} \mathrm{Sc}^{\frac{1}{3}}\right]}{4 \lambda\left[1+0.28 \operatorname{Re}_{\mathrm{d}}^{\frac{1}{2}} \mathrm{Pr}^{\frac{1}{3}}\right]} \tag{K}
\end{equation*}
$$

It is now possible to approximate the maximum diameter of a droplet that will rainout from a release height $h_{s}$ above the ground:

$$
\begin{equation*}
d_{M}=2\left[\frac{9 \rho_{a} v_{a} k_{B} h_{s}}{2 \rho_{\mathrm{L}, \mathrm{f}} g}\left[1-0.204 S c^{\frac{1}{3}}\left[\frac{\rho_{\mathrm{L}, \mathrm{f}} \mathrm{~g}}{18 \rho_{\mathrm{a}} v_{\mathrm{a}}^{2}}\right]^{\frac{1}{2}}\left[\frac{72 \rho_{\mathrm{a}} v_{\mathrm{a}} \mathrm{k}_{\mathrm{B}} h_{\mathrm{s}}}{\rho_{\mathrm{L}, \mathrm{f}} \mathrm{~g}}\right]^{\frac{3}{8}}\right]^{-1}\right]^{\frac{1}{4}} \tag{2.148}
\end{equation*}
$$

(m)

This approximation is applicable if $R e_{d}$ (based on $d_{M}$ ) < 4. Rain-out will only occur if the droplet size after flashing $d_{d}$ is larger than the maximum rain-out droplet $d_{M}$. If $d_{d}$ is smaller than $d_{M}$, and $R e_{d}$ (based on $d_{M}$ ) $<4$, one may skip to the next section.

If $d_{d}$ is larger than $d_{M}$ or $R e_{d}>4$, the total mass that will rain-out and the mass that remains in the air need to be calculated. Therefore, a numerical integration needs to be performed of the evolution of the diameter of the droplet as it evaporates while falling down. The evolution of the droplet diameter $d_{d}(t)$ can be calculated from the differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~d}_{\mathrm{d}}=--\frac{\mathrm{k}_{\mathrm{B}}}{\mathrm{~d}_{\mathrm{d}}}\left[1+0.28 \operatorname{Re}_{\mathrm{d}}{ }^{\frac{1}{2}} \mathrm{Sc}^{\frac{1}{3}}\right] \tag{m/s}
\end{equation*}
$$

Here $R e_{d}$ depends on the droplet diameter according to (2.144) and (2.145). The height above the ground of the droplet is calculated by integrating the velocity $u_{d}$, which also varies with time according to (2.145), over time. It is assumed that the release is horizontal, and that there is no initial vertical velocity component. The integration is performed until the droplet hits the ground, i.e. $h\left(\mathrm{t}_{0}\right)=0$. T herefore, $\mathrm{t}_{0}$ follows implicitly from the following expression:

$$
\begin{equation*}
0=\mathrm{h}\left(\mathrm{t}_{0}\right)=\mathrm{h}_{\mathrm{s}}-\int_{0}^{\mathrm{t}_{0}} \mathrm{u}_{\mathrm{d}} \mathrm{dt} \tag{m}
\end{equation*}
$$

In practice, as $u_{d}$ depends on the droplet size, (2.149) and (2.150) are simultaneously numerically integrated until $z=0$.
By comparing the droplet size $d_{0}$ when the droplet hits the ground to the initial droplet size after flashing, $d_{d}$, the evaporated mass fraction while falling to the ground, can be calculated. This in turn will lead to the nett mass released to the air by the jet:

$$
\begin{equation*}
q_{s, \text { nett,air }}=\Phi_{m, f} q_{s, e}+\left(1-\Phi_{m, f}\right)\left(1-\left[\frac{d_{0}}{d_{d}}\right]^{3}\right) q_{s, e} \quad(\mathrm{~kg} / \mathrm{s}) \tag{2.151}
\end{equation*}
$$

H ere, $\mathrm{q}_{\mathrm{s}, \mathrm{e}}$ is the mass flow rate through the release opening, and $\Phi_{\mathrm{m}, \mathrm{f}}$ the vapour mass ratio or quality after flashing. The first term refers to the vapour initially in the jet while the second term refers to the vapour released while the droplets fall to the ground. T he latter process leads to a cooling of the air entrained in the vapour/aerosol cloud. This cooling process will be described in the following section, but it requires the redefinition for the quality and the jet cross-section after flashing in case rain-out occurs, i.e.:

$$
\begin{align*}
& \Phi_{m, f, \text { rainout }}=\frac{\Phi_{m, f}}{\Phi_{m, f}+\left(1-\Phi_{m, f}\right)\left(1-\left[\frac{d_{0}}{d_{d}}\right]^{3}\right)}  \tag{2.152}\\
& A_{f, \text { rainout }}=A_{f} \frac{q_{s, \text { nett,air }}}{q_{s, e}} \quad b_{f, \text { rainout }}=\sqrt{\frac{A_{f, \text { rainout }}}{\pi}} \tag{2.153}
\end{align*}
$$

In case rain-out occurs, in the following sections $\Phi_{m, f}, A_{f}$, and $q_{s, e}$ should be replaced by $\Phi_{m, f, \text { rainout }}, A_{f, \text { rainout, }}$ and $\mathrm{q}_{\mathrm{s}, \text { nett,air }}$.

## Step 4- Calculate the conditions in the jet after evaporation of all airborne droplets

The evolution of a two-phase jets in terms of air entrainment, width, concentration decay and velocity decay is the same as the evolution of single-phase jets as described in chapter 4.
In order to perform subsequent dispersion modelling using dispersion models which do not account for two-phase effects in the plume or cloud, this section provides the technique to calculate the cooling of the single-phase jet after all airborne droplets have evaporated. $M$ ore details about coupling are provided in section 2.7.2.2.
The concentration in the jet corresponding to the amount of air which has to be entrained into the jet in order to evaporate all aerosols, has to be calculated in an iterative way from the enthalpy balance. The total changes in enthalpy due to temperature change, evaporation of aerosol or condensation of ambient humidity, need to be zero:

$$
\begin{equation*}
\Delta\left(\mathrm{H}_{\text {chemical }}\right)+\Delta\left(\mathrm{H}_{\text {dry air }}\right)+\Delta\left(\mathrm{H}_{\text {water vapour }}\right)=0 \quad(\mathrm{~J} / \mathrm{mol}) \tag{2.154}
\end{equation*}
$$

The terms in the foregoing enthalpy balance will be evaluated separately below.
The molar fraction $c_{j}$ of the vapour in the jet is equal to the partial vapour pressure. As long as droplets are present up to the moment when all liquid has just evaporated, the partial vapour pressure equals the saturation pressure at the jet temperature $\mathrm{T}_{\mathrm{j}}$ :

$$
\begin{equation*}
c_{j}=\frac{P_{v}^{0}\left(T_{j}\right)}{P_{a}} \tag{-}
\end{equation*}
$$

If all liquid aerosol has evaporated, the quality or vapour mass fraction $\Phi_{m, j}$ is zero. In that case the enthalpy change of the released chemical since flashing follows from:

$$
\begin{equation*}
\Delta\left(\mathrm{H}_{\text {chemical }}\right)=\mathrm{c}_{\mathrm{j}} \mu_{\mathrm{s}}\left[-\left(1-\Phi_{\mathrm{m}, \mathrm{f}}\right) \mathrm{L}_{\mathrm{v}, \mathrm{f}}+\mathrm{H}_{\mathrm{f}}-\mathrm{H}_{\mathrm{j}}\right] \tag{2.156}
\end{equation*}
$$

Here, $\mu_{s}$ is the molar mass of the released chemical, $L_{v, f}$ is the latent heat of evaporation, and $H_{f}$ and $H_{j}$ the specific enthalpies at boiling temperature and jet temperature, respectively.
The enthalpy changes of air depend on the humidity of the air. The mass fraction of water vapour in the ambient dry air (it is assumed no water droplets or mist are present in the ambient air) is given by:

$$
\begin{equation*}
\frac{m_{w}}{m_{d a}}=\frac{R H_{a} P_{v, w}^{0}\left(T_{a}\right)}{\left(R / \mu_{w}\right) T_{a} \rho_{a}} \tag{2.157}
\end{equation*}
$$

Here, $R H_{a}$ is the ambient relative humidity, $\mathrm{P}_{\mathrm{s}, \mathrm{w}}\left(\mathrm{T}_{\mathrm{a}}\right)$ is the saturation pressure of water at ambient temperature $T_{a}, R$ is the gas constant, $\mu_{w}$ is the molar weight of water, and $\rho_{\mathrm{a}}$ is the density of ambient air.

After the air in the jet has cooled down to jet temperature $T_{j}$, part of the water vapour may condense. The remaining mass fraction of vapour is calculated by:

$$
\begin{equation*}
\frac{m_{w v}}{m_{d a}}=\frac{T_{a} P_{v, w}^{0}\left(T_{j}\right)}{R H_{a} T_{j}{ }_{j}^{0} P_{v, w}^{0}\left(T_{a}\right)} \tag{-}
\end{equation*}
$$

The molar fraction of water vapour to dry air at ambient temperature and jet temperature, respectively, are:

$$
\begin{equation*}
c_{w}=\frac{m_{w} \mu_{a}}{m_{d a} \mu_{w}} \quad c_{w v}=\frac{m_{w v} \mu_{a}}{m_{d a} \mu_{w}} \tag{-}
\end{equation*}
$$

Here $\mu_{\mathrm{a}}$ and $\mu_{\mathrm{w}}$ are the molar weights of (dry) air and water, respectively ( $\mu_{\mathrm{a}}=$ $28.96 \cdot 10^{-3} \mathrm{~kg} / \mathrm{mol}, \mu_{\mathrm{w}}=18.02 \cdot 10^{-3} \mathrm{~kg} / \mathrm{mol}$.
The enthalpy change of entrained dry air can now be calculated by:

$$
\begin{equation*}
\Delta\left(H_{d r y}, \text { air }\right)=\frac{\left(1-C_{j}\right)}{\left(1+C_{w v}\right)} C_{p} \mu_{a}\left(T_{a}-T_{j}\right) \tag{J/mol}
\end{equation*}
$$

H ere $C_{p}$ is the specific heat of air.
The enthalpy change of the water entrained with the air is:

$$
\begin{equation*}
\Delta\left(\mathrm{H}_{\text {water vapour }}\right)=\frac{\left(1-\mathrm{C}_{\mathrm{j}}\right)}{\left(1+\mathrm{C}_{\mathrm{wv}}\right)} \mu_{\mathrm{w}}\left[\mathrm{C}_{\mathrm{p}, \mathrm{w}}\left(\mathrm{~T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{j}}\right)\right] \tag{J/mol}
\end{equation*}
$$

H ere, $L_{w, j}$ is the latent heat of water at jet temperature, and $C_{p, w}$ is the specific heat of water vapour.
The jet temperature and molar fraction or volume concentration $c_{j}$ can be calculated iteratively from the expressions above. First, an initial temperature $T_{j}$ is chosen for which the molar fraction $c_{j}$ can be calculated using (2.155). Then the contributions T to the enthalpy balance can be evaluated and the total sum can be calculated from (2.154). By means of an iterative procedure (Regula $F$ alsi) new values of $T_{j}$ can be selected in order to minimise the sum of enthalpy changes.
The situation in the jet just after complete evaporation of the liquid aerosols of released material (note water aerosols are likely to be present), is relevant in order to calculate the total (negative) buoyancy released to the air. T he density of the jet can be calculated as follows. First, the equivalent molar mass of the vapour mixtures is calculated:

$$
\begin{equation*}
\mu_{\mathrm{jd}}=c_{j} \mu_{\mathrm{s}}+\frac{\left(1-c_{\mathrm{j}}\right)}{\left(1+c_{\mathrm{wv}}\right)}\left(\mu_{\mathrm{a}}+c_{\mathrm{wv}} \mu_{\mathrm{w}}\right) \tag{2.162}
\end{equation*}
$$

The density of the vapour only follows from the perfect gas law:

$$
\begin{equation*}
\rho_{j d}=\frac{P_{a} \mu_{j d}}{R T_{j}} \tag{3}
\end{equation*}
$$

In order to account for the condensed water vapour, the additional water liquid molar fraction is calculated:

$$
\begin{equation*}
c_{j L}=\frac{\left(1-c_{j}\right)}{\left(1+c_{w v}\right)}\left(c_{w}-c_{w v}\right) \frac{\mu_{w}}{\overline{u_{j d}}} \tag{-}
\end{equation*}
$$

N ow the density follows from:

$$
\begin{equation*}
\rho_{\mathrm{j}}=\frac{1+\mathrm{c}_{\mathrm{jL}}}{\frac{1}{\rho_{\mathrm{j}, \mathrm{~d}}}+\frac{\mathrm{C}_{\mathrm{jL}}}{\rho_{\mathrm{w}, \mathrm{~L}}}} \tag{3}
\end{equation*}
$$

Here, $\rho_{w, L}$ is the density of liquid water at jet temperature.
One can define an equivalent single-phase source to be used for any jet model or dispersion model by a uniformly distributed velocity $u_{j}$ over an area $A_{j}$. The initial volume concentration in this volume flow rate is $c_{j}$ :

$$
\begin{align*}
& u_{j}=\frac{u_{f}}{1+\frac{\left(1-c_{j}\right) \mu_{a}}{c_{j}} \frac{\mu_{s}}{s_{s}}}  \tag{2.166}\\
& A_{j}=\frac{\rho_{f} u_{f}}{\rho_{j} u_{j}} A_{f} \quad b_{j}=\sqrt{\frac{A_{j}}{\pi}} \tag{2.167}
\end{align*}
$$

### 2.5.3.8 Instantaneous release of pressurised liquefied vapours

This section provides models to describe the behaviour of pressurised liquefied vapours after complete loss of containment. F irst, the effects associated with the sudden depressurisation of the release to atmospheric pressure are described. Secondly, the rain-out of liquid on the ground is estimated. Thirdly, the growth of the expanding cloud while entraining air, is described. Finally, the effects of droplet evaporation on the cloud density are described.
The methodologies are presented stepwise in Diagram 2.9.

Diagram 2.9 Overview of steps to describe instantaneous two-phase releases

| Step 1 | Calculate the conditions after depressurisation to atmospheric pressure: <br> $-\quad$ flash fraction <br> $-\quad$ expansion velocity <br> $-\quad$ cloud radius and density |
| :--- | :--- |
| Step 2 | Calculate the rain-out fraction to the ground |
| Step 3 | Calculate the expansion of the cloud during the entrainment phase |
| Step 4 | Calculate the conditions in the cloud after evaporation of all airborne <br> droplets: <br> concentration <br> $-\quad$ expansion velocity <br> cloud radius and density |

In general the same material properties as in section 2.5.3.7 are required.

## Step 1- Calculate the conditions in the cloud after depressurisation

The storage conditions as they prevail in the containment prior to the release will be assumed to be input for the calculations.

These conditions are:

| Storage temperature | $\mathrm{T}_{0}$ | $(\mathrm{~K})$ |
| :--- | :--- | :--- |
| Pressure | $\mathrm{P}_{0}$ | $(\mathrm{~N} / \mathrm{m})$ |
| T otal mass stored | Q | $(\mathrm{kg})$ |
| Vapour mass fraction | $\Phi_{\mathrm{m}, 0}$ | $(-)$ |

The expansion to atmospheric pressure leads to flashing and evaporation of liquid. After flashing, the temperature $T_{B}$ equals the normal boiling temperature of the released chemical.
The vapour mass fraction $\Phi_{m, f}$ after flashing can be calculated assuming isentropic flashing:

$$
\begin{equation*}
\Phi_{\mathrm{m}, \mathrm{f}}=\frac{\Phi_{\mathrm{m}, 0} \frac{\mathrm{~L}_{\mathrm{v}, 0}}{\mathrm{~T}_{0}}+\mathrm{S}_{0, \mathrm{~L}}-\mathrm{S}_{\mathrm{f}, \mathrm{~L}}}{\frac{\mathrm{~L}_{\mathrm{v}, \mathrm{f}}}{\mathrm{~T}_{\mathrm{f}}}} \tag{-}
\end{equation*}
$$

Here $L_{v, 0}$ and $L_{v, f}$ are the latent heat of the chemical at storage and boiling temperature, respectively, and $\mathrm{S}_{0, \mathrm{~L}}$ and $\mathrm{S}_{\mathrm{f}, \mathrm{L}}$ are the entropy of the liquid chemical at storage temperature and pressure and boiling temperature and ambient pressure, respectively. If no detailed data on entropies are available, this can be approximated by:

$$
\begin{equation*}
\Phi_{\mathrm{m}, \mathrm{f}}=\Phi_{\mathrm{m}, 0} \frac{\mathrm{~T}_{\mathrm{f}}}{\mathrm{~T}_{0}}+\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{~L}_{\mathrm{v}, \mathrm{f}}} \mathrm{C}_{\mathrm{p}, \mathrm{~L}} \ln \frac{\mathrm{~T}_{0}}{\mathrm{~T}_{\mathrm{f}}} \tag{-}
\end{equation*}
$$

H ere $C_{p, L}$ is the specific heat of the liquid.
It is assumed that the stored chemical is initially at rest. During flashing the liquid/vapour cloud will expand with a velocity which follows from the conservation of total energy during flashing. This energy balance also includes the work performed on the ambient air. The real expansion velocity will be about $20 \%$ lower than the value which follows directly from the energy balance because part of the kinetic energy will be transferred to turbulence and the flashing process will probably not be isentropic. So the expansion velocity $u_{f}$ is approximated by:

$$
\begin{equation*}
u_{f}=0.8 \sqrt{2\left(H_{0, v}-H_{f, v}+\left(1-\Phi_{m, f}\right) L_{v, f}-\left(1-\Phi_{m, 0}\right) L_{v, 0}-\frac{P_{0}-P_{a}}{\rho_{0}}\right)} \tag{2.170}
\end{equation*}
$$

Here $\mathrm{H}_{0, v}$ and $\mathrm{H}_{\mathrm{f}, \mathrm{v}}$ are the vapour enthalpy of the released chemical at storage temperature and boiling temperature, respectively. $\rho_{0}$ is the average density of the
chemical in the vessel, which can be calculated by (2.138), thereby changing index e to index 0 .

The total volume $\mathrm{V}_{\mathrm{f}}$ after flashing follows from

$$
\begin{equation*}
V_{f}=\frac{Q}{\rho_{f}} \tag{2.171}
\end{equation*}
$$

$$
\left(m^{3}\right)
$$

Here $\rho_{f}$ is calculated by (2.138) thereby changing index e to index f. F or a vessel on the ground the expanding cloud will be a hemisphere. After flashing the radius of the hemisphere will be:

$$
\begin{equation*}
b_{f}=\left(\frac{3 V_{f}}{2 \pi}\right)^{1 / 3} \tag{m}
\end{equation*}
$$

## Step 2-C alculate the rain-out fraction to the ground

The amount of liquid raining out from the cloud depends on the flash fraction. If $\Phi_{m, f}$ $<0.5$, twice the initial flash fraction will remain airborne, i.e.:

$$
\begin{equation*}
\mathrm{Q}_{\text {nett,air }}=2 \Phi_{\mathrm{m}, \mathrm{f}} \mathrm{Q} \tag{kg}
\end{equation*}
$$

If $\Phi_{m, f}>0.5$, no rain-out is assumed. If rain-out occurs, the vapour mass fraction in the cloud needs to be redefined. F rom the calculation of $Q_{\text {nett,air }}$ it follows that in that case always $\Phi_{m, f, \text { rainout }}=0.5$. It is also necessary to redefine the cloud density $\rho_{f}$ (formula 2.138 using $\Phi_{m, f, \text { rainout }}$ ), $\mathrm{V}_{\mathrm{f}}$ and $\mathrm{b}_{\mathrm{f}}$. In the following sections one should replace $Q, \Phi_{m, f} \rho_{f}, V_{f}$ and $b_{f}$ by these redefined values if rain-out occurs.
The fraction of total mass not remaining in the air will form an evaporating pool on the ground.

## Step 3-C Calculate the expansion of the cloud during the entrainment phase

It is assumed that after flashing air is entrained in the cloud. The concentration of air and released chemical in the cloud are uniform throughout the cloud.
If we define $t_{f}$ to be the time when flashing is complete, i.e. when the radius $b$ equals $\mathrm{b}_{\mathrm{f}}$, the evolution with time after flashing of the radius and expansion velocity of the cloud can be calculated by:

$$
\begin{align*}
& \mathrm{b}(\mathrm{t})=\left[4 \mathrm{u}_{\mathrm{f}} \mathrm{~b}_{\mathrm{f}}^{3}\left(\mathrm{t}-\mathrm{t}_{\mathrm{f}}\right)+\mathrm{b}_{\mathrm{f}}^{4}\right]^{\frac{1}{4}}  \tag{m}\\
& \mathrm{u}(\mathrm{t})=\mathrm{u}_{\mathrm{f}}\left(\frac{\mathrm{~b}_{\mathrm{f}}}{\mathrm{~b}(\mathrm{t})}\right)^{3}
\end{align*}
$$

## Step 4- Calculate the conditions in the cloud after evaporation of all airborne droplets

In order to calculate the extent of the two-phase cloud and to enable coupling with dispersion models which need an initial cloud size, this section provides the method to determine the size of the cloud when all aerosol has evaporated and the expansion velocity is reduced to the wind velocity at the cloud height after flashing $b_{f}$.
The determination of the amount of entrained air needed to evaporate all liquid aerosol (except condensed water from the water vapour contained in the air), or, in other words, the required concentration $\mathrm{c}_{\mathrm{j}}$, is performed as described in section 2.5.3.7, (2.154) to (2.165), reading 'cloud' for 'jet'. These formulae also provide the averaged cloud density $\rho_{\mathrm{j}}$.
The cloud volume $V_{j}$ and radius $b_{j}$ at the moment all aerosol has evaporated are approximately:

$$
\begin{equation*}
V_{j}=\frac{Q}{c_{j} \rho_{s, j}} \quad b_{j}=\left(\frac{3 V_{j}}{2 \pi}\right)^{\frac{1}{3}} \quad\left(m^{3} ; m\right) \tag{2.176}
\end{equation*}
$$

Here $\rho_{\mathrm{s}, \mathrm{j}}$ is the density of the vapour of pure released chemical (i.e. it is not the cloud averaged density) at the cloud temperature $\mathrm{T}_{\mathrm{j}}$. T he initial volume concentration in this cloud is $\mathrm{c}_{\mathrm{j}}$.
Subsequent dispersion modelling can now take place if the expansion velocity $u_{j}$ is lower than the wind speed $u_{a}$ at the cloud height after flashing $b_{f} . u_{j}$ can be calculated using (2.175) if $b_{j}$ is inserted for $b(t)$.

If $u_{j}>u_{a}\left(b_{f}\right)$, the radius of the cloud $b_{\text {disp }}$ and the volume $V_{\text {disp }}$ (input for dispersion modelling) can be calculated from:

$$
\begin{equation*}
b_{\text {disp }}=b_{f}\left(\frac{u_{f}}{u_{a}\left(b_{f}\right)^{\frac{1}{3}}}\right)^{\frac{1}{3}} \quad v_{\text {disp }}=\frac{2}{3} \pi b^{3}{ }_{\text {disp }} \quad\left(m ; m^{3}\right) \tag{2.177}
\end{equation*}
$$

Assuming that the averaged molar specific heat of the cloud after evaporation is equal to the molar specific heat of air, the temperature $\mathrm{T}_{\text {disp }}$ of the cloud of volume $\mathrm{V}_{\text {disp }}$ can be calculated by:

$$
\begin{equation*}
\mathrm{T}_{\text {disp }}=\frac{\mathrm{T}_{\mathrm{a}}}{1-\frac{\mathrm{V}_{\mathrm{j}}}{\mathrm{~V}_{\text {disp }}}\left(1-\frac{\mathrm{T}_{\mathrm{a}}}{\mathrm{~T}_{\mathrm{j}}}\right)} \tag{K}
\end{equation*}
$$

The molar or volume concentration $\mathrm{c}_{\text {disp }}$ at this stage of the cloud is:

$$
\begin{equation*}
c_{\text {disp }}=c_{j} \frac{V_{j} T_{\text {disp }}}{V_{\text {disp }} T_{j}} \tag{-}
\end{equation*}
$$

The cloud density $\rho_{\text {disp }}$ can be estimated (neglecting the effect of water vapour or droplets) by formulae (2.162) and (2.163) (section 2.5.3.7), assuming $\mathrm{c}_{\mathrm{wv}}=0$ and inserting $T_{\text {disp }}$ and $c_{\text {disp }}$ for $T_{j}$ and $c_{j}$, respectively.
$T$ he initial clouds $\mathrm{V}_{\mathrm{j}}$ or $\mathrm{V}_{\text {disp }}$ (depending on whether the cloud expansion velocity $\mathrm{u}_{\mathrm{j}}$ exceeds the windspeed) can be used as initial conditions for dispersion models.

### 2.5.4 Liquids

### 2.5.4.1 Vessel dynamics liquid

The modelling of the dynamics of a vessel filled with (non-boiling) liquid aims at predicting the decrease of liquid mass during the outflow of liquid.

The hydraulic pressure driving the mass flow rate depends on the liquid level in the tank; a constant pressure $P$ by compression with inert gas may be taken into account.

A pplying the basic law of conservation of mass, and taking into account the hydraulic pressure of a liquid column, will suffice for an adequate description of the vessel dynamics.

The model is basically an iterative numerical procedure in which the outflow of liquid out of a vessel is described in small steps. These steps should be small enough to consider the conditions in the vessel to be constant during one time-step.

First, the initial condition and termination condition of the numerical procedure will be given. Next, the model in the form of a numerical procedure is given. This numerical procedure has to be repeated until the termination conditions have been satisfied.
Finally, equations relating the liquid height to the liquid volume in the vessel for few vessel shapes are given.

Initial conditions and termination procedure ( non-boiling) liquid outflow from a vessel
The initial condition of the vessel ( $\mathrm{i}=1$ ) is given by its filling degree $\phi$, constant temperature and vessel volume.
The liquid mass in the vessel can easily be calculated given the (initial) filling degree $\phi$, by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{L}, 1}=\phi \times \mathrm{V} \times \rho_{\mathrm{L}}(\mathrm{~T}) \tag{kg}
\end{equation*}
$$

where
$Q_{L, 1}=$ liquid mass initially in the vessel
$\phi \quad=$ filling degree
[kg]
$\vee \quad=$ vessel volume $\left[\mathrm{m}^{3} / \mathrm{m}^{3}\right.$ ]
$\rho_{\mathrm{L}} \quad=$ liquid density at storage temperature $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$

The initial liquid volume can be estimated by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{L}, 1}=\mathrm{Q}_{\mathrm{L}, 1} / \rho_{\mathrm{L}} \tag{2.181}
\end{equation*}
$$

The initial liquid height can be estimated by using the inverse function between liquid volume and liquid height for the given geometry of the vessel (see next sub-paragraph: eq. (2.193a), (2.193b), (2.193c), expressed by

$$
\begin{equation*}
h_{L, 1}=F^{-1}\left(V_{L, 1}\right) \tag{m}
\end{equation*}
$$

The duration of $\delta t$ may be chosen freely in principle, and depends of the number of time-steps $\mathrm{N}_{\mathrm{t}}$. The choice $\mathrm{N}_{\mathrm{t}}=50$ will be appropriate for most calculations. If one wishes to estimate the mass flow rate and vessel conditions at time $t_{\text {end }}$, then the size of time-step $\delta t$ is given by

$$
\begin{equation*}
\delta t=t_{\text {end }} / N_{t} \tag{s}
\end{equation*}
$$

The numerical procedures given should be repeated as long as the constraints are valid

$$
\begin{equation*}
t_{i}<t_{\text {end }} \quad h_{L}>h_{\text {hole }} \tag{2.183}
\end{equation*}
$$

T he larger the number of steps, the higher the accuracy of the model, but the more time needed for the calculation. The choice $\mathrm{N}=50$ will be appropriate, for most calculations.

N umerical procedure non-boiling liquid outflow from a vessel

Starting every step at time $t_{i}$ in the iteration with a condition in the vessel given by $\mathrm{Q}_{\mathrm{L}, \mathrm{i}}$ the following procedure aims at calculation of the condition in the vessel at the end of the small time-step $\delta t$, given by $Q_{L, i+1}$.

Let us say that the outflow rate $\mathrm{q}_{\mathrm{s}, \mathrm{i}}$ is given by a generalised function f , depending on whether the outflow is through a hole or a pipe (see paragraph 2.5.4.2)

$$
\begin{equation*}
q_{s, i}=f\left(h_{L, i}, P, \ldots\right) \tag{kg/s}
\end{equation*}
$$

The conservation of mass leads very simply to

$$
\begin{equation*}
\delta Q=-q_{s, i} \times \delta t \tag{kg}
\end{equation*}
$$

The liquid content will decrease with

$$
\delta V_{L}=\delta Q / \rho_{\mathrm{L}} \quad\left(\mathrm{~m}^{3}\right)
$$

thus

$$
\begin{equation*}
V_{L, i+1}=V_{L, i}+\delta V_{L} \tag{2.187}
\end{equation*}
$$

F or simple geometries equations are available to calculate the liquid volume and the size of the liquid area as a function of the liquid level.
In general the following formulation holds

$$
\begin{equation*}
A_{L, i}=f\left(h_{L, i}, \ldots\right) \tag{2.188}
\end{equation*}
$$

Then the new liquid level can be calculated by
$\delta h_{L}=\delta V_{L} / A_{L, i}$
(m)
$h_{L, i+1}=h_{L, i}+\delta h_{L}$
(m)

The time from the start of the release must be increased by one time-step after every pass through this numerical procedure

$$
\begin{equation*}
t_{i+1}=t_{i}+\delta t \tag{s}
\end{equation*}
$$

The new condition of the vessel at time $t_{i+1}$ is given by: $Q_{L, i+1}$ or $h_{L, i+1}$.
This numerical procedure has to be repeated until the termination conditions have been satisfied.

Liquid height as a function of liquid volume
For simple geometries equations are available to calculate the liquid volume $V_{L}$ and the size of the liquid surface in the vessel $A_{L}$ as a function of the liquid level $h_{L}$, in the generalised form expressed by

$$
\begin{align*}
& A_{L}=F\left(h_{L}\right)  \tag{2.192}\\
& V_{L}=F\left(h_{L}\right) \tag{2.193}
\end{align*}
$$

For instance, the following relations hold for a few geometries

* sphere

$$
\begin{align*}
& A_{L}=\pi \times\left(r^{2}-\left(r-h_{L}\right)^{2}\right)  \tag{2.192a}\\
& V_{L}=\pi / 3 \times h_{L}^{2} f \times\left(3 \times r-h_{L}\right)
\end{align*}
$$

* horizontal cylinder

$$
\begin{align*}
& A_{L}=2 \times L \times \sqrt{ }\left(\left(2 \times r-h_{L}\right) \times h_{L}\right)  \tag{2.192b}\\
& V_{L}=L \times\left[r^{2} \times \operatorname{acos}\left(1-h_{L} / r\right)-\left(r-h_{L}\right) \times \sqrt{ }\left(\left(2 \times r-h_{L}\right) \times h_{L}\right]\right. \tag{2.193b}
\end{align*}
$$

* vertical vessel
$A_{L}=A_{\text {base }}$
$\left(m^{2}\right)$
$V_{L}=A_{L} \times h_{L}$
$\left(m^{3}\right)$

Where

| $\mathrm{A}_{\mathrm{L}}$ | $=$ liquid surface inside vessel | $\left[\mathrm{m}^{2}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{A}_{\text {base }}=$ base vertical cylinder | $\left[\mathrm{m}^{2}\right]$ |  |
| $\mathrm{h}_{\mathrm{L}}$ | $=$ liquid height | $[\mathrm{m}]$ |
| $\mathrm{V}_{\mathrm{L}}$ | $=$ liquid volume in vessel | $\left[\mathrm{m}^{3}\right]$ |
| r | $=$ radius of the sphere or cylinder | $[\mathrm{m}]$ |

### 2.5.4.2 Liquid outflow through holes and piping

The modelling of the outflow of liquid through holes and piping aims at predicting the mass flow rate as a function of the pressure drop.

Liquid flow through holes or orifices
For liquids flowing through an orifice the Bernoulli equation can be applied. $N$ eglecting the initial liquid velocity in the vessel, the mass flow rate can be estimated by

$$
\begin{equation*}
q_{s}=C_{d} \times A_{h} \times \sqrt{\left(2\left(P-P_{a}\right) \times \rho_{\mathrm{L}}\right)} \tag{kg/s}
\end{equation*}
$$

with

$$
\begin{equation*}
P=P_{h}+P_{a L} \quad\left(N / m^{2}\right) \tag{2.195}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{h}=\rho_{\mathrm{L}} \times \mathrm{g} \times \mathrm{h}_{\mathrm{L}} \quad\left(\mathrm{~N} / \mathrm{m}^{2}\right) \tag{2.196}
\end{equation*}
$$

$\mathrm{A}_{\mathrm{h}}=$ cross-sectional area of the hole $\left[\mathrm{m}^{2}\right]$
$C_{d}=$ discharge coefficient
g $\quad=$ gravitational acceleration
$h_{L} \quad=$ (relative) liquid height
P = total pressure at opening
[ $\mathrm{N} / \mathrm{m}^{2}$ ]
$P_{h} \quad=$ (hydraulic) liquid pressure
[ $\mathrm{N} / \mathrm{m}^{2}$ ]
$\mathrm{P}_{\mathrm{aL}} \quad=$ external pressure above liquid [ $\mathrm{N} / \mathrm{m}^{2}$ ]
$\mathrm{P}_{\mathrm{a}} \quad=$ atmospheric pressure [ $\mathrm{N} / \mathrm{m}^{2}$ ]
$\mathrm{q}_{\mathrm{s}} \quad=$ mass flow rate
[kg/s]
$\rho_{\mathrm{L}} \quad=$ liquid density
$\left[\mathrm{kg} / \mathrm{m}^{3}\right.$ ]
The following values for the discharge coefficients are recommended; Beek [1975].
F or sharp orifices

$$
\begin{equation*}
C_{d}=0.62 \tag{-}
\end{equation*}
$$

for straight orifices

$$
\begin{equation*}
C_{d}=0.82 \tag{-}
\end{equation*}
$$

for rounded orifices
$C_{d}=0.96$
(-)
and for a pipe rupture

$$
\begin{equation*}
C_{d}=1.0 \tag{-}
\end{equation*}
$$

Liquid flow through pipes
The pressure drop for a stationary fluid flow in piping can be estimated by the wellknown D arcy-W eisbach equation.

$$
\begin{equation*}
\Delta P=f_{D} \times \rho_{f} / 2 \times u_{f}^{2} \times I_{p} / d_{p} \quad\left(N / \mathrm{m}^{2}\right) \tag{2.198}
\end{equation*}
$$

U sing this equation, an expression for the (average) liquid flow velocity in the pipe can be inferred

$$
\begin{equation*}
u_{L}=\sqrt{\left(2 \times \Delta \mathrm{P} / \mathrm{I}_{\mathrm{p}} \times \mathrm{d}_{\mathrm{p}} /\left(\mathrm{f}_{\mathrm{D}} \times \rho_{\mathrm{L}}\right)\right)} \tag{2.199}
\end{equation*}
$$

The mass flow rate in the pipe can be calculated by

$$
\begin{equation*}
q_{S}=\rho \times u_{L} \times A_{\text {pipe }} \tag{2.200}
\end{equation*}
$$

where

| $d_{p}$ | $=$ pipe diameter | $[\mathrm{m}]$ |
| :--- | :--- | :--- |
| $f_{D}$ | $=$ D arcy friction factor | $[-]$ |
| $I_{p}$ | $=$ pipe length | $[\mathrm{m}]$ |
| $u_{L}$ | $=$ liquid flow velocity | $[\mathrm{m} / \mathrm{s}]$ |
| $\Delta P$ | $=$ pressure over the pipe | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\rho_{L}$ | $=$ liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |

According to the equations above, the mass flow rate through a pipe depends on the friction in the pipe.
In general the friction factor is a function of the Reynolds number (see paragraph 2.5.5).

The Reynolds number, depending on the flow velocity in the pipe, can be expressed as a function of the mass flow rate

$$
\begin{equation*}
\operatorname{Re}=f\left(q_{s}\right) \tag{2.201}
\end{equation*}
$$

For circular pipes

$$
\begin{equation*}
\operatorname{Re}=(4 / \pi) \times \mathrm{q}_{\mathrm{s}} /\left(\mathrm{d}_{\mathrm{p}} \times \eta\right) \tag{-}
\end{equation*}
$$

This means that the mass flow rate in the pipe has to be calculated by iteration.

### 2.5.5 Friction factors

Fluid flows in pipes and pipe fittings are associated with friction. The friction causes a pressure drop depending on the roughness of the pipe wall and on the shape of the pipe fitting.

## F riction in straight pipes

The Colebrook-W hite law yields the friction factor as a function of pipe diameter, roughness of the inner pipe wall, flow velocity and viscosity.
If used in combination with the $D$ arcy-W eisbach equation, the two equations are considered by many authorities as the best equations available for determining the head loss for turbulent flow in commercial pipes, as stated by Ackers in 1963 [Radford,1990].

The D arcy friction factor $f_{D}$ can be predicted by the Colebrook-W hite law for the transition zone

$$
\begin{equation*}
1 / \sqrt{ } f_{D}=-2 \times{ }^{10} \log \left(\varepsilon /\left(3.715 \times d_{p}\right)+2.51 /\left(\operatorname{Re} \times \sqrt{ } f_{D}\right)\right) \tag{-}
\end{equation*}
$$

The Reynold's number characterises the flow of fluids and is given by

$$
\begin{equation*}
\operatorname{Re}=\rho \times u \times d_{p} / \eta \tag{-}
\end{equation*}
$$

Equation (2.201) can be solved by applying a root finding procedure, and defining an auxiliary function

$$
\begin{equation*}
F\left(f_{D}\right)=1 / \sqrt{ } f_{D}+2 \times{ }^{10} \log \left(\varepsilon /\left(3.715 \times d_{p}\right)+2.51 /\left(R e \times \sqrt{ } f_{D}\right)\right) \tag{2.202a}
\end{equation*}
$$

The auxiliary function $F\left(f_{D}\right)$ equals zero for that $f_{D}$ which is the solution of equation (2.201), where
$\mathrm{f}_{\mathrm{D}} \quad=\mathrm{D}$ arcy friction factor $\quad[-]$
$\mathrm{d}_{\mathrm{p}}=$ pipe diameter [m]
ع = wall roughness [m]
Re $=$ Reynolds number [-]
$\mathrm{u}_{\mathrm{f}} \quad=$ fluid flow velocity $\quad[\mathrm{m} / \mathrm{s}]$
$\rho_{f} \quad=$ fluid density $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\eta \quad=$ dynamic viscosity $\quad\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right]$

The D arcy-W eisbach equation also predicts the head loss in the pipe

$$
\begin{equation*}
\Delta h_{L p}=f_{D} \times l_{p} \times u_{f}^{2} /\left(2 \times g \times d_{p}\right) \tag{m}
\end{equation*}
$$

Where

| $g$ | $=$ gravitational acceleration | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ |
| :--- | :--- | :--- |
| $\Delta h_{L p}$ | $=$ head loss | $[\mathrm{m}]$ |
| $\mathrm{I}_{\mathrm{p}}$ | $=$ pipe length | $[\mathrm{m}]$ |

The head loss $\Delta h_{L p}$ and pressure drop are simply related

$$
\begin{equation*}
\Delta P=\rho_{f} \times g \times \Delta h_{L p} \quad\left(N / m^{2}\right) \tag{2.203}
\end{equation*}
$$

As apparent from equation (2.202) the Darcy factor is a function of the Reynolds number and the relative wall roughness (the ratio between the wall roughness and the pipe diameter). F or the wall roughness the values in the table below can be used.

Table 2.2 Some values for wall roughness for pipes

| Material | Wall roughness $\varepsilon$ |
| :--- | :---: |
| Bronze, lead, glass | $1.5 \mu \mathrm{~m}$ <br> $45 \mu \mathrm{~m}$ <br> Commercial steel, wrought-iron |
| Cast iron | $250 \mu \mathrm{~m}$ |

The pressure drop for a stationary fluid flow in piping is also often estimated by the $D$ arcy Weisbach equation in which the F anning friction factor is used

$$
\Delta P=4 \times f_{F} \times \rho_{f} / 2 \times u_{f}^{2} \times I_{p} / d_{p} \quad\left(N / m^{2}\right)
$$

where
$\mathrm{f}_{\mathrm{F}} \quad=\mathrm{F}$ anning friction factor for flow in pipes $[-]$
From the equations, (2.198) and (2.204) it easy to conclude that the F anning friction factor is four times smaller than the D arcy friction factor

$$
\begin{equation*}
4 \times f_{F}=f_{D} \tag{m}
\end{equation*}
$$

When applying the equations from literature one should check which factor is referred to.

For the D arcy friction other equations and graphics are well-known.
For laminar flow

$$
\begin{equation*}
\mathrm{f}_{\mathrm{D}}=64 / \mathrm{Re} \quad \text { if } \mathrm{Re}<2000 \tag{-}
\end{equation*}
$$

For turbulent flow and smooth pipe the Blasius equation holds

$$
\begin{equation*}
f_{D}=0.3164 \times \operatorname{Re}^{-0.25} \quad \text { if } 4000<\operatorname{Re}<10^{5} \tag{2.207}
\end{equation*}
$$

Friction is one of the factors determining the flow velocity in the pipe. As the friction factor depends on the Reynolds number being a function of velocity, in general an iterative procedure should to be applied to estimate the mass flow rate in the pipe. However, according to figure 2.12 ' F riction factor for flow in pipes' it appears that the friction factor is virtually constant for sufficiently high Reynolds numbers.

CPR 14E
Chapter 2 of the ' $Y$ ellow B ook'


Figure 2.12 Friction factor for flow in pipes by Moody [YellowBook, 1988]

Non-circular pipes
For non-circular pipes the so-called hydraulic diameter may be used which is defined as

$$
\begin{equation*}
d_{h}=4 \times A_{p} / s_{p} \tag{m}
\end{equation*}
$$

where
$A_{p}=$ cross-sectional area the pipe $\quad\left[m^{2}\right]$
$S_{p} \quad=$ wetted perimeter of the pipe [m]
$N$ ote that for circular tubes the hydraulic diameter is equal to the pipe diameter.
The use of $H$ azen-Williams and $M$ anning relations should be discouraged, but empirical equations are quoted in text books and many people working in the field of hydraulic engineering still prefer them [Radford, 1990].
Additional information can be found in for instance M elhem [1993] and Radford, [1990].

F rictional pressure drop in pipe fittings
The models for outflow through pipes are developed for a pipe with no bends, reductions of cross-section or branches. If such elements are present, they can be accounted for by introducing an extra resistance coefficient.

The relation between the pressure drop and the kinetic energy per element of volume of the transported product is called the friction or resistance coefficient

$$
\begin{equation*}
K_{i}=\Delta P /\left(1 / 2 \times \rho_{f} \times u^{2}\right) \tag{-}
\end{equation*}
$$

where

| $\mathrm{K}_{\mathrm{i}}$ | $=$ resistance coefficient | $[\mathrm{s}]$ |
| :--- | :--- | :--- |
| $\Delta \mathrm{P}$ | $=$ pressure drop due to friction | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\rho_{\mathrm{f}}$ | $=$ density of the fluid | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| u | $=$ flow velocity of the fluid | $[\mathrm{m} / \mathrm{s}]$ |

For pipe elements the resistance coefficient $\mathrm{K}_{\mathrm{i}}$ has the following values
$45^{\circ}$-bend $\quad: 0.35$
$90^{\circ}$-bend $\quad: 0.75$
open spherical valve : 6.4
half-open spherical valve :9.5
inlet piece with sharp edges : 0.5

### 2.6 Application of the selected models: calculation examples

### 2.6.1 Introduction to section 2.6

The models presented in this chapter can be divided into iterative models and non-iterative models.
$N$ on-iterative models facilitate predictions by applying a set of equations once. For this type of model calculation examples have been worked out step by step.

Iterative models facilitate predictions only by repeating a (complex) numerical procedure a (great) number of times. A step-by-step approach would not be practical. F or this type of model the final results will be given only as a function of specified input.

### 2.6.2 Compressed gases

### 2.6.2.1 Hydrogen outflow from a vessel through a hole in the vessel wall

The hydrogen outflow from of a vessel through a hole in the vessel wall can be calculated by the models presented in paragraphs 2.5.2.2 and 2.5.2.3.

Input:

Initial pressure
I nitial temperature
Vessel volume
Leak size
(cross-sectional area hole
D ischarge coefficient
Time from start release
Thermodynamic model
O utput:
M ass flow at 30 sec
G as pressure at 30 sec
G as temperature at 30 sec

|  |  | 50 | bar |
| :--- | :--- | ---: | :--- |
| $\mathrm{P}_{0}$ | $=$ | 288.15 | K |
| $\mathrm{~T}_{0}$ | $=$ | 200 | $\mathrm{~m}^{3}$ |
| V | $=$ | 0.1 | $\mathrm{~m}^{2}$ |
| $\mathrm{~d}_{\mathrm{h}}$ | $=$ |  |  |
| $\mathrm{A}_{\mathrm{h}}$ | $=$ | $7.854 \cdot 10^{-3}$ | $\mathrm{~m}^{2}$ |
| $\mathrm{C}_{\mathrm{d}}$ | $=$ | 0.62 | - |
| t | $=$ | 30 s |  |
| Adiabatic |  |  |  | Adiabatic

$$
\begin{array}{llrl}
\mathrm{q}_{\mathrm{s}} & = & 4.65 \mathrm{~kg} / \mathrm{s} \\
\mathrm{P} & = & 12.417 \mathrm{bar} \\
\mathrm{~T} & = & 193 \mathrm{~K}
\end{array}
$$

Procedure

The number of time-steps $N_{t}$ has been set to equal 50 .
By equation (2.22) the mass flow rate $\mathrm{q}_{\mathrm{s}, \mathrm{i}}$ at the beginning of every time-step can be calculated. Because the pressure in the vessel is much larger than about $1.9 \cdot \mathrm{P}_{\mathrm{a}}$, the gas flow is critical initially.
$U$ sing the equations (2.14) and (2.20) subsequently and assuming perfect gas behaviour ( $z=1$ ), the variation of the vessel conditions ( $P_{i}, T_{i}, \rho_{i}$ ) due to the outflow can be calculated.

In table 2.3 the variations in the physical quantities have been given.

Table 2.3

| Time after rupture [s] | Flowrate <br> [kg/s] | Hole pressure [bar] | Gas temperature $\left[{ }^{\circ} \mathrm{C}\right]$ | Total mass release [kg] |
| :---: | :---: | :---: | :---: | :---: |
| 0.00 | 15.31 | 50.000 | 15.00 | 0,00 |
| 0.60 | 14.92 | 48.494 | 12.47 | 9.07 |
| 1.20 | 14.53 | 47.037 | 9.97 | 17.90 |
| 1.35 | 14.44 | 46.681 | 9.35 | 20.07 |
| 1.50 | 14.34 | 46.328 | 8.74 | 22.23 |
| 1.80 | 14.16 | 45.630 | 7.51 | 26.51 |
| 2.10 | 13.98 | 44.945 | 6.29 | 30.73 |
| 2.40 | 13.80 | 44.271 | 5.08 | 34.89 |
| 2.70 | 13.62 | 43.609 | 3.87 | 39.00 |
| 3.00 | 13.45 | 42.959 | 2.67 | 43.06 |
| 3.30 | 13.27 | 42.319 | 1.48 | 47.07 |
| 3.60 | 13.10 | 41.690 | 0.30 | 51.03 |
| 3.90 | 12.94 | 41.072 | -0.87 | 54.93 |
| 4.20 | 12.77 | 40.464 | -2.04 | 58.79 |
| 4.50 | 12.61 | 39.867 | -3.20 | 62.60 |
| 4.80 | 12.45 | 39.280 | -4.35 | 66.36 |
| 5.10 | 12.30 | 38.702 | -5.49 | 70.07 |
| 5.40 | 12.14 | 38.135 | -6.63 | 73.74 |
| 5.70 | 11.99 | 37.576 | -7.76 | 77.36 |
| 6.00 | 11.84 | 37.027 | -8.88 | 80.93 |
| 6.30 | 11.69 | 36.488 | -10.00 | 84.46 |
| 6.60 | 11.55 | 35.957 | -11.11 | 87.95 |
| 6.90 | 11.40 | 35.435 | -12.21 | 91.39 |
| 7.20 | 11.26 | 34.922 | -13.30 | 94.79 |
| 7.50 | 11.12 | 34.417 | -14.39 | 98.14 |
| 7.80 | 10.98 | 33.920 | -15.47 | 101.46 |
| 8.10 | 10.85 | 33.432 | -16.55 | 104.73 |
| 8.40 | 10.72 | 32.952 | -17.61 | 107.97 |
| 8.70 | 10.58 | 32.479 | -18.67 | 111.16 |
| 9.00 | 10.45 | 32.015 | -19.73 | 114.32 |
| 9.30 | 10.33 | 31.558 | -20.78 | 117.43 |
| 9.60 | 10.20 | 31.108 | -21.82 | 120.51 |
| 9.90 | 10.08 | 30.666 | -22.85 | 123.55 |
| 10.20 | 9.95 | 30.230 | -23.88 | 126.56 |
| 10.50 | 9.83 | 29.802 | -24.90 | 129.53 |
| 10.80 | 9.71 | 29.381 | -25.92 | 132.46 |
| 11.10 | 9.60 | 28.967 | -26.93 | 135.35 |
| 11.40 | 9.48 | 28.559 | -27.93 | 138.22 |
| 11.70 | 9.37 | 28.158 | -28.93 | 141.04 |
| 12.00 | 9.25 | 27.763 | -29.92 | 143.83 |
| 12.30 | 9.14 | 27.375 | -30.90 | 146.59 |
| 12.60 | 9.03 | 26.993 | -31.88 | 149.32 |
| 12.90 | 8.92 | 26.617 | -32.86 | 152.01 |

CPR 14E
C hapter 2 of the ' $Y$ ellow B ook'

| Time after rupture [s] | Flowrate [kg/s] | Hole pressure [bar] | Gas temperature $\left[{ }^{\circ} \mathrm{C}\right]$ | Total mass release [kg] |
| :---: | :---: | :---: | :---: | :---: |
| 13.20 | 8.82 | 26.247 | -33.82 | 154.68 |
| 13.50 | 8.71 | 25.882 | -34.78 | 157.31 |
| 13.80 | 8.61 | 25.524 | -35.74 | 159.90 |
| 14.10 | 8.51 | 25.171 | -36.69 | 162.47 |
| 14.40 | 8.41 | 24.824 | -37.63 | 165.01 |
| 14.70 | 8.31 | 24.482 | -38.57 | 167.52 |
| 15.00 | 8.21 | 24.146 | -39.51 | 169.99 |
| 15.30 | 8.11 | 23.815 | -40.43 | 172.44 |
| 15.60 | 8.02 | 23.489 | -41.35 | 174.86 |
| 15.90 | 7.93 | 23.168 | -42.27 | 177.25 |
| 16.20 | 7.83 | 22.852 | -43.18 | 179.62 |
| 16.50 | 7.74 | 22.541 | -44.09 | 181.95 |
| 16.80 | 7.65 | 22.235 | -44.99 | 184.26 |
| 17.10 | 7.56 | 21.934 | -45.88 | 186.55 |
| 17.40 | 7.47 | 21.637 | -46.77 | 188.80 |
| 17.70 | 7.39 | 21.345 | -47.66 | 191.03 |
| 18.00 | 7.30 | 21.057 | -48.54 | 193.23 |
| 18.30 | 7.22 | 20.774 | -49.41 | 195.41 |
| 18.60 | 7.14 | 20.495 | -50.28 | 197.57 |
| 18.90 | 7.05 | 20.221 | -51.14 | 199.69 |
| 19.20 | 6.97 | 19.951 | -52.00 | 201.80 |
| 19.50 | 6.89 | 19.684 | -52.86 | 203.88 |
| 19.80 | 6.81 | 19.422 | -53.71 | 205.93 |
| 20.10 | 6.74 | 19.164 | -54.55 | 207.97 |
| 20.40 | 6.66 | 18.910 | -55.39 | 209.98 |
| 20.70 | 6.59 | 18.659 | -56.22 | 211.96 |
| 21.00 | 6.51 | 18.413 | -57.05 | 213.93 |
| 21.30 | 6.44 | 18.170 | -57.88 | 215.87 |
| 21.60 | 6.36 | 17.931 | -58.70 | 217.79 |
| 21.90 | 6.29 | 17.695 | -59.51 | 219.69 |
| 22.20 | 6.22 | 17.463 | -60.33 | 221.57 |
| 22.50 | 6.15 | 17.234 | -61.13 | 223.42 |
| 22.80 | 6.08 | 17.009 | -61.93 | 225.26 |
| 23.10 | 6.02 | 16.787 | -62.73 | 227.07 |
| 23.40 | 5.95 | 16.569 | -63.52 | 228.87 |
| 23.70 | 5.88 | 16.354 | -64.31 | 230.64 |
| 24.00 | 5.82 | 16.141 | -65.10 | 232.40 |
| 24.30 | 5.75 | 15.932 | -65.88 | 234.13 |
| 24.60 | 5.69 | 15.727 | -66.65 | 235.85 |
| 24.90 | 5.63 | 15.524 | -67.42 | 237.54 |
| 25.20 | 5.56 | 15.324 | -68.19 | 239.22 |
| 25.50 | 5.50 | 15.127 | -68.95 | 240.88 |
| 25.80 | 5.44 | 14.933 | -69.71 | 242.52 |
| 26.10 | 5.38 | 14.742 | -70.46 | 244.15 |
| 26.40 | 5.32 | 14.553 | -71.21 | 245.75 |
| 26.70 | 5.27 | 14.368 | -71.96 | 247.34 |
| 27.00 | 5.21 | 14.185 | -72.70 | 248.91 |
| 27.30 | 5.15 | 14.005 | -73.43 | 250.47 |
| 27.60 | 5.10 | 13.827 | -74.17 | 252.00 |
| 27.90 | 5.04 | 13.652 | -74.90 | 253.52 |
| 28.20 | 4.99 | 13.479 | -75.62 | 255.03 |
| 28.50 | 4.93 | 13.309 | -76.34 | 256.52 |


| Time after rupture <br> [s] | Flowrate <br> [kg/s] | Hole pressure <br> [bar] | Gas temperature <br> [ ${ }^{\circ} \mathbf{C}$ ] | Total mass release <br> [kg] |
| :---: | :---: | :---: | :---: | :---: |
| 28.80 | 4.88 | 13.142 | -77.06 | 257.99 |
| 29.10 | 4.83 | 12.977 | -77.77 | 259.44 |
| 29.40 | 4.77 | 12.814 | -78.48 | 260.88 |
| 29.70 | 4.72 | 12.653 | -79.19 | 262.31 |
| 30.00 | 4.67 | 12.495 | -79.89 | 263.72 |

### 2.6.2.2 Carbon monoxide flow through hole in a pipe

The carbon monoxide outflow from a vessel through a pipe can be calculated by the model presented in paragraph 2.5.2.4.

Input:

| ssel volume | V | 100 | $0 \mathrm{~m}^{3}$ |
| :---: | :---: | :---: | :---: |
| C onstant pressure upstream | $\mathrm{P}_{0}$ | 15 | 5 bar |
| Initial temperature | T0 | 288.15 | 5 |
| Pipe length | $\mathrm{I}_{\mathrm{p}}$ | 1000 | m |
| Pipe diameter | $\mathrm{d}_{\mathrm{p}}$ | 0.254 | 4 |
| Internal wall roughness pipe | pr | 4.5-10-5 | 5 |
| Leak size | $\mathrm{d}_{\mathrm{h}}$ | 0.1 |  |
| (cross-sectional area hole | $\mathrm{A}_{\mathrm{h}}$ | 7.854.10-3 | $\mathrm{m}^{2}$ |
| D ischarge coefficient | $\mathrm{C}_{\text {d }}$ | 0.62 |  |

O utput:
$M$ ass flow at $t=0 \mathrm{~s} \quad \mathrm{q}_{\mathrm{s}}=15.615 \mathrm{~kg} / \mathrm{s}$

## Procedure

The four steps of the numerical procedure given in paragraph 2.5.2.4. have to be repeated several times. By using equation (2.30a) the number of iterations can be limited by a root finding procedure.

### 2.6.2.3 Non-stationary natural gas (methane) outflow from full bore ruptured MTH-1 pipeline

The non-stationary methane outflow can be calculated by the models presented in paragraph 2.5.2.5. In particular, the W ilson model for the outflow of gas from a full bore ruptured pipeline aims at predicting the mass flow rate as a function of time depending on the initial conditions.

Input:

Initial pressure
I nitial temperature
Initial density
Pipe length
Pipe diameter
Internal wall roughness pipe

| $\mathrm{P}_{0}$ | $=$ | 68.5 Bar |
| :--- | :--- | ---: | :--- |
| $\mathrm{T}_{0}$ | $=$ | 288.15 K |
| $\rho_{0}$ | $=$ | $45.8 \mathrm{~kg} / \mathrm{m}^{3}$ |
| $\mathrm{I}_{\mathrm{p}}$ | $=$ | $100 \cdot 10^{3} \mathrm{~m}$ |
| $\mathrm{~d}_{\mathrm{p}}$ | $=$ | 1.219 m |
| $\varepsilon$ | $=$ | $3.0 \cdot 10^{-5} \mathrm{~m}$ |

O utput:

| M ass flow at $t=$ | 0 s |  |  |
| ---: | :--- | ---: | :--- |
| 10 s | $\mathrm{q}_{\mathrm{s}}$ | $=$ | $13829 \mathrm{~kg} / \mathrm{s}$ |
| 20 s |  | $10335 \mathrm{~kg} / \mathrm{s}$ |  |
| 50 s |  | $7793 \mathrm{~kg} / \mathrm{s}$ |  |
| 100 s |  | $3623 \mathrm{~kg} / \mathrm{s}$ |  |
| 200 s |  | $=$ | $1543 \mathrm{~kg} / \mathrm{s}$ |
| 226 s |  | $=$ | $1017 \mathrm{~kg} / \mathrm{s}$ |
|  |  |  | $999 \mathrm{~kg} / \mathrm{s}$ |

The rather trivial steps in the set of equations in subsection 2.5.2.5 have to be followed.

1. The initial total mass $Q_{0}$ in the pipeline can be calculated by

$$
\begin{align*}
\mathrm{A}_{p} & =\pi / 4 \times \mathrm{d}_{\mathrm{p}}^{2}  \tag{2.36b}\\
& =1.167 \mathrm{~m}^{2} \\
\mathrm{Q}_{0} & =\rho_{0} \times \mathrm{A}_{\mathrm{p}} \times \mathrm{I}_{\mathrm{p}}  \tag{2.36a}\\
& =5.345 \times 10^{6} \mathrm{~kg}
\end{align*}
$$

2. The initial release rate $\mathrm{q}_{\mathrm{s}, 0}$ can be calculated by using the equations presented in paragraph 2.5.2.4

$$
\begin{equation*}
\mathrm{q}_{\mathrm{s}, 0}=13831 \mathrm{~kg} / \mathrm{s} \tag{2.37}
\end{equation*}
$$

F or outflow through the pipe opening in case of a full bore rupture it is advised to use the following value for the discharge coefficient

$$
\begin{equation*}
C_{d}=1.0 \tag{2.38}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \psi^{2}=1 \tag{2.24}
\end{equation*}
$$

3. The sonic velocity in the gas $u_{s}$, assuming adiabatic expansion ( $\Delta \mathrm{S}=0$ ), is given for perfect gases ( $z=1, \zeta=\gamma=1.31$ ) and for methane ( $\mu_{\mathrm{i}}=16 \cdot 10^{-3} \mathrm{~kg} / \mathrm{mol}$ ) by

$$
\begin{align*}
u_{\mathrm{s}} & =\sqrt{\left(\zeta \times \mathrm{z} \times \mathrm{R} \times \mathrm{T}_{0} / \mathrm{u}_{\mathrm{i}}\right)}  \tag{2.39c}\\
& =442.9 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

4. The $D$ arcy friction factor may be calculated by the $V$ on $K$ arman equation

$$
\begin{aligned}
f_{\mathrm{D}} \quad & =\left\{1 . /\left(-2 \times{ }^{10} \log \left(\varepsilon /\left(3.715 \times d_{p}\right)\right)\right)\right\}^{2} \\
& =9.32 \cdot 10^{-3}
\end{aligned}
$$

5. The time constant $t_{B}$ is given by

$$
\begin{align*}
t_{B} & =2 / 3 \times l_{p} / u_{s} \times \sqrt{\left(\gamma \times f_{D} \times l_{p} / d_{p}\right)}  \tag{2.41}\\
& =4764 \mathrm{sec}
\end{align*}
$$

6. Finally the mass flow rate $\mathrm{q}_{\mathrm{s}}(\mathrm{t})$ can be estimated at any time t after the full bore rupture of the pipeline by the Wilson model given by equation (2.35).

The mass flow rate for a full bore ruptured pipeline according to the model of Wilson at $\mathrm{t}=100$

$$
\begin{aligned}
\mathrm{q}_{\mathrm{S}}(\mathrm{t})= & \mathrm{q}_{\mathrm{s}, 0} /\left(1+\mathrm{Q}_{0} /\left(\mathrm{t}_{\mathrm{B}} \times \mathrm{q}_{\mathrm{s}, 0}\right)\right) \times\left\{\mathrm{Q}_{0} /\left(\mathrm{t}_{\mathrm{B}} \times \mathrm{q}_{\mathrm{S}, 0}\right) \times \exp \left(-\mathrm{t} / \mathrm{t}_{\mathrm{B}}\right)\right. \\
& \left.+\exp \left(-\mathrm{t} \times \mathrm{t}_{\mathrm{B}} \times\left(\mathrm{q}_{\mathrm{s}, 0} / \mathrm{Q}_{0}\right)^{2}\right)\right\} \\
= & 12793 \mathrm{~kg} / \mathrm{s} \times\left\{7.944 \cdot 10^{-2}+4.118 \cdot 10^{-2}\right\} \\
= & 1543 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

7. Check the validity of the model.

When the pressure wave travelling upstream reaches the opposite side of the pipeline the Wilson model is not valid any more. This occurs after

$$
\begin{align*}
\mathrm{t}_{\mathrm{E}} & =\mathrm{I}_{\mathrm{p}} / \mathrm{u}_{\mathrm{s}}  \tag{2.42}\\
& =1.00 \cdot 10^{5} \mathrm{~m} / 442.9 \mathrm{~m} / \mathrm{s} \\
& =225.8 \mathrm{~s}
\end{align*}
$$

### 2.6.2.4 Non-stationary gas flow in pipelines through a small hole

N on-stationary natural gas outflow can be calculated by the models presented in paragraph 2.5.2.5. In particular, the W eiss model for the outflow of gas from pipelines through punctures (small holes) aims at the estimation of the blowdown time.

Estimate the total blow-down time for 25 km of 1.0 metre pipeline which contains natural gas at 60 bar $\left(60 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$ at $0{ }^{\circ} \mathrm{C}$, with a wall roughness of $30 \mu \mathrm{~m}$, in which a crack has been created with an area of $0.1 \mathrm{~m}^{2}$ and a discharge coefficient of 0.62 .

Input:

| Initial temperature | T | $=$ | 273.15 K |  |
| :--- | :--- | :--- | ---: | :--- |
| Initial pressure | $\mathrm{P}_{\mathrm{i}}$ | $=$ | $60.0 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ |  |
| Length of pipeline | $\mathrm{I}_{\mathrm{p}}$ | $=$ | $25 \cdot 10^{3} \mathrm{~m}$ |  |
| Pipeline diameter | $\mathrm{d}_{\mathrm{p}}$ | $=$ | 1.0 m |  |
| Cross-sectional area crack | $\mathrm{A}_{\mathrm{h}}$ | $=$ | $0.1 \mathrm{~m}^{2}$ |  |
| D ischarge coefficient | $\mathrm{C}_{\mathrm{d}}$ | $=$ | 0.62 |  |
| Speed of sound | $\mathrm{u}_{\mathrm{s}}$ | $=$ | $431 \mathrm{~m} / \mathrm{s}$ |  |
| Poisson ratio at $0{ }^{\circ} \mathrm{C}$ methane | $\gamma$ | $=$ | 1.31 |  |
| Wall roughness | $\varepsilon$ | $=$ | $30 \cdot 10^{-6} \mathrm{~m}$ |  |
| A mbient pressure | $\mathrm{P}_{\mathrm{a}}$ | $=$ | $1.00 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ |  |
| M olecular weight methane | $\mu_{\mathrm{i}}$ | $=$ | $16 \cdot 10^{-3} \mathrm{~kg} / \mathrm{mol}$ |  |
|  |  |  |  |  |

Procedure

1. Estimate the time constant by equation (2.43)

$$
\begin{array}{rlrl}
\tau_{\mathrm{v}}=\mathrm{V} \times((\gamma+1) / 2)^{\mathrm{a}} /\left(\mathrm{u}_{\mathrm{s}} \times \mathrm{A}_{\mathrm{h}} \times \mathrm{C}_{\mathrm{d}}\right) & \text { note: } \mathrm{a} & =(\gamma+1) /(2(\gamma-1)) \\
& =1256 \mathrm{~s} & & =3.726
\end{array}
$$

$N$ ote

$$
\begin{aligned}
V & =\pi / 4 \times d_{p}^{2} \times I_{p} \\
& =19635 \mathrm{~m}^{3}
\end{aligned}
$$

and equation (2.26):

$$
\gamma=C_{p} / C_{v}
$$

2. C alculate the dimensionless sonic blow-down time by equation (2.46)
```
P
Pa}=1\operatorname{bar}(1\times1\mp@subsup{0}{}{5}\textrm{N}/\mp@subsup{\textrm{m}}{}{2}
```

So,

$$
\begin{aligned}
\tau_{c r} & =\ln \left(P_{\mathrm{i}} / P_{\mathrm{a}}\right)-(\gamma /(\gamma-1)) \times \ln ((\gamma+1) / 2) \\
& =3.485
\end{aligned}
$$

3. C alculate the dimensionless sub-sonic blow-down time by interpolating table 2.1

$$
\gamma=1.31
$$

So,

$$
\tau_{\mathrm{s}}=0.79
$$

4. Estimate the blow-down correction factor $\mathrm{C}_{\mathrm{b}}$ by equations (2.48), (2.49), (2.50) and (2.51)
$\begin{array}{ll}\mathrm{f}_{\mathrm{D}} & =0.0964 \text { (pipe wall roughness } \varepsilon=0.00003 \text { ) } \\ \mathrm{f}_{\mathrm{D}} \times \mathrm{I}_{\mathrm{p}} / \mathrm{d}_{p} & =241 \\ \mathrm{~A}_{p} & =\pi / 4 \times \mathrm{d}_{p}^{2} \\ & =0.785 \mathrm{~m}^{2} \\ \mathrm{~A}_{p} /\left(\mathrm{A}_{\mathrm{h}} \times \mathrm{C}_{d}\right) & =12.67\end{array}$
So,

$$
C_{b}=1.12
$$

5. C alculate the total blow-down time by equation (2.57)

$$
\begin{aligned}
\mathrm{t} & =\left(\tau_{\mathrm{cr}}+\tau_{\mathrm{s}}\right) \times \tau_{\mathrm{v}} \times \mathrm{C}_{\mathrm{b}} \\
& =(3.485+0.79) \times 1256 \times 1.12 \\
& =100 \text { minutes }
\end{aligned}
$$

### 2.6.3 Pressurised liquefied gases

### 2.6.3.1 Champagne release of propane through a hole in the side-wall of vertical cylinder

Input:

| Vessel volume | $\mathrm{V}_{\mathrm{v}}=$ | $4.7 \mathrm{~m}^{3}$ |  |
| :--- | :--- | :--- | :--- |
| Length cylinder | $\mathrm{I}_{\mathrm{v}}=$ | $2.0 \mathrm{~m}^{3}$ |  |
| Filling degree | $\phi$ | $=$ | $0.95 \mathrm{~m}^{3} / \mathrm{m}^{3}$ |
| Initial temperature | $\mathrm{T}_{0}=$ | 303.15 K |  |
| Leak size | $\mathrm{d}_{\mathrm{h}}=$ | 0.1 m |  |
| Leak height | $\mathrm{h}_{\mathrm{h}}=$ | 1.95 m |  |
| Discharge coefficient | $\mathrm{C}_{\mathrm{d}}=$ | 0.62 m |  |

O utput:
Initial void fraction expanded boiling liquid
Initial height expanded boiling liquid
I nitial height of liquid level

| $\Phi_{\mathrm{V}}$ | $=$ | 0.101 | $\mathrm{~m}^{3} / \mathrm{m}^{3}$ |
| :--- | :--- | ---: | :--- |
| $\mathrm{~h}_{\mathrm{Le}, 0}$ | $=$ | 2.11 | m |
| $\mathrm{~h}_{\mathrm{L}, 0}$ | $=$ | 1.90 | m |
| $\mathrm{q}_{\mathrm{s}}$ | $=$ | 127.25 | $\mathrm{~kg} / \mathrm{s}$ |
| $\Phi_{\mathrm{m}}$ | $=$ | 0.02 | $\mathrm{~kg} / \mathrm{kg}$ |
| $\mathrm{P}_{\mathrm{V}}^{\circ}$ | $=$ | $8.261 \cdot 10^{5}$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| T | $=$ | 292.71 | K |
| $\mathrm{Q}_{\mathrm{L}}$ | $=$ | 1526.38 | kg |
| $\mathrm{Q}_{\mathrm{V}}$ | $=$ | 24.88 | kg |
| $\phi$ | $=$ | 0.65 | $\mathrm{~m}^{3} / \mathrm{m}^{3}$ |
| Q | $=$ | $643.32 \mathrm{~kg}^{2}$ |  |

## Procedure

While it is assumed that the hole is in the side-wall of the cylinder, e,g. the equations of M ayinger are applied to estimate the rise of the liquid level, i.e. equations (2.58) and equations (2.66) to (2.69).

In the first 0.32 seconds the initial vapour blow-out takes place.
The number of time-steps $N_{t}$ has been set equal to 50 .
This means that the duration of the time-step is: $\Delta t=4.68 / 50 \mathrm{~s}=0.0936 \mathrm{~s}$.

While the liquid has risen above the leak just after initial vapour blow-out, champagne flow will occur. The mass flow rate $\mathrm{q}_{\mathrm{s}, \mathrm{i}}$ at the beginning of every time-step will be calculated by equations (2.91) and (2.92).

By applying equations (2.76), (2.83) to (2.88), and (2.79) or (2.79a), the conditions at the end of every time-step $\Delta t$ can be calculated.

In table 2.4 the variations in the physical quantities have been given.

Remarks

In theory the expanded boiling liquid level has decreased below the leak, at 5 seconds after the start of the release:

Void fraction expanded boiling liquid at $t=5 \mathrm{~s} \quad \Phi_{\mathrm{v}}=0.0934 \mathrm{~m}^{3} / \mathrm{m}^{3}$ $H$ eight expanded boiling liquid at $t=5 \mathrm{~s} \quad \mathrm{~h}_{\mathrm{Le}}=1.10 \mathrm{~m}$

However, 5 seconds is a fairy short time in which it may not be expected that disengagement of the two-phase flow has already taken place.

Table 2.4

| (s) | $\begin{gathered} 9 \mathrm{~s} \\ (\mathrm{~kg} / \mathrm{s}) \end{gathered}$ | T <br> (K) | $\Phi_{\mathrm{m}, \mathrm{e}}$ <br> (kg/kg) | $\begin{gathered} \phi \\ \left(\mathrm{m}^{3} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} Q_{L} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{aligned} & Q_{V} \\ & (k g) \end{aligned}$ | $\begin{aligned} & P_{v}{ }^{\circ}(\mathrm{T}) \\ & \left(\mathrm{N} / \mathrm{m}^{2}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 13.92 | 303.15 | 0.0003 | 0.9500 | 2168.94 | 4.29 | $10.79 \cdot 10^{5}$ |
| 0.32 | 131.60 | 294.55 | 0.0017 | 0.9223 | 2165.26 | 3.68 | $8.67 \cdot 10^{5}$ |
| 0.41 | 131.27 | 294.40 | 0.0017 | 0.9155 | 2150.47 | 6.18 | $8.64 \cdot 10^{5}$ |
| 0.51 | 131.00 | 294.37 | 0.0029 | 0.9101 | 2137.81 | 6.58 | $8.63 \cdot 10^{5}$ |
| 0.60 | 130.89 | 294.35 | 0.0031 | 0.9046 | 2125.16 | 6.97 | $8.62 \cdot 10^{5}$ |
| 0.69 | 130.84 | 294.32 | 0.0033 | 0.8992 | 2112.51 | 7.37 | $8.62 \cdot 10^{5}$ |
| 0.79 | 130.78 | 294.29 | 0.0035 | 0.8937 | 2099.88 | 7.76 | $8.61 \cdot 10^{5}$ |
| 0.88 | 130.72 | 294.27 | 0.0037 | 0.8883 | 2087.24 | 8.15 | $8.61 \cdot 10^{5}$ |
| 0.97 | 130.67 | 294.24 | 0.0039 | 0.8828 | 2074.62 | 8.55 | $8.60 \cdot 10^{5}$ |
| 1.07 | 130.61 | 294.21 | 0.0041 | 0.8774 | 2062.00 | 8.94 | $8.59 \cdot 10^{5}$ |
| 1.16 | 130.55 | 294.19 | 0.0043 | 0.8719 | 2049.38 | 9.33 | $8.59 \cdot 10^{5}$ |
| 1.25 | 130.49 | 294.16 | 0.0045 | 0.8665 | 2036.78 | 9.72 | $8.58 \cdot 10^{5}$ |
| 1.35 | 130.43 | 294.13 | 0.0047 | 0.8611 | 2024.18 | 10.11 | $8.58 \cdot 10^{5}$ |
| 1.44 | 130.37 | 294.10 | 0.0050 | 0.8556 | 2011.58 | 10.49 | $8.57 \cdot 10^{5}$ |
| 1.54 | 130.31 | 294.08 | 0.0052 | 0.8502 | 1998.99 | 10.88 | $8.56 \cdot 10^{5}$ |
| 1.63 | 130.24 | 294.05 | 0.0054 | 0.8448 | 1986.41 | 11.27 | $8.56 \cdot 10^{5}$ |
| 1.72 | 130.18 | 294.02 | 0.0056 | 0.8393 | 1973.84 | 11.65 | $8.55 \cdot 10^{5}$ |
| 1.82 | 130.12 | 293.99 | 0.0059 | 0.8339 | 1961.27 | 12.04 | $8.54 \cdot 10^{5}$ |
| 1.91 | 130.05 | 293.96 | 0.0061 | 0.8285 | 1948.71 | 12.42 | $8.54 \cdot 10^{5}$ |
| 2.00 | 129.99 | 293.93 | 0.0063 | 0.8231 | 1936.16 | 12.81 | $8.53 \cdot 10^{5}$ |
| 2.10 | 129.92 | 293.90 | 0.0066 | 0.8177 | 1923.61 | 13.19 | $8.52 \cdot 10^{5}$ |
| 2.19 | 129.86 | 293.87 | 0.0068 | 0.8123 | 1911.07 | 13.57 | $8.52 \cdot 10^{5}$ |
| 2.28 | 129.79 | 293.84 | 0.0071 | 0.8069 | 1898.54 | 13.95 | $8.51 \cdot 10^{5}$ |
| 2.38 | 129.72 | 293.80 | 0.0073 | 0.8015 | 1886.01 | 14.33 | $8.50 \cdot 10^{5}$ |
| 2.47 | 129.65 | 293.77 | 0.0075 | 0.7961 | 1873.49 | 14.71 | $8.50 \cdot 10^{5}$ |
| 2.57 | 129.58 | 293.74 | 0.0078 | 0.7907 | 1860.98 | 15.09 | $8.49 \cdot 10^{5}$ |
| 2.66 | 129.51 | 293.71 | 0.0080 | 0.7853 | 1848.48 | 15.46 | $8.48 \cdot 10^{5}$ |
| 2.75 | 129.44 | 293.68 | 0.0083 | 0.7799 | 1835.98 | 15.84 | $8.47 \cdot 10^{5}$ |
| 2.85 | 129.37 | 293.64 | 0.0086 | 0.7745 | 1823.50 | 16.21 | $8.47 \cdot 10^{5}$ |
| 2.94 | 129.30 | 293.61 | 0.0088 | 0.7691 | 1811.02 | 16.59 | $8.46 \cdot 10^{5}$ |
| 3.03 | 129.22 | 293.57 | 0.0091 | 0.7638 | 1798.55 | 16.96 | $8.45 \cdot 10^{5}$ |
| 3.13 | 129.15 | 293.54 | 0.0093 | 0.7584 | 1786.08 | 17.33 | $8.44 \cdot 10^{5}$ |
| 3.22 | 129.07 | 293.51 | 0.0096 | 0.7530 | 1773.63 | 17.70 | $8.44 \cdot 10^{5}$ |
| 3.31 | 129.00 | 293.47 | 0.0099 | 0.7477 | 1761.18 | 18.07 | $8.43 \cdot 10^{5}$ |
| 3.41 | 128.92 | 293.43 | 0.0102 | 0.7423 | 1748.74 | 18.44 | $8.42 \cdot 10^{5}$ |
| 3.50 | 128.84 | 293.40 | 0.0104 | 0.7369 | 1736.31 | 18.81 | $8.41 \cdot 10^{5}$ |
| 3.60 | 128.76 | 293.36 | 0.0107 | 0.7316 | 1723.89 | 19.18 | $8.40 \cdot 10^{5}$ |
| 3.69 | 128.68 | 293.32 | 0.0110 | 0.7262 | 1711.47 | 19.54 | $8.40 \cdot 10^{5}$ |
| 3.78 | 128.60 | 293.29 | 0.0113 | 0.7209 | 1699.07 | 19.91 | $8.39 \cdot 10^{5}$ |
| 3.88 | 128.52 | 293.25 | 0.0116 | 0.7155 | 1686.67 | 20.27 | $8.38 \cdot 10^{5}$ |
| 3.97 | 128.43 | 293.21 | 0.0119 | 0.7102 | 1674.28 | 20.63 | $8.37 \cdot 10^{5}$ |
| 4.06 | 128.35 | 293.17 | 0.0122 | 0.7049 | 1661.91 | 20.99 | $8.36 \cdot 10^{5}$ |
| 4.16 | 128.26 | 293.13 | 0.0125 | 0.6995 | 1649.54 | 21.35 | $8.35 \cdot 10^{5}$ |
| 4.25 | 128.18 | 293.09 | 0.0128 | 0.6942 | 1637.18 | 21.71 | $8.35 \cdot 10^{5}$ |
| 4.34 | 128.09 | 293.05 | 0.0131 | 0.6889 | 1624.83 | 22.07 | $8.34 \cdot 10^{5}$ |
| 4.44 | 128.00 | 293.01 | 0.0134 | 0.6836 | 1612.49 | 22.42 | $8.33 \cdot 10^{5}$ |
| 4.53 | 127.91 | 292.97 | 0.0137 | 0.6783 | 1600.15 | 22.78 | $8.32 \cdot 10^{5}$ |
| 4.63 | 127.82 | 292.93 | 0.0140 | 0.6729 | 1587.83 | 23.13 | $8.31 \cdot 10^{5}$ |
| 4.72 | 127.73 | 292.88 | 0.0144 | 0.6676 | 1575.52 | 23.48 | $8.30 \cdot 10^{5}$ |
| 4.81 | 127.64 | 292.84 | 0.0147 | 0.6623 | 1563.22 | 23.83 | $8.29 \cdot 10^{5}$ |
| 4.91 | 127.54 | 292.80 | 0.0150 | 0.6570 | 1550.93 | 24.18 | $8.28 \cdot 10^{5}$ |
| 5.00 | 127.45 | 292.75 | 0.0154 | 0.6517 | 1538.65 | 24.53 | $8.27 \cdot 10^{5}$ |

### 26.3.2 Outflow quality when top venting propane from vertical vessel through a hole

The outflow quality when top venting pressure liquefied propane from vertical vessel can be calculated by DIERS' method presented in paragraph 2.5.3.2.

Input

| Filling degree vessel | $\phi$ | $=$ | $0.5 \mathrm{~m}^{3} / \mathrm{m}^{3}$ |
| :--- | :--- | :--- | ---: | :--- |
| Liquid surface | $\mathrm{A}_{\mathrm{L}}=$ | $10 \mathrm{~m}^{2}$ |  |
| Leak size | $\mathrm{d}_{\mathrm{h}}$ | $=$ | 0.1 m |
| Discharge coefficient | $\mathrm{C}_{\mathrm{d}}$ | $=$ | 0.62 |
|  |  |  |  |
|  | T | $=$ | 288.15 K |
| Vessel temperature | $\mathrm{P}_{\mathrm{v}}{ }^{\circ}=$ | $7.309 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ |  |
| Vapour pressure | $\sigma$ | $=0.8155 \cdot 10^{-2}$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| Surface tension | $\rho_{\mathrm{L}}$ | $=$ | $509.3 \mathrm{~kg} / \mathrm{m}^{3}$ |
| Liquid density | $\rho_{\mathrm{V}}$ | $=$ | $13.42 \mathrm{~kg} / \mathrm{m}^{3}$ |
| Vapour density at $\mathrm{P}=\mathrm{P}_{\mathrm{v}}{ }^{\circ}$ | $\gamma$ | $=$ | 1.13 |
| Poison coefficient | $\mathrm{P}_{\mathrm{a}}$ | $=$ | $101325 \mathrm{~N} / \mathrm{m}^{2}$ |

O utput

Actual outflow rate
Exit quality

$$
\begin{array}{llrl}
\mathrm{q}_{\mathrm{s}, 2} & = & 50.01 & \mathrm{~kg} / \mathrm{s} \\
\phi_{\mathrm{m}, \mathrm{e}, 2} & = & 0.1378 & \mathrm{~kg} / \mathrm{kg}
\end{array}
$$

Procedure

1. The vapour outflow rate $\mathrm{q}_{\mathrm{s}}$ is estimated by using the equation (2.22) for an orifice

$$
\begin{align*}
q_{s, 1} & =C_{d} \times A_{h} \times \psi \times \sqrt{\left(\rho_{0} \times P_{0} \times \gamma \times(2 /(\gamma+1))^{(\gamma+1) /(\gamma-1)}\right)}  \tag{2.22}\\
& =9.68 \mathrm{~kg} / \mathrm{s}
\end{align*}
$$

2. C alculate the superficial vapour velocity inside the vessel

$$
\begin{align*}
u_{v} & =q_{s, 1} /\left(\rho_{v} \times A_{L}\right)  \tag{2.58}\\
& =0.0721 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

3. C alculate the bubble rise velocity, for bubbly flow

$$
\begin{align*}
u_{\mathrm{b}} & =1.18 \times\left(\mathrm{g} \times \sigma \times\left(\rho_{\mathrm{L}}-\rho_{\mathrm{V}}\right)\right)^{0.25} / \sqrt{\rho_{\mathrm{L}}}  \tag{2.59}\\
& =0.131 \mathrm{~m} / \mathrm{s} \tag{2.60a}
\end{align*}
$$

and for churn flow

$$
\begin{align*}
\mathrm{u}_{\mathrm{b}} & =1.53 \times\left(\mathrm{g} \times \sigma \times\left(\rho_{\mathrm{L}}-\rho_{\mathrm{V}}\right)\right)^{0.25} / \sqrt{\rho_{\mathrm{L}}} \\
& =0.170 \mathrm{~m} / \mathrm{s} \tag{2.60b}
\end{align*}
$$

4. The dimensionless superficial vapour velocity is given by

$$
\begin{equation*}
u_{v R}=u_{v} / u_{b} \tag{2.61}
\end{equation*}
$$

So, for bubbly flow

$$
\mathrm{u}_{\mathrm{vR}}=0.549 \mathrm{~m} / \mathrm{s}
$$

and for churn flow

$$
u_{\mathrm{VR}}=0.424 \mathrm{~m} / \mathrm{s}
$$

5. C alculate the characteristic dimensionless superficial velocity $u_{V R}$ for both typical two-phase flow types.

The void fraction in the vessel can be calculated by

$$
\begin{align*}
& \Phi_{\mathrm{v}}=1-\phi  \tag{2.63}\\
& =0.5 \mathrm{~m}^{3} / \mathrm{m}^{3} \\
& u_{\mathrm{VR}, \mathrm{bf}}=\Phi_{\mathrm{v}} \times\left(1-\Phi_{\mathrm{v}}\right)^{2} /\left(\left(1-\Phi_{\mathrm{v}}^{3}\right) \times\left(1-1.2 \times \Phi_{\mathrm{v}}\right)\right)  \tag{2.62a,b}\\
& =0.357 \mathrm{~m} / \mathrm{s} \\
& u_{V R, C f}=2 \times \Phi_{\mathrm{v}} /\left(1-1.5 \times \Phi_{\mathrm{v}}\right)  \tag{2.62c,d}\\
& =4.00 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

6. Determination whether two-phase flow is apparent inside the vessel

Application the of criteria

$$
\begin{align*}
& \mathrm{u}_{\mathrm{VR}}<\mathrm{u}_{\mathrm{VR}, \mathrm{cf}} \rightarrow \text { no churn flow }  \tag{2.64c}\\
& \mathrm{u}_{\mathrm{VR}} \geq \mathrm{u}_{\mathrm{VR}, \mathrm{bf}} \rightarrow \text { two-phase bubbly flow } \tag{2.64b}
\end{align*}
$$

7. The exit quality and outflow rate can be calculated by solving the set of equations (2.65), (2.65a) and (2.65b). The iteration can be carried out by a root finding procedure.

F or two-phase flow through a hole, the outflow rate can be calculated by

$$
\begin{equation*}
q_{s, 2}=C_{d} \times A \times \sqrt{\left(2\left(P_{0}-P_{a}\right) \times \rho_{\mathrm{av}}\right)} \tag{2.91}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{\mathrm{av}}=1 /\left(\Phi_{\mathrm{m}} / \rho_{\mathrm{V}}+\left(1-\Phi_{\mathrm{m}}\right) / \rho_{\mathrm{L}}\right) \tag{2.92}
\end{equation*}
$$

The actual outflow rate $\mathrm{q}_{\mathrm{s}, 2}$ is given above at "O utput".

### 2.6.3.3 Stationary two-phase propane flow through full bore ruptured pipe

The stationary outflow of two-phase propane flow from a pipeline can be calculated by the TPDIS model presented in paragraph 2.5.3.5.

Input:

Pipe length
Pipe diameter
Wall roughness pipe
C onstant up-stream temperature
D ischarge coefficient

| $\mathrm{I}_{\mathrm{p}}$ | $=$ | 100.0 | m |
| :--- | :--- | ---: | :--- |
| $\mathrm{~d}_{\mathrm{p}}$ | $=$ | 0.1 | m |
| $\varepsilon$ | $=$ | $4.5 \cdot 10^{-5}$ | m |
| $\mathrm{~T}_{0}$ | $=$ | 288.15 | K |
| $\mathrm{C}_{\mathrm{d}}$ | $=$ | 1.0 |  |

O utput:
M ass flow rate
Vapour mass fraction (quality)
Exit temperature
C onstant up-stream pressure

| $\mathrm{q}_{\mathrm{s}}$ | $=$ | 16.35 | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | ---: | :--- |
| $\Phi_{\mathrm{m}, \mathrm{e}}$ | $=$ | 0.0621 | $\mathrm{~kg} / \mathrm{kg}$ |
| $\mathrm{T}_{\mathrm{e}}$ | $=$ | 279.4 | K |
| $\mathrm{P}_{\mathrm{v}}{ }^{\circ}\left(\mathrm{T}_{0}\right)$ | $=$ | $7.309 \cdot 10^{5}$ | $\mathrm{~N} / \mathrm{m}^{2}$ |

## Procedure

The critical mass flow rate $\mathrm{q}_{\mathrm{s}}\left(\mathrm{P}_{\mathrm{e}}\right)$ at the pipe outlet may be computed by numerically maximising the right-hand side of equation (2.107) in terms of outlet pressure $\mathrm{P}_{\mathrm{e}}$. The specific volume of the liquid is computed by equations (2.110) and (2.112).
The friction is computed by equation (2.99), using the mass flow rate estimated in the previous step.
$N$ ote that $S_{L}\left(P_{0}\right)=4.39 \cdot 10^{3} \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$, and the values for the following parameters: $C_{A r}=0.5, C_{B r}=0.5$.

### 26.3.4 Non-stationary two-phase flow in pipelines

The modelling of the two-phase flow through pipelines aims at predicting the mass flow rate as a function of time depending on the initial conditions.

Transient release from full bore ruptured pipelines
N on-stationary two-phase outflow through pipelines can be calculated by the models presented in paragraph 2.5.3.6.
M orrow's model can be used to estimate the mass flow rate caused by a full bore ruptured propane-pipeline as a function of time.

Problem

A pipeline filled with propane is ruptured in the middle. C alculate the transient mass flow rate as a function of time after the rupture.

Input:

| Initial pipeline pressure | $\mathrm{P}_{0}$ | $=$ | $60 \cdot 10^{5}$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| :--- | :--- | :--- | ---: | :--- |
| Initial temperature | $\mathrm{T}_{0}$ | $=$ | 288.15 | K |
| Pipe length | $\mathrm{L}_{\mathrm{p}}$ | $=$ | $50 \cdot 10^{3}$ | m |
| Pipe diameter | $\mathrm{d}_{\mathrm{p}}$ | $=$ | 0.254 | m |
| (cross-sectional area | $\mathrm{A}_{\mathrm{p}}$ | $=$ | 0.05067 | $\left.\mathrm{~m}^{2}\right)$ |
| Sound speed in propane liquid | $\mathrm{u}_{\mathrm{s}, \mathrm{L}}$ | $=$ | 864.9 | $\mathrm{~m} / \mathrm{s}$ |
|  |  |  |  |  |
| O utput: |  |  |  |  |
|  |  |  |  |  |
| M ass flow at 0 sec | $\mathrm{q}_{\mathrm{s}, \mathrm{e}}$ | $=$ | 672.3 | $\mathrm{~kg} / \mathrm{s}$ |
| Quality at 0 sec | $\Phi_{\mathrm{m}}$ | $=$ | 0.195 | $\mathrm{~kg} / \mathrm{kg}$ |
|  |  |  |  |  |
| M ass flow at 4990 sec | $\mathrm{q}_{\mathrm{s}, \mathrm{e}}$ | $=$ | 70.37 | $\mathrm{~kg} / \mathrm{s}$ |
| Q uality at 4990 sec | $\Phi_{\mathrm{m}}$ | $=$ | 0.298 | $\mathrm{~kg} / \mathrm{kg}$ |

## Procedure

G uillotine breakage is assumed. Because the rupture is in middle of the pipeline, the effective length of the pipeline is set at $L_{p} / 2=25000 \mathrm{~m}$. T he mass flow rate $\mathrm{q}_{\mathrm{s}, \mathrm{e}}$ and the mass removed $\mathrm{Q}_{\mathrm{yi}, 2}$ estimated by M orrow's model are multiplied by a factor 2. The pumping rate is neglected.

The polynomials fitted by M orrow are used in the calculations. The friction factor is taken constant: $\mathrm{f}_{\mathrm{F}}=0.003$, and the ambient pressure $\mathrm{P}_{\mathrm{a}}$ is set equal to 1 atmosphere (101325 N/m²).

The initial pressure in the pipeline $P_{0}$ is high, hence the initial mass flow rate based on sonic liquid outflow is used (equation 2.122). F or sound speed in propane liquid at 60 bars overpressure, a more accurate estimation is used here [N IST ]. T he scheme defined by equations (2.115-2.121) is used to estimate the initial mass flow rate ( $\mathrm{t}=0$ ), because the initial exit pressure is unknown.

F or the estimation of the mass flow rate $q_{s, e, 2}$ as a function of time, step 1 to step 8 are repeated, until the distance to the interface $\Delta l_{i}$ exceeds the half length of the pipe line.

In table 2.5 the variation in time of some physical quantities are presented.

Table 2.5

| $\mathbf{i}$ <br> $[-]$ | $\mathbf{t}_{\mathbf{i}}$ <br> [s] | $\mathbf{q}_{\mathbf{s}}$ <br> [kg/s] | $\mathbf{q u a l i t y}$ <br> [kg/kg] | $\Delta \mathbf{l}_{\mathbf{i}}$ <br> [m] | $\mathbf{Q}_{\mathbf{i y}, \mathbf{2}}$ <br> $[\mathbf{k g}]$ | $\mathbf{P}_{\mathbf{e}}$ <br> [bar] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.00 | 670.23 | 15.127 | 0.00 | 0 | 2.7994 |
| 1 | 7.84 | 636.72 | 20.004 | 141.72 | 2561 | 2.7126 |
| 2 | 8.75 | 604.88 | 20.488 | 155.24 | 2843 | 2.627 |
| 3 | 9.80 | 574.64 | 20.972 | 170.00 | 3155 | 2.5427 |
| 4 | 11.03 | 545.90 | 21.457 | 186.10 | 3498 | 2.4599 |
| 5 | 12.45 | 518.61 | 21.941 | 203.68 | 3876 | 2.3785 |
| 6 | 14.09 | 492.68 | 22.425 | 222.87 | 4291 | 2.2988 |
| 7 | 16.00 | 468.04 | 22.908 | 243.82 | 4749 | 2.2206 |
| 8 | 18.21 | 444.64 | 23.389 | 266.69 | 5253 | 2.1442 |
| 9 | 20.76 | 422.41 | 23.870 | 291.67 | 5807 | 2.0695 |
| 10 | 23.73 | 401.29 | 24.348 | 318.96 | 6417 | 1.9965 |
| 11 | 27.16 | 381.23 | 24.824 | 348.77 | 7088 | 1.9253 |
| 12 | 31.13 | 362.16 | 25.299 | 381.35 | 7827 | 1.856 |
| 13 | 35.73 | 344.06 | 25.770 | 416.96 | 8639 | 1.7884 |
| 14 | 41.06 | 326.85 | 26.239 | 455.89 | 9532 | 1.7227 |
| 15 | 47.23 | 310.51 | 26.706 | 498.46 | 10515 | 1.6588 |
| 16 | 54.37 | 294.98 | 27.169 | 545.01 | 11597 | 1.5967 |
| 17 | 62.65 | 280.24 | 27.630 | 595.94 | 12787 | 1.5364 |
| 18 | 72.23 | 266.22 | 28.087 | 651.66 | 14096 | 1.4779 |
| 19 | 83.33 | 252.91 | 28.541 | 712.65 | 15537 | 1.4212 |
| 20 | 96.19 | 240.27 | 28.991 | 779.42 | 17122 | 1.3662 |
| 21 | 111.09 | 228.25 | 29.438 | 852.52 | 18867 | 1.313 |
| 22 | 128.35 | 216.84 | 29.882 | 932.58 | 20788 | 1.2615 |
| 23 | 148.35 | 206.00 | 30.322 | 1020.30 | 22902 | 1.2117 |
| 24 | 171.52 | 195.70 | 30.758 | 1116.40 | 25230 | 1.1635 |


| $\begin{gathered} \mathbf{i} \\ {[-]} \end{gathered}$ | $\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ {[\mathbf{s}]} \end{gathered}$ | $q_{s}$ [kg/s] | quality [kg/kg] | $\begin{gathered} \Delta \mathrm{I}_{\mathbf{i}} \\ {[\mathrm{m}]} \end{gathered}$ | $\mathbf{Q}_{\mathrm{iy}, 2}$ <br> [kg] | $P_{e}$ <br> [bar] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 198.39 | 185.91 | 31.191 | 1221.70 | 27792 | 1.117 |
| 26 | 229.52 | 176.62 | 31.620 | 1337.10 | 30614 | 1.072 |
| 27 | 265.61 | 167.79 | 32.045 | 1463.70 | 33722 | 1.0286 |
| 28 | 309.17 | 159.40 | 32.198 | 1614.80 | 37285 | 1.0133 |
| 29 | 361.01 | 151.43 | 32.198 | 1789.20 | 41313 | 1.0133 |
| 30 | 421.47 | 143.86 | 32.198 | 1982.50 | 45776 | 1.0133 |
| 31 | 491.99 | 136.66 | 32.198 | 2196.70 | 50721 | 1.0133 |
| 32 | 574.23 | 129.83 | 32.198 | 2434.00 | 56201 | 1.0133 |
| 33 | 670.16 | 123.34 | 32.198 | 2697.00 | 62273 | 1.0133 |
| 34 | 782.05 | 117.17 | 32.198 | 2988.30 | 69000 | 1.0133 |
| 35 | 912.55 | 111.31 | 32.198 | 3311.20 | 76454 | 1.0133 |
| 36 | 1064.80 | 105.75 | 32.198 | 3668.90 | 84714 | 1.0133 |
| 37 | 1242.30 | 100.46 | 32.198 | 4065.30 | 93866 | 1.0133 |
| 38 | 1449.30 | 95.44 | 32.198 | 4504.50 | 104010 | 1.0133 |
| 39 | 1690.80 | 90.67 | 32.198 | 4991.10 | 115240 | 1.0133 |
| 40 | 1972.50 | 86.13 | 32.198 | 5530.30 | 127690 | 1.0133 |
| 41 | 2301.10 | 81.83 | 32.198 | 6127.70 | 141490 | 1.0133 |
| 42 | 2684.20 | 77.73 | 32.198 | 6789.70 | 156770 | 1.0133 |
| 43 | 3131.20 | 73.85 | 32.198 | 7523.30 | 173710 | 1.0133 |
| 44 | 3652.50 | 70.16 | 32.198 | 8336.00 | 192480 | 1.0133 |
| 45 | 4260.50 | 66.65 | 32.198 | 9236.60 | 213270 | 1.0133 |
| 46 | 4969.60 | 63.32 | 32.198 | 10234.00 | 236310 | 1.0133 |
| 47 | 5796.70 | 60.15 | 32.198 | 11340.00 | 261840 | 1.0133 |
| 48 | 6761.40 | 57.14 | 32.198 | 12565.00 | 290130 | 1.0133 |
| 49 | 7886.50 | 54.29 | 32.198 | 13923.00 | 321470 | 1.0133 |
| 50 | 9198.90 | 51.57 | 32.198 | 15427.00 | 356200 | 1.0133 |
| 51 | 10730.00 | 48.99 | 32.198 | 17093.00 | 394680 | 1.0133 |
| 52 | 12515.00 | 46.54 | 32.198 | 18940.00 | 437320 | 1.0133 |
| 53 | 14597.00 | 44.22 | 32.198 | 20986.00 | 484570 | 1.0133 |
| 54 | 17026.00 | 42.01 | 32.198 | 23253.00 | 536910 | 1.0133 |
| 55 | 19858.00 | 39.90 | 32.198 | 25766.00 | 594920 | 1.0133 |

Transient release from leaking or (partially) ruptured propane pipelines
N on-stationary two-phase propane outflow through pipelines can be calculated by the models presented in paragraph 2.5.3.6.
T am's model may be used to give an approximation of the initial mass flow rate from a crack in a pipeline.

## Problem

Estimate the initial mass flow rate of a 10 inch propane pipeline after a crack in the pipe wall with a area of about $10 \%$ of the cross-section of the pipeline.

Input:
Pipe diameter (10")

$$
\begin{array}{llrl}
d_{p} & = & 0.254 & m \\
T_{0} & = & 288.15 & K \\
A_{R} & = & 0.1 &
\end{array}
$$

Initial temperature
A rea ratio

O utput:
Initial mass flow $\quad \mathrm{q}_{\mathrm{s}}=669.4 \mathrm{~kg} / \mathrm{s}$

Procedure

The density of propane at initial temperature $\mathrm{T}_{0}=15{ }^{\circ} \mathrm{C}(288.15 \mathrm{~K})$ is

$$
\rho_{\mathrm{L}, 0}=509.5 \mathrm{~kg} / \mathrm{m}^{3}
$$

The radius ratio $d_{R}$ is given by

$$
\begin{aligned}
d_{R} & =d_{p}[\mathrm{~m}] / 0.05 \mathrm{~m} \\
& =0.254 \mathrm{~m} / 0.05 \mathrm{~m} \\
& =5.08
\end{aligned}
$$

The area ratio has been given

$$
A_{R}=0.1
$$

So, the decay coefficient can be estimated by

$$
\begin{align*}
C_{\alpha} & =d_{R} 0.25 \times\left(0.22 \times A_{R}-0.13 \times A_{R}^{1.5}+0.00068 \times\left(T_{0}-288.15\right)\right)  \tag{2.134}\\
& =(5.08)^{0.25} \times\left(0.22 \times 0.1-0.13 \times 0.1^{1.5}+0 .\right) \\
& =0.0269 \mathrm{~s}^{-1}
\end{align*}
$$

The (artificially) constant is set at

$$
\begin{equation*}
C_{L p}=100 \mathrm{~m} \tag{2.137a}
\end{equation*}
$$

The initial flow rate is given by

$$
\begin{align*}
q_{0} & =C_{\alpha} \times \rho_{L, 0} \times \pi / 4 \times d_{p}^{2} \times C_{L p}  \tag{2.137}\\
& =0.0269 \times 509.5 \times \pi / 4 \times 0.254^{2} \times 100 \\
& =69.4 \mathrm{~kg} / \mathrm{s}
\end{align*}
$$

### 2.6.3.5 Finite duration spray releases

In order to demonstrate the calculation of a finite duration flashing release, the following situation has been selected: A $1000 \mathrm{~m}^{3}$ vessel is filled (fill level $50 \%$ ) with butane at ambient temperature ( 288.15 K ). At the bottom of the vessel a 3 "
pipeline ( 76.2 mm diameter) is connected. 10 cm from the vessel connection, this pipeline breaks off completely. T he breach is 1 m above the ground. T his results in a release of butane at a mass flow of about $41 \mathrm{~kg} \mathrm{~s}^{-1}$. The discharge coefficient is 0.8 , so the effective exit area is $0.00365 \mathrm{~m}^{2}$. The flashing in the short pipe is negligible, so pure liquid flows out which flashes in the atmosphere. For the ambient humidity a value of $63 \%$ is assumed. The input data and intermediate and final results are summarised in T able 2.6.

Table 2.6 Input and output of the finite duration spray release example

| Input | Source height <br> Effective exit area <br> Exit radius <br> Mass flow rate <br> Vapour mass fraction <br> Exit temperature <br> Exit pressure <br> Liquid density <br> Vapour density <br> Averaged density <br> Exit velocity <br> Boiling temperature <br> Latent heat <br> Vapour enthalpy <br> Ambient humidity <br> Ambient temperature | $h_{s}$ <br> $\mathrm{A}_{\mathrm{e}}$ <br> $\mathrm{b}_{\mathrm{e}}$ <br> $\mathrm{q}_{\mathrm{s}, \mathrm{e}}$ <br> $\Phi_{\mathrm{m}, \mathrm{e}}$ <br> $\mathrm{T}_{\mathrm{e}}$ <br> $\mathrm{P}_{\mathrm{e}}$ <br> $\rho_{\mathrm{e}, \mathrm{L}}$ <br> $\rho_{\mathrm{e}, \mathrm{V}}$ <br> $\rho_{\mathrm{e}}$ <br> $\mathrm{u}_{\mathrm{e}}$ <br> $\mathrm{T}_{\mathrm{B}}$ <br> $\mathrm{L}_{\mathrm{v}, \mathrm{e}}$ <br> $L_{v, f}$ <br> $\mathrm{H}_{\mathrm{e}, \mathrm{V}}$ <br> $\mathrm{H}_{\mathrm{f}, \mathrm{V}}$ <br> RH <br> $\mathrm{T}_{\mathrm{a}}$ | 1 <br> 0.00363 <br> 0.034 <br> 41.34 <br> 0\% <br> 288.15 <br> 174549 <br> 584.49 <br> 4.233 <br> 584.49 <br> 19.475 <br> 272.7 <br> 362140 <br> 376740 <br> 473622 <br> 428806 <br> 63\% <br> 288.15 | m |
| :---: | :---: | :---: | :---: | :---: |
| After flashing | Vapour mass fraction Jet velocity Liquid density Vapour density Averaged density Jet area Jet radius | $\begin{aligned} & \Phi_{\mathrm{m}, \mathrm{f}} \\ & \mathrm{u}_{\mathrm{f}} \\ & \rho_{\mathrm{f}, \mathrm{~L}} \\ & \rho_{\mathrm{f}, \mathrm{~V}} \\ & \rho_{\mathrm{f}} \\ & \mathrm{~A}_{\mathrm{f}} \\ & \mathrm{~b}_{\mathrm{f}} \end{aligned}$ | $\begin{aligned} & 0.15732 \\ & 25.91 \\ & 600.72 \\ & 2.5964 \\ & 16.13 \\ & 0.099 \\ & 0.177 \end{aligned}$ | $\mathrm{m} / \mathrm{s}$ $\mathrm{kg} / \mathrm{m}^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ $\mathrm{m}^{2}$ <br> m |
| Droplet diameter | Dynamic viscosity liquid Surface tension Jet Reynolds number Jet Weber number Droplet diameter | $\begin{aligned} & v_{\mathrm{L}} \\ & \sigma_{\mathrm{S}} \\ & R e_{f} \\ & W e_{f} \\ & d_{d} \end{aligned}$ | $\begin{aligned} & 0.000197 \\ & 0.0159 \\ & 46648 \\ & 9012339 \\ & 0.29 \end{aligned}$ | N.s/m ${ }^{2}$ <br> $\mathrm{N} / \mathrm{m}$ <br> mm |
| Rain-out | Kinematic viscosity air <br> Prandtl number for air Schmidt number for butane <br> Droplet Reynolds number <br> Free fall velocity <br> Droplet temperature <br> Evaporation coefficient <br> Nett mass released to the air <br> Nett vapour mass fraction <br> Nett jet area <br> Nett jet radius | $V_{a}$ <br> Pr <br> Sc <br> $\mathrm{Re}_{\mathrm{d}}$ <br> $u_{d}$ <br> $\mathrm{T}_{\mathrm{d}}$ <br> $\mathrm{k}_{\mathrm{B}}$ <br> $\mathrm{q}_{\mathrm{s}, \text { nett,air }}$ <br> $\Phi_{\mathrm{m}, \text { rainout }}$ <br> $\mathrm{A}_{\mathrm{f}, \text { rainout }}$ <br> $\mathrm{b}_{\mathrm{f}, \text { rainout }}$ | $\begin{aligned} & 1.71 \cdot 10^{-5} \\ & 0.87 \\ & 0.7 \\ & 22.25 \\ & 1.313 \\ & 215.09 \\ & 2.87 \cdot 10^{-8} \\ & 41.34 \\ & 0.15732 \\ & 0.099 \\ & 0.177 \end{aligned}$ | $\begin{aligned} & \mathrm{m}^{2} / \mathrm{s} \\ & \\ & \mathrm{~m} / \mathrm{s} \\ & \mathrm{~K} \\ & \mathrm{~m}^{2} / \mathrm{s} \\ & \mathrm{~kg} / \mathrm{s} \\ & \mathrm{~m}^{2} \\ & \mathrm{~m} \end{aligned}$ |
| Conditions after evaporation | Concentration after evaporation <br> Temperature after evaporation <br> Molar fraction of water vapour at ambient <br> temperature <br> Molar fraction of water vapour at jet temperature <br> Molar fraction of condensed water <br> Jet density after evaporation <br> Jet velocity after evaporation <br> Jet area after evaporation <br> Jet radius after evaporation | $\begin{aligned} & c_{\mathrm{j}} \\ & \mathrm{~T}_{\mathrm{j}} \\ & \mathrm{c}_{\mathrm{w}} \\ & c_{\mathrm{wv}} \\ & c_{\mathrm{jL}} \\ & \rho_{\mathrm{j}} \\ & \mathrm{u}_{\mathrm{j}} \\ & \mathrm{~A}_{\mathrm{j}} \\ & \mathrm{~b}_{\mathrm{j}} \end{aligned}$ | $\begin{aligned} & 0.138 \\ & 227.3 \\ & 10.61 \\ & \\ & 1.158 \\ & 2.44 \\ & 5.127 \\ & 6.29 \\ & 1.28 \\ & 0.64 \end{aligned}$ | K $\begin{aligned} & \mathrm{kg} / \mathrm{m}^{3} \\ & \mathrm{~m} / \mathrm{s} \\ & \mathrm{~m}^{2} \\ & \mathrm{~m} \end{aligned}$ |

The input listed in T able 2.6 includes the thermodynamic properties at the storage and boiling temperature: latent heat and the enthalpies (only enthalpy differences between two temperatures and pressure levels are essential) as well as the densities.

## Step 1- Calculate the conditions in the jet after flashing

The outflow conditions $\mathrm{P}_{\mathrm{e}}, \mathrm{T}_{\mathrm{e}}, \mathrm{q}_{\mathrm{s}, \mathrm{e}}$ and $\Phi_{\mathrm{m}, \mathrm{e}}$ are listed in the T able 2.6. T he density at the exit follows from formula (2.138) (this formula will be used frequently to calculate the density of two-phase mixtures at various stages throughout the jet):

$$
\frac{1}{\rho_{\mathrm{e}}}=\frac{\left(1-\Phi_{\mathrm{m}, \mathrm{e}}\right)}{\rho_{\mathrm{L}, \mathrm{e}}}+\frac{\Phi_{\mathrm{m}, \mathrm{e}}}{\rho_{\mathrm{v}, \mathrm{e}}} \quad\left(\mathrm{~m}^{3} / \mathrm{kg}\right)
$$

$\rho_{\mathrm{e}}=584.49 \mathrm{~kg} / \mathrm{m}^{3}$
The jet velocity after flashing is calculated by formula (2.139):

$$
\begin{equation*}
u_{f}=\frac{\left(P_{e}-P_{a}\right) A_{e}}{q_{s, e}}+u_{e} \tag{m/s}
\end{equation*}
$$

$\mathrm{u}_{\mathrm{f}}=25.91 \mathrm{~m} / \mathrm{s}$.
The vapour mass fraction after flashing is calculated by formula (2.140):

$\Phi_{m, f}=0.15732$

The jet cross section $A_{f}$ and jet radius $b_{f}$ can be calculated from (2.141).
Here we need the averaged density $\rho_{\mathrm{f}}$ in the vessel, which can be calculated by formulae (2.138) from the vapour and liquid densities and the vapour mass fraction after flashing.

$$
\begin{aligned}
& A_{f}=\frac{\rho_{e} u_{e}}{\rho_{f} u_{f}} A_{e} \quad b_{f}=\sqrt{\frac{A_{f}}{\pi}} \quad\left(m^{2} ; m\right) \\
& A_{f}=0.099 \mathrm{~m}^{2} ; b_{f}=0.177 \mathrm{~m} .
\end{aligned}
$$

## Step 2- Calculation of the droplet diameter after flashing

N ext, the droplet diameter after flashing is calculated. First, the jet Reynolds number and the jet W eber number are evaluated using formula (2.142):

$$
R e_{f}=\frac{2 b_{f} u_{f}}{v_{L}} \quad W e_{f}=\frac{2 b_{f} u_{f}^{2} \rho_{L, f}}{\sigma_{s}}
$$

$R e_{f}=46648$
$\mathrm{We}_{\mathrm{f}}=9012339$
Then the droplet diameter is calculated by formulae (2.143a-b). It appears that in this case the second option (b) has to be used:

$$
\begin{equation*}
d_{d}=15 \frac{\sigma_{s}}{u_{f}^{2} \rho_{a}} \tag{m}
\end{equation*}
$$

$d_{d}=0.29 \mathrm{~mm}$

## Step 3- Droplet evaporation and rain-out on the ground

K nowing the droplet diameter, it is possible to determine whether the droplets will fall on the ground. Therefore the free fall velocity of the droplet is estimated by formula (2.145).

$$
\begin{aligned}
u_{d} & =\frac{\rho_{\mathrm{L}, f} g}{18 v_{\mathrm{a}} \rho_{\mathrm{a}}} d_{\mathrm{d}} \\
u_{\mathrm{d}} & =1.313 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

This allows to evaluate the droplet Reynolds number $\mathrm{Re}_{\mathrm{d}}$.
$\begin{aligned} R e_{d} & =u_{d} d_{d} / v\end{aligned}$
$R e_{d}=22.25$
T able 2.6 presents the values for the Schmidt and Prandtl numbers which depend on the properties of butane and air only.
In order to determine the evaporation coefficient $k_{B}$ (2.146), it is necessary to determine the droplet temperature $\mathrm{T}_{\mathrm{d}}$ (2.147) in an iterative process using intermediate values of $\mathrm{k}_{\mathrm{B}}$ at each iteration step. This results in $\mathrm{T}_{\mathrm{d}}=215 \mathrm{~K}$, $\mathrm{k}_{\mathrm{B}}=2.87 \cdot 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$.
The approximate formula (2.148) for the maximum droplet diameter $d_{M}$ results in a maximum droplet of 47 mm . H owever, this is not a useful result, as the corresponding Reynolds number using the free fall velocity, is 3671 , which exceeds the range of validity ( $\mathrm{Re}_{\mathrm{d}}<4$ ).
Therefore it can not be avoided to integrate the differential equation (2.149) for the evolution of the droplet radius together with the descent of the droplet from the release height to the ground (2.150):

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~d}_{\mathrm{d}}=-\frac{\mathrm{k}_{\mathrm{B}}}{\mathrm{~d}_{\mathrm{d}}}\left[1+0.28 \mathrm{Re}_{\mathrm{d}}^{1 / 2} \mathrm{Sc}^{1 / 3}\right] \\
& 0=\mathrm{h}\left(\mathrm{t}_{0}\right)=\mathrm{h}_{\mathrm{s}}-\int_{0}^{\mathrm{t}_{0}} \mathrm{u}_{\mathrm{d}} \mathrm{dt}
\end{aligned}
$$

And found is that all droplets have evaporated before reaching the ground.

By means of formulae (2.151) to (2.153) the values of the airborne mass flow rate, vapour mass fraction, jet area and jet radius can be corrected for rain-out:

$$
\begin{aligned}
& \quad \mathrm{q}_{\mathrm{s}, \text { nett, air }}=\Phi_{\mathrm{m}, \mathrm{f}} \mathrm{q}_{\mathrm{s}, \mathrm{e}}+\left(1-\Phi_{\mathrm{m}, \mathrm{f}}\right)\left(1-\left[\frac{\mathrm{d}_{0}}{\mathrm{~d}_{\mathrm{d}}}\right]^{3}\right) \mathrm{q}_{\mathrm{s}, \mathrm{e}} \quad(\mathrm{~kg} / \mathrm{s}) \\
& \mathrm{q}_{\mathrm{s}, \text { nett,air }}=41.34 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

$$
\begin{equation*}
\Phi_{\mathrm{m}, \mathrm{f}, \text { rainout }}=\frac{\Phi_{\mathrm{m}, \mathrm{f}}}{\Phi_{\mathrm{m}, \mathrm{f}}+\left(1-\Phi_{\mathrm{m}, \mathrm{f}}\right)\left(1-\left[\frac{\mathrm{d}_{0}}{\mathrm{~d}_{\mathrm{d}}}\right]^{3}\right)} \tag{-}
\end{equation*}
$$

$\Phi_{\mathrm{m}, \mathrm{f}, \text { rainout }}=0.15732$

$$
\begin{equation*}
A_{f, \text { rainout }}=A_{f} \frac{q_{s, \text { nett, air }}}{q_{s, e}} \tag{2}
\end{equation*}
$$

$A_{f, \text { rainout }}=0.099 \mathrm{~m}^{2}$
$\mathrm{b}_{\mathrm{f}, \text { rainout }}=0.177 \mathrm{~m}$

## Step 4- Calculate the conditions in the jet after evaporation of all airborne droplets

Finally, the effects of evaporation of droplets by entrained air on the bulk properties of the jet are calculated. Therefore, the enthalpy changes corresponding to the temperature change and droplet evaporation of butane. T he temperature change of entrained air and the enthalpy change of ambient water, both due to condensation and temperature change, need to be calculated. This has to be done iteratively. Therefore an initial value of the jet temperature $T_{j}$ is selected. A partial vapour pressure of butane corresponds to this temperature, and this leads to the molar fraction of butane in the jet by formula (2.155). H ere we used:

$$
\log \left\{P_{s}\left(T_{j}\right)\right\}=6.80896-935.860 /\left(T_{j}+238.73\right)
$$

With this information the enthalpy change of butane is calculated by (2.156). The latent heat after flashing $\mathrm{L}_{\mathrm{v}, \mathrm{f}}$ is listed in T able 2.6. T he vapour enthalpy is calculated from $\mathrm{C}_{\mathrm{p}} \cdot \mathrm{T}$, with:

$$
C_{p}=-1.779+0.386961 \times T-193.255 \times 10^{-6} \times T^{2}+348.326 \times 10^{-10} \times T^{3}
$$

Ambient humidity is transferred into a water mass fraction by using the relation between the saturation pressure of water as a function of temperature:

$$
\begin{align*}
& \frac{m_{w}}{m_{d a}}=\frac{R H_{a} P_{v}{ }^{0} w^{( }\left(T_{a}\right)}{\left(\mathrm{R} / \mu_{w}\right) \mathrm{T}_{\mathrm{a}} \rho_{\mathrm{a}}}  \tag{-}\\
& c_{\mathrm{w}}=\frac{\mathrm{m}_{\mathrm{w}} \mu_{\mathrm{a}}}{\mathrm{~m}_{\mathrm{da}} \mu_{\mathrm{w}}}  \tag{-}\\
& c_{\mathrm{w}}=10.61
\end{align*}
$$

At the selected jet temperature this may lead to condensation: the remaining water vapour is calculated by means of (2.158). N ow the enthalpy changes of dry air and water can be calculated using (2.160) and (2.161), respectively. T his process needs to be repeated until a jet temperature is reached at which the sum of the enthalpy changes is approximately zero. In this case one should find $T_{j}=227.3 \mathrm{~K}$. T able 2.6 presents the results as well as some thermodynamic properties at the final result for $\mathrm{T}_{\mathrm{j}}$ in this case.

K nowing the molar concentration, the amount of condensed water and the temperature, it is possible to calculate jet density, jet velocity and jet dimensions by formulae (2.162) through (2.167):

$$
\begin{align*}
& c_{j L}=\frac{\left(1-c_{j}\right)}{\left(1+c_{w v}\right)}\left(c_{w}-c_{w v}\right) \frac{\mu_{\mathrm{w}}}{\mu_{\mathrm{jd}}}  \tag{-}\\
& c_{\mathrm{jL}}=2.44 \\
& \mu_{\mathrm{jd}}=c_{\mathrm{j}} \mu_{\mathrm{s}}+\frac{\left(1-c_{\mathrm{j}}\right)}{\left(1-c_{w v}\right)}\left(\mu_{\mathrm{a}}+c_{\mathrm{wv}} \mu_{\mathrm{w}}\right)  \tag{kg/mol}\\
& \rho_{\mathrm{jd}}=\frac{P_{\mathrm{a}} \mu_{\mathrm{jd}}}{R T_{\mathrm{j}}}  \tag{3}\\
& \rho_{\mathrm{j}}=\frac{1+c_{\mathrm{jL}}}{\frac{1}{\rho_{\mathrm{j}, \mathrm{~d}}}+\frac{c_{\mathrm{jL}}}{\rho_{\mathrm{w}, \mathrm{~L}}}} \quad(\mathrm{~kg} / \mathrm{mol}) \\
&\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
& \rho_{\mathrm{j}}\left.=5.127 \text { (using } \rho_{\mathrm{j}, \mathrm{~L}}=1000 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \text { The initial volume concentration in the volume flow rate is } \mathrm{c}_{\mathrm{j}}=0.138:
\end{align*}
$$

$$
\begin{equation*}
u_{j}=\frac{u_{f}}{1+\frac{\left(1-c_{j}\right)}{c_{j}} \frac{\mu_{\mathrm{a}}}{\mu_{\mathrm{s}}}} \tag{m/s}
\end{equation*}
$$

$$
\begin{aligned}
u_{j} & =6.29 \mathrm{~m} / \mathrm{s} \\
A_{j} & =\frac{\rho_{f} u_{f}}{\rho_{j} u_{j}} A_{f} \quad b_{j}=\sqrt{\frac{A_{j}}{\pi}} \\
A_{j} & =1.28 \mathrm{~m}^{2} \\
b_{j} & =0.64 \mathrm{~m}
\end{aligned}
$$

### 2.6.3.6 Instantaneous release

In order to demonstrate the calculation of an instantaneous flashing release, the following situation has been selected: A vessel is filled (fill level about 94\%) with 6 tonnes of propane at ambient temperature ( 291 K ). This vessel fails completely. The ambient conditions are wind speed at 10 m height: $4 \mathrm{~m} / \mathrm{s}$, roughness length 0.03 m (Flat land) and M onin-O bukhov length -21.7 m (sunny weather, slightly unstable: this meteorological condition is described in chapter 4, section 4.6.2.1). F or the ambient humidity a value of $63 \%$ is assumed. The input data and intermediate and final results are summarised in T able 2.7.

Table 2.7 Input and output of the instantaneous release example

| Input | Total mass <br> Vapour mass fraction <br> Storage temperature <br> Storage pressure <br> Liquid density <br> Vapour density <br> Averaged density <br> Boiling temperature <br> Latent heat <br> Specific heat (liquid) <br> Vapour enthalpy <br> Windspeed at 10 m <br> Monin Obukhov length <br> Roughness length (Flat land) <br> Ambient humidity <br> Ambient temperature | $\begin{aligned} & \mathrm{Q} \\ & \Phi_{\mathrm{m}, \mathrm{o}} \\ & \mathrm{~T}_{0} \\ & \mathrm{p}_{0} \\ & \rho_{0, \mathrm{~L}} \\ & \rho_{0, \mathrm{~V}} \\ & \rho_{0} \\ & \mathrm{~T}_{\mathrm{B}} \\ & \mathrm{~L}_{\mathrm{v}, \mathrm{O}} \\ & \mathrm{~L}_{\mathrm{v}, \mathrm{f}} \\ & \mathrm{C}_{\mathrm{p}, \mathrm{~L}} \\ & \mathrm{H}_{0, \mathrm{~V}} \\ & \mathrm{H}_{\mathrm{f}, \mathrm{~V}} \\ & \\ & \mathrm{RH} \\ & \mathrm{~T}_{\mathrm{a}} \end{aligned}$ | 6000 <br> 0.002 <br> 291 <br> 784189 <br> 504.98 <br> 14.29 <br> 472.53 <br> 230.9 <br> 343486.3 <br> 426134.8 <br> 2413.51 <br> 483471.9 <br> 383620.9 <br> 4 <br> -21.7 <br> 0.03 <br> 63\% <br> 291 | kg <br> K <br> Pa <br> $\mathrm{kg} / \mathrm{m}^{3}$ <br> $\mathrm{kg} / \mathrm{m}^{3}$ <br> $\mathrm{kg} / \mathrm{m}^{3}$ <br> K <br> $\mathrm{J} / \mathrm{kg}$ <br> J/kg <br> $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ <br> $\mathrm{J} / \mathrm{kg}$ <br> $\mathrm{J} / \mathrm{kg}$ <br> $\mathrm{m} / \mathrm{s}$ <br> m <br> m <br> K |
| :---: | :---: | :---: | :---: | :---: |
| Intermediate results | Vapour mass fraction after flashing <br> Expansion velocity <br> Liquid density <br> Vapour density <br> Averaged density <br> Cloud volume <br> Cloud radius <br> Wind speed at cloud height | $\begin{aligned} & \Phi_{m, f} \\ & u_{f} \\ & \rho_{\mathrm{f}, \mathrm{~L}} \\ & \rho_{\mathrm{f}, \mathrm{~V}} \\ & \rho_{\mathrm{f}} \\ & \mathrm{~V}_{\mathrm{f}} \\ & \mathrm{~b}_{\mathrm{f}} \\ & u_{\mathrm{a}} \end{aligned}$ | $\begin{aligned} & 0.304 \\ & 258.4 \\ & 584.3 \\ & 2.327 \\ & 7.584 \\ & 791.18 \\ & 7.23 \\ & 3.76 \end{aligned}$ | $\mathrm{m} / \mathrm{s}$ $\mathrm{kg} / \mathrm{m}^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ $\mathrm{m}^{3}$ m $\mathrm{m} / \mathrm{s}$ |
| Final results | Airborne mass <br> Vapour mass fraction after rain-out <br> Nett averaged density <br> Cloud volume <br> Cloud radius <br> Concentration after evaporation Cloud temperature after evaporation Cloud volume after evaporation Cloud radius after evaporation Expansion velocity after evaporation Cloud density Cloud radius at ambient wind Cloud volume at ambient wind Concentration at ambient wind Temperature at ambient wind | $Q_{\text {(nett) }}$ <br> $\Phi_{\mathrm{m}, \mathrm{f}, \text { nett }}$ <br> $\rho_{\mathrm{f}, \text { nett }}$ <br> $\mathrm{V}_{f, \text { nett }}$ <br> $\mathrm{b}_{\mathrm{f}, \text { nett }}$ <br> $\mathrm{C}_{\mathrm{j}}$ <br> $V_{j}$ <br> $b_{j}$ <br> $\mathrm{u}_{\mathrm{j}}$ <br> $\rho_{j}$ <br> $\mathrm{b}_{\text {disp }}$ <br> $v_{\text {disp }}$ <br> $\mathrm{C}_{\text {disp }}$ <br> $\mathrm{T}_{\text {disp }}$ | 3649 <br> 0.5 <br> 4.636 <br> 787.16 <br> 7.21 <br> 0.2647 <br> 204.74 <br> 5252 <br> 13.59 <br> 38.72 <br> 1.25 <br> 25.1 <br> 33070 <br> 0.06 <br> 291.1 | kg <br> $\mathrm{kg} / \mathrm{m}^{3}$ <br> $\mathrm{m}^{3}$ <br> m <br> K <br> $\mathrm{m}^{3}$ <br> m <br> $\mathrm{m} / \mathrm{s}$ <br> $\mathrm{kg} / \mathrm{m}^{3}$ <br> m <br> $\mathrm{m}^{3}$ <br> K |

The input listed in T able 2.7 includes the thermodynamic properties at the storage and boiling temperature: latent heat, specific heat and the enthalpies (only enthalpy differences between two temperature and pressure levels are essential) as well as the densities.

## Step 1- Calculate the conditions in the cloud after depressurisation

The vapour mass fraction after flashing $\Phi_{m, f}$ can be calculated by formula (2.168) or (2.169) in section 2.5.3.8. As no details about entropy are available, formula (2.169) is selected:

$$
\begin{equation*}
\Phi_{\mathrm{m}, \mathrm{f}}=\Phi_{\mathrm{m}, 0} \frac{\mathrm{~T}_{\mathrm{f}}}{\mathrm{~T}_{0}}+\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{~L}_{\mathrm{v}, \mathrm{f}}} \mathrm{C}_{\mathrm{p}, \mathrm{~L}} \ln \frac{\mathrm{~T}_{0}}{\mathrm{~T}_{\mathrm{f}}} \tag{-}
\end{equation*}
$$

$\Phi_{m, f}=0.304$
The expansion velocity $\mathrm{u}_{\mathrm{f}}$ is calculated by formula (2.170). Here we need the averaged density $\rho_{0}$ in the vessel which can be calculated by formula (2.138) (section 2.5.3.7) from the vapour and liquid densities and the vapour mass fraction, $\rho_{0}=472.53 \mathrm{~kg} / \mathrm{m}^{3}$ :

$$
u_{f}=0.8 \sqrt{2 H_{0, v}-H_{f, v}+\left(1-\Phi_{m, f}\right) L_{v, f}-\left(1-\Phi_{m, 0}\right) L_{v, 0}-\frac{P_{0}-P_{a}}{\rho_{0}}}
$$

$u_{f}=258.4 \mathrm{~m} / \mathrm{s}$

T he cloud density $\rho_{\mathrm{f}}$ after flashing is calculated similarly as $\rho_{0}$. By means of formulae (2.171) and (2.172) the cloud volume $\mathrm{V}_{\mathrm{f}}$ and cloud radius $\mathrm{b}_{\mathrm{f}}$ (assuming a hemisphere close to the ground) are determined:

$$
\begin{equation*}
V_{f}=\frac{Q}{\rho_{f}} \tag{3}
\end{equation*}
$$

$V_{f}=791.18 \mathrm{~m}^{3}$

$$
\begin{equation*}
b_{f}=\left(\frac{3 V_{f}}{2 \pi}\right)^{1 / 3} \tag{m}
\end{equation*}
$$

$\mathrm{b}_{\mathrm{f}}=7.23 \mathrm{~m}$

By means of the methodologies provided in chapter 4 one can calculate the wind speed at the cloud height $b_{f}$. This velocity is found to be $3.76 \mathrm{~m} / \mathrm{s}$.

## Step 2-Calculate the rain-out fraction to the ground

N ext the rain-out fraction is determined. As the flash fraction is 0.304 , the amount of propane remaining in the air is twice as high, i.e. 0.608 times the total contents of the vessel or 3649 kg . It is then necessary to redefine the flash fraction ( 0.5 ), the averaged cloud density (similarly to $\rho_{0}$ using $\Phi_{\mathrm{m}}=0.5 ; \rho_{\mathrm{f}, \text { nett }}=4.636 \mathrm{~kg} / \mathrm{m}^{3}$ ) and the cloud dimensions $\left(\mathrm{V}_{\mathrm{f}, \text { nett }}=\mathrm{Q}_{\text {nett }} / \rho_{\mathrm{f}, \text { nett }}=787.16 \mathrm{~m}^{3}, \mathrm{~b}_{\mathrm{f}, \text { nett }}=7.21 \mathrm{~m}\right)$.

## Steps 3/4 Calculate the expansion of the cloud during the entrainment phase and calculate the conditions in the cloud after evaporation of all airborne droplets

The amount of air that needs to be entrained in order to evaporate all propane droplets in the cloud, is now calculated iteratively by means of formulae (2.154) to (2.161) from section 2.5.3.7. T his will give the molar fraction of propane in the cloud $c_{j}$, the cloud temperature $T_{j}$ and the mass fraction of water droplets due to condensation of ambient humidity. From this, one can also calculate the cloud density $\rho_{\mathrm{j}}$ by formulae (2.162) to (2.167). This procedure has already been demonstrated more extensively in the foregoing section. The results are presented in T able 2.7.
In order to calculate the cloud volume it is necessary to calculate the vapour density of the chemical at temperature $T_{j,}, \rho_{\mathrm{s}, \mathrm{j}}$. In this case at 204.74 K the density of propane is assumed to be $2.625 \mathrm{~kg} / \mathrm{m}^{3}$. The cloud volume and radius follow from:

$$
V_{j}=\frac{Q}{C_{j} \rho_{\mathrm{s}, \mathrm{j}}} \quad b_{j}=\left(\frac{3 V_{\mathrm{j}}}{2 \pi}\right)^{1 / 3} \quad\left(m^{3} ; m\right)
$$

$V_{j}=5252 \mathrm{~m}^{3} ; b_{j}=13.59 \mathrm{~m}$
The expansion velocity of the cloud after evaporation follows from formula (2.175): $u_{j}=u_{f}\left(b_{f} / b_{j}\right)^{3}$
$u_{j}=38.72 \mathrm{~m} / \mathrm{s}$
It appears that after evaporation the expansion velocity exceeds the ambient wind speed ( $38.72 \mathrm{~m} / \mathrm{s}$ compared to $3.76 \mathrm{~m} / \mathrm{s}$ ). Therefore the cloud dimensions are calculated when the expansion velocity equals the ambient wind speed by:

$$
\mathrm{b}_{\text {disp }}=\mathrm{b}_{\mathrm{f}}\left(\frac{\mathrm{u}_{\mathrm{f}}}{\mathrm{u}_{\mathrm{a}}\left(\mathrm{~b}_{\mathrm{f}}\right)}\right)^{1 / 3} \quad \mathrm{~V}_{\text {disp }}=\frac{2}{3} \pi \mathrm{~b}_{\text {disp }}^{3} \quad\left(\mathrm{~m} ; \mathrm{m}^{3}\right)
$$

$\mathrm{b}_{\text {disp }}=25.1 \mathrm{~m} ; \mathrm{v}_{\text {disp }}=33070 \mathrm{~m}^{3}$
After the cloud has expanded to these dimensions, the temperature in the cloud $\mathrm{T}_{\mathrm{c}}$ is approaching the ambient temperature according to:

$$
\begin{align*}
& \mathrm{T}_{\text {disp }}=\frac{\mathrm{T}_{\mathrm{a}}}{1-\frac{\mathrm{V}_{\mathrm{j}}}{\mathrm{~V}_{\text {disp }}}\left(1-\frac{\mathrm{T}_{\mathrm{a}}}{\mathrm{~T}_{\mathrm{j}}}\right)}  \tag{K}\\
& \mathrm{T}_{\text {disp }}=291.1 \mathrm{~K}
\end{align*}
$$

The molar or volume concentration $\mathrm{c}_{\text {disp }}$ at this stage of the cloud is:

$$
\begin{equation*}
c_{\text {disp }}=c_{j} \frac{V_{j} T_{\text {disp }}}{V_{\text {disp }} T_{j}} \tag{-}
\end{equation*}
$$

$$
c_{\text {disp }}=0.06
$$

The cloud density, calculated by means of (2.162) and (2.163) from section 2.5.3.4, is $1.25 \mathrm{~kg} / \mathrm{m}^{3}$, which is about equal to the density of air at $15^{\circ} \mathrm{C}(288.15 \mathrm{~K})$.

### 2.6.4 Liquids

### 2.6.4.1 Stationary Acrylonitrile liquid outflow from a vessel through a hole in the vessel wall

The liquid outflow from of a vessel through a hole in the vessel wall can be calculated by the models presented in paragraphs 2.5.4.1 and 2.5.4.2.

Input:

Vessel volume
Vessel type
Length cylinder
Filling degree
Pressure above liquid
Leak size
H eight of leak
Initial temperature
D ischarge coefficient

$$
\begin{array}{rll}
\mathrm{V} & =6600 & \mathrm{~m}^{3} \\
& & \text { vertical cylinder } \\
\mathrm{I}_{\mathrm{V}} & =14 & \mathrm{~m} \\
\phi & =0.8 & - \\
\mathrm{p} & =101325 & \mathrm{~N} / \mathrm{m}^{2} \\
\mathrm{~d}_{\mathrm{h}} & =0.1 & \mathrm{~m} \\
\mathrm{~h}_{\mathrm{h}} & =0 & \mathrm{~m} \\
\mathrm{~T}_{0} & =288.15 & \mathrm{~K} \\
\mathrm{C}_{\mathrm{d}} & =0.62 & -
\end{array}
$$

O utput:

| M ass flow liquid at 500 sec | $\mathrm{q}_{\mathrm{S}}=58.44$ | $\mathrm{~kg} / \mathrm{s}$ |  |
| :--- | :--- | :--- | :--- |
| Filling degree at 500 sec | $\phi$ | $=0.795$ | - |
| H eight of liquid at 500 sec | $\mathrm{h}_{\mathrm{L}}=11.12$ | m |  |
| T otal mass released at 500 sec | Q | $=29416$ | kg |

## Procedure

The number of time-steps $N_{t}$ has been set equal to 50 .
By equation (2.194), the mass flow rate $\mathrm{q}_{\mathrm{s}, \mathrm{i}}$ at the beginning of every time-step can be calculated.

U sing the equations (2.185) to (2.191) subsequently, the variation of the vessel conditions ( $\mathrm{Q}_{\mathrm{i}}, \mathrm{h}_{\mathrm{L}, \mathrm{i}}$ ) due to the outflow can be calculated.
$N$ ote that the initial liquid mass in the tank is $\mathrm{Q}_{0}$, and that at a temperature of $\mathrm{T}=15{ }^{\circ} \mathrm{C}(288.15)$ the density $\rho_{\mathrm{L}}$ of acrylonitrile are respectively

$$
\begin{aligned}
& \mathrm{Q}_{0}(\mathrm{t}=0)=4290000 \mathrm{~kg} \\
& \rho_{\mathrm{L}} \quad=812.5 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

In table 2.8 the variations in the physical quantities have been given.

Table 2.8

| Time after rupture <br> [s] | Mass flow rate [kg/s] | Filling degree | Total mass release [kg] | Liquid level in the vesse [m] |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 60.915 | 80 | 0 | 11.20 |
| 2013 | 60.075 | 77.8 | 121790 | 10.89 |
| 4698 | 58.955 | 74.9 | 281550 | 10.49 |
| 7382 | 57.835 | 72.1 | 438300 | 10.10 |
| 10066 | 56.714 | 69.3 | 592050 | 9.71 |
| 12751 | 55.594 | 66.6 | 742790 | 9.33 |
| 15435 | 54.474 | 64.0 | 890520 | 8.96 |
| 18119 | 53.353 | 61.4 | 1035200 | 8.59 |
| 20804 | 52.233 | 58.8 | 1177000 | 8.23 |
| 23488 | 51.112 | 56.3 | 1315700 | 7.89 |
| 26172 | 49.991 | 53.9 | 1451400 | 7.54 |
| 28857 | 48.871 | 51.5 | 1584100 | 7.21 |
| 31541 | 47.750 | 49.2 | 1713700 | 6.88 |
| 34226 | 46.629 | 46.9 | 1840400 | 6.56 |
| 36910 | 45.508 | 44.7 | 1964100 | 6.25 |
| 39594 | 44.387 | 42.5 | 2084700 | 5.95 |
| 42279 | 43.266 | 40.4 | 2202400 | 5.65 |
| 44963 | 42.145 | 38.3 | 2317000 | 5.36 |
| 47647 | 41.023 | 36.3 | 2428600 | 5.08 |
| 50332 | 39.902 | 34.3 | 2537300 | 4.81 |
| 53016 | 38.780 | 32.4 | 2642900 | 4.54 |
| 55700 | 37.659 | 30.6 | 2745500 | 4.28 |
| 58385 | 36.537 | 28.8 | 2845000 | 4.03 |
| 61069 | 35.415 | 27.0 | 2941600 | 3.79 |
| 63753 | 34.293 | 25.4 | 3035200 | 3.55 |
| 66438 | 33.171 | 23.7 | 3125700 | 3.32 |
| 69122 | 32.049 | 22.1 | 3213300 | 3.10 |
| 71806 | 30.926 | 20.6 | 3297800 | 2.89 |
| 74491 | 29.803 | 19.2 | 3379300 | 2.68 |
| 77175 | 28.680 | 17.7 | 3457800 | 2.48 |
| 79860 | 27.557 | 16.4 | 3533300 | 2.29 |
| 82544 | 26.434 | 15.1 | 3605700 | 2.11 |
| 85228 | 25.310 | 13.8 | 3675200 | 1.93 |
| 87913 | 24.186 | 12.6 | 3741600 | 1.77 |
| 90597 | 23.062 | 11.5 | 3805000 | 1.61 |
| 93281 | 21.938 | 10.4 | 3865400 | 1.45 |
| 95966 | 20.813 | 9.3 | 3922800 | 1.31 |
| 98650 | 19.687 | 8.4 | 3977200 | 1.17 |
| 101330 | 18.562 | 7.4 | 4028500 | 1.04 |
| 104020 | 17.435 | 6.6 | 4076800 | 0.92 |
| 106700 | 16.308 | 5.7 | 4122100 | 0.80 |
| 109390 | 15.181 | 5.0 | 4164400 | 0.70 |
| 112070 | 14.053 | 4.3 | 4203600 | 0.60 |
| 114760 | 12.923 | 3.6 | 4239800 | 0.50 |
| 117440 | 11.793 | 3.0 | 4273000 | 0.42 |
| 120120 | 10.661 | 2.5 | 4303100 | 0.34 |
| 122810 | 9.528 | 2.0 | 4330200 | 0.27 |
| 125490 | 8.393 | 1.5 | 4354300 | 0.21 |
| 128180 | 7.255 | 1.1 | 4375300 | 0.16 |
| 130860 | 6.113 | 0.8 | 4393200 | 0.11 |


| Time after <br> rupture <br> [s] | Mass flow <br> rate <br> $[\mathbf{k g} / \mathbf{s}]$ | Filling <br> degree <br> $[\%]$ | Total mass <br> release <br> $[\mathbf{k g}]$ | Liquid level <br> in the vessel <br> $[\mathbf{m}]$ |
| :---: | :---: | :---: | :---: | :---: |
| 133550 | 4.967 | 0.5 | 4408100 | 0.07 |
| 136230 | 3.812 | 0.3 | 4419900 | 0.04 |
| 138920 | 2.644 | 0.2 | 4428500 | 0.02 |
| 141600 | 1.442 | 0.0 | 4434000 | 0.01 |

### 2.6.4.2 Acrylonitrile liquid outflow from a pipe

The liquid outflow from a vessel through a pipe can be calculated by the models presented in paragraphs 2.5.4.2 and 2.5.5.

Input:

| Vessel volume | $\mathrm{V}=6600$ | $\mathrm{~m}^{3}$ |  |
| :--- | :--- | :--- | :--- |
| Vessel type |  | vertical cylinder |  |
| Length cylinder | $\mathrm{I}_{\mathrm{v}}=14$ | m |  |
| Filling degree | $\phi$ | $=0.8$ | - |
| Pressure above liquid | P | $=101325$ | Pa |
| Pipe length | $\mathrm{I}_{\mathrm{p}}=100$ | m |  |
| Pipe diameter | $\mathrm{d}_{\mathrm{p}}=0.1$ | m |  |
| Wall roughness pipe | $\varepsilon$ | $=4.5 \cdot 10^{-5}$ | m |
| Leak size | $\mathrm{d}_{\mathrm{h}}=0.1$ | m |  |
| H eight of leak | $\mathrm{h}_{\mathrm{h}}=0$ | m |  |
| Initial temperature | $\mathrm{T}_{0}=288.15$ | K |  |
| Discharge coefficient | $\mathrm{C}_{\mathrm{d}}=1.0$ | - |  |

O utput:
$M$ ass flow liquid at $t=0 \mathrm{~s} \quad \mathrm{q}_{\mathrm{s}}=22.33 \mathrm{~kg} / \mathrm{s}$

## Procedure

1. C alculate the total pressure at the opening using equations (2.195) and (2.196).
2. Estimate the mass flow rate by equation (2.194). This value represents the maximum of the mass flow rate, as frictional pressure loss is not taken into account.
3. Calculate the Reynolds number using equation (2.201a).
4. C alculate the $D$ arcy friction factor $f_{D}$ by equation (2.202) or (2.207), or any other suitable explicit formula.
5. C alculate the frictional pressure loss using equation (2.198).
6. Due to this pressure loss the total pressure at the opening in equation (2.195) is decreased and consequently the mass flow rate as obtained by equation (2.194).
7. Hence the above steps 2 up to and including 6 should be repeated until the difference between the updated mass flow rate and its previous value is sufficiently small.

The above procedure is most conveniently applied by using a suitable root finding procedure, assuming a minimum mass flow rate of zero and a maximum value according to step 2.

### 2.7 Interfacing to other models

### 2.7.1 Introduction to section 2.7

The results from model predictions in this chapter 'Outflow and Spray Release' may be used for further calculations as input for subsequent physical effect models, described in:
chapter 3 'Pool evaporation',
chapter 4 'V apour cloud dispersion', and
chapter 6 'H eat flux from fires'.

The models in this chapter 'O utflow and Spray Release' may act as a source term model to provide (quantitative) information about:

- the amount of material entering the surroundings in the vincinity of the failing containment,
- the dimensions of the area or space in which this process takes place,
- the thermodynamic state of the released chemicals, such as concentrations, temperature, and pressure,
- velocities of the outflowing chemicals at the boundaries of the source region.

Interfacing to relevant models in chapter 3 ' Pool evaporation' and chapter 6 'H eat flux from fires' is dealt with in those chapters

Interfacing to relevant models in chapter 4 'Vapour cloud dispersion', will be addressed in the following subsections.

### 2.7.2 Interfacing to vapour cloud dispersion models

### 2.7.2.1 Introduction

M ost dispersion models given in chapter 4 'Vapour cloud dispersion' assume the source to be (semi-)continuous. In general the outflow models predict a time-varying mass flow rate.
This brings up the problem how to translate the time-varying mass flow rate into a semi-continuous source strength.

According to equation 4.64a in chapter 4 'Vapour C loud Dispersion', time-varying mass flow rates may be regarded as an instantaneous source for the estimation of the atmospheric concentration c at a distance $\mathrm{x}_{\mathrm{s}}$ and larger distances to the source, where

$$
\begin{equation*}
\sigma_{x}\left(x_{s}\right)>1.3 \times u_{a} \times t_{s} \tag{m}
\end{equation*}
$$

with
$\sigma_{x} \quad=$ down-wind dispersion parameter
[m]
$x_{s} \quad=$ distance to the source
$u_{a} \quad=$ windspeed
[m]
$\mathrm{t}_{\mathrm{s}} \quad=$ duration of the outflow or source duration
[m/s]
[s]

This means that at a distance to the source $x_{s}$ which fulfils the requirement (2.210), the variations of the mass flow rate within a period $t_{s}$ can not be detected.
So, the time-varying mass flow rate may always be averaged over a time period $\mathrm{t}_{\mathrm{av}, \mathrm{s}}$ given by

$$
\begin{equation*}
\mathrm{t}_{\mathrm{av}, \mathrm{~s}}=\sigma_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{s}}\right) / 1.3 \times \mathrm{u}_{\mathrm{a}} \tag{s}
\end{equation*}
$$

$N$ ote that $\mathrm{t}_{\mathrm{av}, \mathrm{s}}\left(\mathrm{x}_{\mathrm{s}}\right)$ is a function of the distance to the source.

If the actual duration of the source $t_{s}$ is greater than $t_{a v, s}$, a conservative estimate of the atmospheric concentration $c\left(x_{s}\right)$ at distance to the source $x_{s}$ may be given by using the maximum averaged mass flow rate at any time-averaged over a period $\mathrm{t}_{\mathrm{av}, \mathrm{s}^{\prime}}$ so

$$
\begin{array}{ll}
\left\langle q_{s}>_{\max }=\right. & \mathrm{MAX} \int_{\mathrm{t}-\mathrm{t}_{\mathrm{av}, \mathrm{~s}} / 2}^{\mathrm{t}+\mathrm{t}_{\mathrm{av}, \mathrm{~s}} / 2} \mathrm{q}_{\mathrm{s}}(\mathrm{t}) \times \mathrm{dt} \\
\mathrm{q}_{\mathrm{s}} & (\mathrm{~kg} / \mathrm{s}) \\
<\mathrm{q}_{\mathrm{s}}>_{\text {max }}= & \text { mass flow rate of the source } \\
& \text { time-averaged over a period } \mathrm{t}_{\mathrm{av}, \mathrm{~s}}
\end{array}
$$

The total mass released can be kept the same and consequently the duration of the source must be adapted by

$$
\begin{equation*}
\mathrm{t}_{\mathrm{s}, 2}=\mathrm{q}_{\mathrm{s}} /<\mathrm{q}_{\mathrm{s}}>_{\max } \times \mathrm{t}_{\mathrm{s}} \tag{s}
\end{equation*}
$$

where
$\mathrm{t}_{\mathrm{s}, 2}=$ adapted semi-continuous source duration [s]
This method also holds for conservative estimates of the dose $D_{c}$ if the exponent $n$ is larger than unity

$$
\begin{array}{rll}
\mathrm{D}_{\mathrm{c}} & =\int \mathrm{c}^{\prime}(\mathrm{x}, \mathrm{t})^{\mathrm{n}} \times \mathrm{dt} & \\
\mathrm{c}^{\prime} & =\text { atmospheric concentration } & {\left[\mathrm{kg} / \mathrm{m}^{3}\right]} \\
\mathrm{D}_{\mathrm{c}} & =\text { toxic load } & {\left[\left(\mathrm{kg} / \mathrm{m}^{3}\right)\right.} \\
\mathrm{n} & =\text { chemical dependent exponent } & {[-]} \\
\mathrm{t} & =\text { exposure time } & {[\mathrm{s}]}
\end{array}
$$

$$
\left(\left(\mathrm{kg} / \mathrm{m}^{3}\right)^{\mathrm{n}} \cdot \mathrm{~s}\right)(2.214)
$$

$N$ ote, that toxic load is usually given in non SI -units: $\left[\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{\mathrm{n}} \cdot \mathrm{min}\right]$.

In case the actual time of arrival and departure of the cloud is of importance, then a (rather) conservative estimate can be made by keeping the actual duration of the outflow $t_{s}$ as input for the dispersion model, and not replacing it by $t_{s, 2}$.

### 2.7.2.2 Compressed gases

T he dispersion models: free jet model, SLAB, model by B ritter and M CQuaid described in chapter 4 'Vapour Cloud Dispersion' assume the gas(-mixture) from the source to be incompressible, meaning that the static and dynamic pressure of the gases are more or less equal to the ambient atmosphere.

For unchoked conditions the source diameter input to the jet model will be the physical source size or, if necessary, modified by a discharge coefficient.
M ost operational jet models are based on uniform atmospheric pressure throughout. Several methods exist in the literature that address the problem of determining the input for a jet-dispersion model for a choked, underexpanded single-phase jet. In Britter [1994] an overview of methods has been given and it has been concluded that little consistency exists among them.

H owever, for underexpanded jets the jet pressure is not atmospheric. There is a need for the determination of a pseudo-source which is consistent with the jet model and may be used to replace the complex flow when the jet expands to ambient pressure after the release from the containment (vessel or pipe).
In general, the pseudo-source area $A_{S a}$ is different from that of the physical break $A_{0}$, i.e. pipe or vessel hole diameter. Also the pseudo-source gas velocities will be larger than the speed of sound in the gas, but this is only for reasons of consistency.
T he jet models normally assume that there is no entrainment of ambient air prior to the jet expansion to ambient pressure. All models in the literature allow expansion of the jet pressure to ambient conditions.

U sually three positions are considered:

1. The storage reservoir

Index used
2. The exit plane
3. The ambient external state
$X$ e
$X_{\text {Sa }}$

N ote for outflow from a pipe that the initial conditions should in fact be based on the conditions at the end of the pipe before the pipe opening in stead of the conditions in the storage reservoir.

T he quantities in the plane where the gas jet has expanded to ambient pressure $\mathrm{q}_{\mathrm{s}}$, $u_{s A}, T_{s A}$ or $\rho_{S A}$, and $A_{S a}$ or $d_{S a}$ are sufficient information about a gas release for any dispersion model, except for the source height.
$A_{\text {Sa }}=$ cross-sectional area of the jet $\left[\mathrm{m}^{2}\right]$
$\mathrm{d}_{\mathrm{Sa}}=$ diameter of the jet [m]
$\mathrm{u}_{\mathrm{sa}}=$ average gas velocity [m]
$\rho_{\text {Sa }}=$ gas density $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\mathrm{T}_{\text {Sa }}=$ gas temperature [K]

In the absence of any frictional effects, all models assume an isentropic (reversible and adiabatic) expansion:

$$
\begin{align*}
& \mathrm{P}_{\mathrm{e}}=\mathrm{P}_{0} \times(2 /(\gamma+1))^{\gamma /(\gamma-1)}  \tag{2.215a}\\
& \mathrm{T}_{\mathrm{e}}=\mathrm{T}_{0} \times(2 /(\gamma+1))
\end{align*}
$$

where

| $\mathrm{P}_{\mathrm{e}}=$ gas pressure in the jet at the exit plane | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |  |
| :--- | :--- | :--- |
| $\mathrm{P}_{0}=$ initial gas pressure | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |  |
| $\mathrm{T}_{\mathrm{e}}=$ temperature in the jet at the exit plane | $[\mathrm{K}]$ |  |
| $\mathrm{T}_{0}=$ initial gas temperature | $[\mathrm{K}]$ |  |
| $\gamma$ | $=$ specific heat ratio (Poisson ratio) | $[-]$ |

All models take the conditions at the orifice plane to be sonic conditions, so for perfect gases

$$
\begin{equation*}
u_{e}=\sqrt{ }\left(\gamma \times R \times T e d u_{i}\right) \tag{m/s}
\end{equation*}
$$

where

```
u}\mp@subsup{\textrm{e}}{\textrm{e}}{=}=\mathrm{ average gas velocity in the jet at the exit plane [m/s]
R = gas constant [J/(mol-K)]
\mu
```

$N$ ote that the compressibility factor $z$ has been taken equal to unity in equation (2.44).

The above equations are consistent with the steady flow energy equation for perfect gases

$$
\begin{equation*}
\mathrm{H}+\mathrm{u}^{2} / 2=\text { constant } \quad\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right) \tag{2.216a}
\end{equation*}
$$

or

$$
\begin{equation*}
C_{p} \times T_{e}+0.5 \times \gamma \times R \times T_{e} / \mu_{i}=C_{p} \times T_{0} \tag{2.156b}
\end{equation*}
$$

$$
\text { ( } \mathrm{J} / \mathrm{kg} \text { ) }
$$

where
H = specific enthalpy
[J/kg]
u = average gas velocity
[m/s]
$C_{p} \quad=$ specific heat at constant pressure
$N$ ote that the enthalpy terms $C_{p} \cdot T$ used in equation (2.216b) are approximations:
$\mathrm{H}_{0}-\mathrm{H}_{\mathrm{e}} \approx \mathrm{C}_{\mathrm{p}} \times \mathrm{T}_{\mathrm{e}}-\mathrm{C}_{\mathrm{p}} \times \mathrm{T}_{0}$
( $\mathrm{J} / \mathrm{kg}$ )
(2.216c)

The accurate formulation is given by

$$
\begin{equation*}
H_{0}-H_{e} \approx \int_{T_{0}}^{T_{e}} C_{p}(T) \times d T \tag{2.216d}
\end{equation*}
$$

A better approximation would be

$$
\begin{equation*}
\mathrm{H}_{0}-\mathrm{H}_{\mathrm{e}} \approx \mathrm{C}_{\mathrm{p}, \mathrm{av}} \times\left(\mathrm{T}_{0}-\mathrm{T}_{\mathrm{e}}\right) \tag{J/kg}
\end{equation*}
$$

with

$$
\begin{align*}
C_{p, a v} & =\frac{1}{T_{e}-T_{0}} \int_{T_{0}}^{T_{e}} C_{p}(T) \times d T  \tag{2.216f}\\
& \approx\left(C_{p}\left(T_{0}\right)+C_{p}\left(T_{e}\right)\right) / 2
\end{align*}
$$

(J/(kg•K)
where
$C_{p, a v}=$ average $C_{p} \quad[J /(\mathrm{kg} \cdot \mathrm{K})]$
The exit area can be estimated by

$$
\begin{equation*}
A_{e} \approx C_{d} \times A_{0} \tag{2.217}
\end{equation*}
$$

when assuming negligible friction

$$
\begin{equation*}
C_{f} \approx 1 \tag{-}
\end{equation*}
$$

and consequently by equation (2.27)

$$
\begin{equation*}
C_{c} \approx C_{d} \tag{-}
\end{equation*}
$$

where
$A_{e}=$ exit area $\quad\left[\mathrm{m}^{2}\right]$
$\mathrm{A}_{0}=$ area physical break
$C_{c}=$ contraction coefficient
$C_{d}=$ discharge coefficient
[-]
$C_{f}=$ friction coefficient
The pseudo-source distinguishes between the jet expansion to ambient pressure and the entrainment of ambient liquid. The following relates to the jet expansion to ambient pressure only.

To set up a pseudo-source the relevant steady flow mass equation

$$
\begin{equation*}
\rho_{\mathrm{e}} \times \mathrm{A}_{\mathrm{e}} \times \mathrm{u}_{\mathrm{e}}=\rho_{\mathrm{Sa}} \times \mathrm{A}_{\mathrm{Sa}} \times \mathrm{u}_{\mathrm{Sa}} \tag{kg/s}
\end{equation*}
$$

the momentum equation

$$
\begin{equation*}
\rho_{e} \times A_{e} \times u_{e}^{2}-\rho_{S a} \times A_{S a} \times u_{S a}^{2}=\left(P_{e}-P_{a}\right) \times A_{e} \tag{N}
\end{equation*}
$$

and the energy equations must be satisfied. Only in case of reversible and frictionless flow, the following equation holds

$$
\begin{equation*}
\mathrm{H}_{0}+\mathrm{u}_{0}^{2}=\mathrm{H}_{\mathrm{e}}+\mathrm{u}_{\mathrm{e}}^{2} / 2=\mathrm{H}_{\mathrm{a}}+\mathrm{u}_{\mathrm{a}}^{2} / 2 \quad\left(\mathrm{~m}^{2} / \mathrm{s}^{2}\right) \tag{2.216h}
\end{equation*}
$$

N ote that for outflow from vessels it may be assumed that the initial flow velocity is negligible $\mathrm{u}_{0} \approx 0$.

The steady flow momentum equation determines the velocity $u_{S a}$ unambiguously with no need for reference to any thermodynamic arguments or assumptions [Britter, 1994].

| $\rho_{\mathrm{e}}$ | $=$ gas density in the jet in the exit plane | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{P}_{\mathrm{a}}$ | $=$ ambient atmospheric pressure | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| $\mathrm{H}_{\mathrm{Sa}}=$ specific enthalpy jet at ambient pressure | $[\mathrm{J} /(\mathrm{kg} \times \mathrm{K})]$ |  |
| $\mathrm{H}_{\mathrm{e}}$ | $=$ specific enthalpy jet in exit plane | $[\mathrm{J} /(\mathrm{kg} \times \mathrm{K})]$ |
| $\mathrm{H}_{0}$ | $=$ initial specific enthalpy jet | $[\mathrm{J} /(\mathrm{kg} \times \mathrm{K})]$ |

The quantities $u_{e}, P_{e}, T_{e}$, and $A_{e}$ can be estimated by equations (2.215a), (2.215b), (2.44) and (2.217). Gas densities can be estimated by applying the perfect gas law, so

$$
\begin{equation*}
\rho_{e}=P_{e} \times \mu_{i} /\left(R \times T_{e}\right) \quad\left(\mathrm{kg} / \mathrm{m}^{3}\right) \tag{2.221}
\end{equation*}
$$

where
$\mu_{\mathrm{i}}=$ molecular mass gaseous chemical $\mathrm{i}[\mathrm{kg} / \mathrm{mol}]$
The average gas velocity in the plane where the jet has expanded to ambient pressure $u_{\text {sa }}$ can be calculated by the following equation, resulting from combining conservation of mass and momentum

$$
\begin{equation*}
u_{a S}=u_{e}+\left(P_{e}-P_{a}\right) /\left(\rho_{e} \times u_{e}\right) \tag{m/s}
\end{equation*}
$$

In case friction and the initial gas velocities are neglected, combining equations $(2.226 \mathrm{c})$ and $(2.226 \mathrm{~h})$ gives the gas temperature $\mathrm{T}_{\mathrm{sa}}$ in the plane where the jet has expanded to ambient pressure

$$
\begin{equation*}
\mathrm{T}_{\mathrm{Sa}}=\mathrm{T}_{0}-\mathrm{u}_{\mathrm{Sa}}^{2} /\left(2 \times \mathrm{C}_{\mathrm{p}}\right) \tag{K}
\end{equation*}
$$

If the initial gas velocities are not neglected, then

$$
\begin{equation*}
\mathrm{T}_{\mathrm{Sa}}=\mathrm{T}_{0}-\left(\mathrm{u}_{\mathrm{Sa}}^{2}-\mathrm{u}_{0}^{2}\right) /\left(2 \times \mathrm{C}_{\mathrm{p}}\right) \tag{K}
\end{equation*}
$$

The cross-sectional area and diameter of the jet at ambient pressure are given by

$$
\begin{equation*}
A_{S a}=q_{s} /\left(\rho_{S a} \times u_{s a}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d}_{\mathrm{Sa}}=\sqrt{ }\left(4 \times \mathrm{A}_{\mathrm{Sa}} / \pi\right) \tag{m}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{\mathrm{Sa}}=\mathrm{P}_{\mathrm{a}} \times \mu_{\mathrm{i}} /\left(\mathrm{R} \times \mathrm{T}_{\mathrm{Sa}}\right) \tag{3}
\end{equation*}
$$

where
$\mathrm{q}_{\mathrm{s}}=$ mass flow rate $[\mathrm{kg} / \mathrm{s}]$

This model will produce a jet with a velocity $u_{\text {Sa }}$ larger than $u_{e}$ and an associated reduction in enthalpy, the reduction being brought about by a reduction in temperature.

## Birch M odel

However, Birch et al. in 1987 [Britter,1994] and experiments carried out by TNO (confidential) point out that the temperature of the jet after the expansion is nearly equal to the ambient temperature, quite contrary to equations (2.223a) and (2.223b)

$$
\begin{equation*}
T_{S a}=T_{0} \tag{K}
\end{equation*}
$$

This means that the friction can not be neglected or equivalently the expansion is not reversible; apparently mechanical energy is converted into heat in the expansion zone of the jet.
$M$ aintaining the conservation of mass and momentum and taking into account the discharge coefficient, the following equations have been inferred by Birch.

The gas velocity of the pseudo source can be estimated by

$$
\begin{equation*}
u_{s_{a}}=u_{e} \times\left(C_{d}+\left(1-\left(P_{a} / P_{0}\right) \times(2 /(\gamma+1))^{-\gamma /(\gamma-1)}\right) /\left(\gamma \times C_{d}\right)\right) \quad(m / s) \tag{2.227}
\end{equation*}
$$

$N$ ote that also in this model $u_{s a}$ may be larger or smaller than $u_{e}$, larger at relatively high storage pressure.

The diameter of the pseudo-source is given by

$$
\begin{equation*}
\mathrm{d}_{\mathrm{Sa}} / \mathrm{d}_{0}=\mathrm{C}_{\mathrm{d}} \times\left(\mathrm{P}_{0} / \mathrm{P}_{\mathrm{a}}\right) \times(2 /(\gamma+1))^{1 /(\gamma-1)} \times \mathrm{u}_{\mathrm{e}} / \mathrm{u}_{\mathrm{Sa}} \tag{-}
\end{equation*}
$$

with

$$
\begin{equation*}
d_{0}=\sqrt{ }\left(4 \times A_{0} / \pi\right) \tag{m}
\end{equation*}
$$

and of course

$$
\begin{equation*}
\mathrm{A}_{\mathrm{Sa}}=\pi / 4 \times \mathrm{d}_{\mathrm{Sa}}{ }^{2} \tag{2}
\end{equation*}
$$

where
$\mathrm{d}_{0}=$ (equivalent) diameter physical break [m]
If the discharge coefficient is approximately equal to unity $\mathrm{C}_{\mathrm{d}} \approx 1$ and the P oisson ratio is $\gamma \approx 1.4$, which holds for many gases, then

$$
\begin{equation*}
\mathrm{d}_{\mathrm{sa}} / \mathrm{d}_{0} \approx \sqrt{ }\left(0.264 \times \mathrm{P}_{0} / \mathrm{P}_{\mathrm{a}}\right) \tag{-}
\end{equation*}
$$

The mass flow rate $\mathrm{q}_{\mathrm{s}}$ can be calculated by the appropriate outflow models given in this chapter, and is required as input for dispersion models.

The other quantities characterising the pseudo source: $u_{S A}, T_{S A}, \rho_{S A}$, and $A_{S a}$ or $d_{S a}$ should be estimated by the model developed by Birch, formulated by equations (2.217), (2.226), (2.220), (2.230) and (2.228) in this paragraph.

### 2.7.2.3 Pressurised liquefied gases

### 2.7.2.3.1 Introduction

If the outflow to the atmosphere is a two-phase outflow, then the results of the outflow model have to be interfaced to the spray release model first. If the vapour mass fraction is negligible, the same approach as for compressed gases can be followed.

### 2.7.2.3.2 Interfacing of spray release model for finite duration release of pressurised liquefied gases

$N$ ote that in this section reference is made to symbols defined in chapters 2 and 4.

The two-phase jet model can be interfaced with:

- the free jet model (section 4.5.4.1);
- the G aussian Plume model (section 4.5.3);
- the dense gas model of Britter and M cQuaid (section 4.5.5.1);
- the dense gas model SLAB (section 4.5.5.2).

The free jet model

The free jet model can be applied after flashing is complete. T herefore, in formulae $4.76,4.77,4.81$ and $4.82 \mathrm{~b}_{0}$ should be replaced by $\mathrm{b}_{\mathrm{f} \text {, rainout }}$ which results from (2.153), section 2.5.3.7. H owever, for the evaluation of the F roude-number (4.72), the properties after complete evaporation should be used (during evaporation the total buoyancy of the jet is not conserved, see section 4.2.7.1 for an explanation). So in formula (4.72) $\rho_{0}$ should be replaced by $\rho_{j}$ from (2.165), $u_{0}$ by $u_{j}$ from (2.166) and
$b_{0}$ by $b_{j}$ from (2.167), section 2.5.3.7. T he validity of the free jet model beyond the position in the jet where evaporation of all droplets is complete, follows from (4.73). $N$ ote that the two-phase model is only valid for horizontal jets.

The G aussian Plume M odel

The Gaussian plume model (GPM, see section 4.5.3) can be applied if after evaporation of the droplets the cloud or plume is neutrally or positively bouyant, i.e. if $\rho_{\mathrm{j}}$ from (2.165), section 2.5.3.7, is less than or equal to $\rho_{\mathrm{a}}$.
The input for the Gaussian Plume M odel can be limited to the mass flow rate. Therefore the release rate $q$ in (4.51) needs to be replaced by $\mathrm{q}_{\mathrm{s} \text {, nett,air }}$ according to (2.151). Then, use is made of (4.53a) and (4.57a). The initial size of the jet after evaporation can be included in the GPM by replacing $b_{o y}$ in (4.53b) and $b_{0 z}$ in (4.57b) by $b_{j}$ from (2.167).

The dense gas model of Britter and $M C Q$ uaid

If the density after evaporation $\rho_{\mathrm{j}}>\rho_{\mathrm{a}}$ a dense gas dispersion model is needed. The simplest model is the continuous release model by Britter and M cQuaid, see section 4.5.5.1. The input of this model is the effective gravity at the source, $g_{o}^{\prime}$ and the volume flow rate $v_{0}$. The effective gravity needs to be calculated by replacing $\rho_{0}$ in the definition (section 4.3.5.1) by $\rho_{j}$ from (2.175), and the volume flow rate $v_{0}$ needs to be calculated by multiplying $u_{j}$ with $A_{j}$, from (2.166) and (2.167), respectively.

## SLAB model

Another dense gas dispersion model, SLAB, is described in section 4.5.5.2. This model accounts for the evaporation of droplets. The source conditions are therefore the conditions just after flashing and after accounting for rain-out. The following list presents the input data that should be extracted from the spray release model, using the SLAB notations (see e.g. T able 4.21):

- initial liquid mass fraction of the material CMEDO: $\Phi_{m, f, r a i n o u t ~}$ according to (2.152);
- temperature of the source material T S: boiling temperature $\mathrm{T}_{\mathrm{B}}$;
- mass flow rate of the source QS : $\mathrm{q}_{\mathrm{s}, \text { nett,air }}$ according to (2.151);
- area of the source AS: $A_{f, \text { rainout }}$ according to (2.153).

F or this case only the horizontal jet option should be applied, i.e. ID SPL =2

### 2.7.2.3.3 Interfacing of spray release model for instantaneous release of pressurised liquefied gases

$N$ ote that in this section reference is made to symbols defined in chapters 2 and 4.

### 2.8 Discussion of outflow and spray release models

### 2.8.1 Introduction to section 2.8

In this section some general considerations on the models related to pool evaporation presented in this chapter are given and gaps in the descriptions of (out)flow and spray release are indicated.

### 2.8.2 General remarks

T he standard approach for single-phase flows has been described, as well as models for non-stationary gas outflow through long pipelines. A rather fast model for stationary two-phase flow in pipes has been presented.
$M$ uch attention has been given to the dynamic behaviour of vessels due to the release of material.
An adequate model for the spray release is presented, explaining for instance why 'light gases’ like ammonia can behave like a heavy gas under certain circumstances.

T wo types of models have been described:

1. analytical or numerical models that are (mainly) based on physical laws,
2. models consisting mainly on mathematical correlations of experimental data.

Also in the field of (out)flow and vessel dynamics, there is a tendency to develop more complex (numerical) models. H owever, analytical equations may be used to get a quick estimate of the order of magnitude of the outflow rate. T hese models are based on simplifying assumptions like: ideal gas behaviour, constant physical properties, and unchanged boundary conditions.
A numerical approach accommodates to take into account changes of the physical properties as a function of temperature and pressure, non-ideal gas and liquid behaviour, and 'sudden' changes in boundary conditions.

A weakness of the chapter is that it has to rely for many situations on correlations, while other manageable models are lacking. Difficulties arise when predictions are required outside the validity ranges of the correlations based on limited experimental data. That is the reason why models based on general physical laws are generally favoured.

A nalytical or numerical physical models have been presented for:

- gas outflow,
- liquid outflow,
- stationary two-phase pipe flow [K ukkonen, 1990],
- non-stationary two-phase pipe flow [M orrow, 1983],
- vessel dynamics.

The correlations have been presented for:

- non-stationary gas outflow from small holes in pipelines [W eiss, 1988],
- non-stationary gas outflow from full bore ruptured pipelines [H anna, 1987],
- the void fraction in the expanded liquid, as described by M ayinger [Belore, 1986],
- transient releases rate of pressurized liquid propane from a ruptured pipeline [T am, 1990],
- the critical mass flux for two phase flow as a function only of the pressure and temperature upstream of the pipe, as described by Flinta [G iot, 1992],
- estimating the two-phase flow in a vessel, and the quality at the exit in case of top venting for vertical vessels, as described by DIERS [M elhem, 1993].

No model to cope with crater formation, caused by ruptures or leakages of underground pipelines, appeared to be publicly available.

### 28.3 Single-phase (out)flow and vessel dynamics

The well-known relations for the stationary critical and non-critical outflow of gases through orifices and through pipes for gases and vapours are as in the previous edition [Y ellowB ook, 1988].
There is not much discussion about applying standard thermodynamics for the description of the behaviour of vessels filled with pressurized gas or (non-boiling) liquid only. For liquid flow through holes and pipes and the behaviour of liquid vessels the standard approach has been followed.

### 2.8.4 Pressurized liquified gases

Although the behaviour of a depressurizing pressurized liquified gas is a complex process, we have choosen to describe a model based on standard thermodynamics, but have taken into account the criteria of DIERS [M elhem, 1993] and $M$ ayinger [Belore, 1986].

Much research on two-phase (out)flow modelling has been carried out, but the models appear only to be valid for specific situations. 'H omogeneous Equilibrium M odels' (HEM s) can successfully be applied if the quality of the flow is larger than 0.01 [Giot, 1996]. So, in case of saturated liquid entering the pipe and pipelines much longer than 0.1 meter, H EM s may be applied, but not in the case of sub-cooled liquid upstream and/or relatively short pipelines.

The model for non-stationary two-phase flow in pipelines has been worked out for propane only, but can be generalized to other chemicals [M orrow, 1983]. M orrow's model lacks extensive validation. The correlation by Tam is valid only for propane, and has limited validity within the range of the experiments [ $T$ am, 1990].

No model for gas flow in pipes has been described that take into account the difficulties that may arise if the gas temperature decreases below its critical temperature due to depressurization, and condensation might occur. This may happen for chemicals with critical temperatures around the ambient temperature, like for instance ethene.

### 2.8.5 Spray release mode to reacting chemicals

The models to describe the evolution of two-phase jets and the evaporation of droplets do not account for chemical reactions, e.g. like hydrogen fluoride (HF) forming oligomers in humid air. The evolution of chemically reacting two-phase jets can only be treated by using a differential approach of the jet evolution in small steps along the flow direction, as described by Webber et al. [1991].

The common practice to assume that twice the flash fraction remains airborne in case of instantaneous releases of pressurized liquefied gas, provides a rough approximation of Schmidli et al.'s results, but these are based on small-scale experiments only [Schmidli, 1992].

### 2.8.6 'Epilogue'

The correlations should be replaced by practical models based on sound physical laws.

The modelling of non-stationary releases of pressurized liquified gases from pipelines requires additional research.

It is recommended to develop practical models for crater formation, caused by ruptures or leakages of underground pipes.

### 2.9 References

AlChE (1989),
C hemical Process Quantitative Risk Analysis - guidelines for -,
C enter for C hemical Process Safety of the A merican Institute of C hemical Engineers, 1989.

Appleton, P.R. (1984),
A study of axi-symmetric two-phase flashing jets,
SRD report R 303, U.K. A.E.A., C ulcheth, Warrington, C heshire, U.K.

Beek (1975),
W.J. Beek and K.M .K . M utzall

T ransport Phenomena
Wiley, N ew Y ork, 1975

Bell (1993),
K. Bell, S.D. M orris and R. Oster,

Ventline void fractions and mass flow rates during top venting of high viscosity fluids, J. Loss Prev. Process Ind., 1993, Vol 6, No 1.

Belore (1986),
R. Belore and I. Buist, A computer model for predicting leak rates of chemicals from damaged storage and transportation tanks,
S.L. Ross Environmental Research Lim. Ottawa, Ontario, C anada, 1986.

B ritter (1994),
R.E. Britter, D ispersion of two phase flashing releases - F LAD IS Field Experiment, The modelling of a pseudo source for complex releases, CERT Ltd. C ambridge.

C arter (1991),
A spects of risk assessments for hazardous pipelines containing flammable substances, J. Loss Prev. Process Ind.,1991, Vol. 4, January.

C avanaugh II, T.A., Siegell, J.H ., Steinberg, K .W. (1994),
Simulation of vapor emissions from liquid spills, J. of H azardous M aterials, 38 pp 41-63.

C ommissie Preventie van Rampen door gevaarlijke stoffen (1988), M ethoden voor het berekenen van fysische effekten, CPR-14.

Crowl (1993),
D.A. Crowl, Liquid discharge from process and storage vessels,
J. Loss Prev. Process Ind., 1993, Vol. 6, N o 1.

DIERS (1986)
T echnology Summary
Emergency Relief Systems for Runaway Chemical Reactions and Storage V essels:
A Summary of M ultiphase F low M odels
AIChE/DIERS Publication, N ew Y ork, 1986.

D odge (1996),
Personal communication with Dr. F.T. D odge,
South West Research Institute, San Antonio, T exas, U SA 78228.

Edminster (1984),
W.C. Edminster, B.I. Lee, Applied hydrocarbon thermodynamics, volume 1, second edition, 1984.

Ewan (1988),
B.C.R. Ewan, K. M oodie and P.J. H arper,

A study of two phase critical pipe flow models for superheated liquid releases,
$J$. of H azardous M aterials, 20,1988) 273-286.

F auske (1988),
H.K. F auske and M. Epstein,

Source term considerations in connection with chemical accidents and vapour cloud modelling,
J. Loss Prev. Process Ind.,1988, Vol. 1, April.

F oster (1981),
T.C. F oster, T ime to empty a Vessel,

Chemical Engineering M ay 41981.
G asunie (1980),
B asisgegevens aardgassen,
N.V. N ederlandse G asunie, 1980.

G iesbrecht, H., H ess, K., Leuckel, W., M aurer, B. (1981),
A nalysis of explosions hazards on spontaneous release of inflammable gases into the atmosphere,
Ger. Chem. Eng. 4, pp 305-314.

Giot (1992),
M. Giot and A. Fritte,

Preparation of a comprehensive computer program to predict choked multiphase flows through simple and complex geometries,
Final report E.U. Environmental Research program EV 4T 0001-B(ED B), 1992.

G iot (1992),
M . Giot et all.,
Overall and detailed calculations of two-phase choked flows (FLIERS),
C onference T he Safe H andling of Pressure Liquefied G ases, 26/27 N ovember 1992, London.

G iot (1994),
M. Giot et all.,T wo-phase releases,
J. Loss Prev. Process Ind.,1994, Vol. 7, N umber 2.

G iot (1996),
M. Giot, Personal communication.

H ague, W .J., Pepe, W . (1990),
F low chamber simulations of aerosol formation and liquid jet breakup for pressurised releases of hydrogen fluoride,
Plant/O perations Progress 9/2, pp 125-127.

H anna (1987),
S.R. H anna and P.J. Drivas,

Vapor Cloud Dispersions M odels, CCPS, 1987.

H ardee, H.C., L ee, D.O. (1975),
Expansion of clouds from pressurised liquids,
Accid. Anal. \& Prev. 7, pp 91-102.

H ardekopf (1988),
F. H ardekopf and D. M ewes, C ritical ratio of two-phase flows,
J. Loss Prev. Process Ind.,1988, V ol. 1, July.

H art (1993),
P.W. H art and J.T . Sommerveld, Fluid discharge resulting from puncture of spherical process vessels,
J. of H azardous M aterials, 33, 1993, 295-305.

H aque (1990),
A. H aque, S. Richardson, G. Saville, G. Chamberlain, Rapid depressurization of pressure vessels,
J. Loss Prev. Process Ind.,1990, Vol. 3, January.

H aque (1992),
M .A. H aque, S.M . Richardson and G. Saville, Blow-down of pressure vessels, I. C omputer M odel, T rans IC hemE, V ol. 70, Part B, F ebruary 1992.

H euven (1985),
J.W. van H euven, Afblaassystemen voor chemische reactoren, T N O-rapport PM L 1985-C-31.

H ewitt, G.F., Pattison, M .J. (1991),
M odelling of release and flow of two-phase jets, presented at $T$ he safe handling of pressure liquefied gases (IBC),
L ondon, 26-27 N ov. 1992.

Johnson, D.M., Pritchard, M .J., Wickens, M .J. (1990),
L arge scale catastrophic releases of flammable liquids, British G as Report under contract C EC EV4T .0014.UK (H ), M idlands Research Station, Solihull, W est Midlands, U.K.

Jones (1992),
D. Jones, N omenclature for hazard and risk assessment in the process industries, second edition 1992, Institution of C hemical Engineers U.K.

K aiser (1988),
G.D. K aiser, A review of models for predicting the dispersion of ammonia in the
atmosphere,
AIChE Ammonium Symposium Safety in Ammonia and Related F acilities, D enver, C olorado, A ugust 1988.

K ocamustafaogullari, G., Smits, S.R., Razi, J. (1994),
M aximum and mean droplet sizes in annular two-phase flow, Int. J. H eat M ass
T ransfer, 37/6 pp 955-965.
K ukkonen, J., Vesala, T., K ulmala, M. (1989),
The interdependence of evaporation and settling for airborne freely falling droplets,
J. Aerosol Sci. 20/7, pp 749-763

K ukkonen, J. (1990),
M odelling source terms for the atmospheric dispersion of hazardous substances, C ommentationes Physico-M athematicae 115/1990, Finnish Society of Sciences and Letters, H elsinki.

K ukkonen, J., K ulmala, M ., N ikmo, J., V esala, T., W ebber, D.M ., W ren, T . (1993), Aerosol cloud dispersion and the suitability of the homogeneous equilibrium approximation, report AEA/C S/H SE R 1003/R, AEA T echnology, Warrington, Cheshire, U.K.

L ang (1991),
E. Lang, G as flow in pipelines following a rupture computed by a spectral method, Journal of Applied M athematics and Physics (ZAM P) Vol. 42, M arch 1991.

Lee (1987),
K.S. L ee, J.T . Sommerfeld, M aximum leakage times through puncture holes for process vessels of various shapes,
J. of H azardous M aterials, 14, 1987) 365-386.

Leung (1987),
J.C. Leung, M .A. Grolmes, T he D ischarge of T wo-phase F lashing F low in a H orizontal Duct,
AIChE Journal M arch 1987 Vol. 33, No. 3

Leung (1988),
J.C. Leung and M. E pstein, A G eneralized C ritical Flow M odel for N on-ideal Gases, AIChE Journal Vol. 34, No. 9 September 1988.

Leung (1989),
J.C. Leung and H.G. Fisher, T wo-Phase flow venting from reactor V essels,
J. Loss Prev. Process Ind., 1989, Vol. 2, A pril.

Leung (Jan. 1990),
J.C. Leung, T wo-phase discharge in nozzles and pipes - a unified approach,
J. Loss Prev. Process Ind.,1990, Vol. 3, January

Leung and N azario (1990),
J.C. Leung and F.N. N azario, T wo-phase flow methods and comparisons, J. Loss Prev. Process Ind.,1990, Vol. 3, A pril.

Leung (M ay 1990),
J.C. L eung, Similarity between Flashing and N on-flashing T wo-Phase F lows, AIChE Journal M ay 1990 Vol. 36, No. 5

Leung (1991),
J.C. Leung and M. Epstein, Including the Effects of $N$ on-condensible $G$ ases, Journal of H eat T ransfer, F ebruary 1991, Vol. 113

M elhem (1993),
G.A. M elhem, and P.A. Croce, Advanced C onsequence M odelling Emission, Dispersion, Fires, and Explosions, second draft July, 1993, A.D. Little.

M elhem, G.A., C roce, P.A. (1993),
Advanced consequence modelling: emission, dispersion, fires and explosions, 2nd draft, Van N ostrand Reinhold Inc., N ew Y ork, USA.

M oore (1972),
W.J. M oore, Physical Chemistry, fifth edition, Prentice-H all, Inc., N ew Jersey.

M orris (1990),
S.D. M orris, F lashing flow through relief lines, pipe breaks and cracks, J. Loss Prev. Process Ind.,1990, Vol. 3, January.

M orrow (1983),
T.B. M orrow, R.L. Bass, J.A. L ock., A LPG Pipeline Break Flow M odel, Journal of Energy Resources T echnology, September 1983, V ol. 105.

N ielsen (1991),
D.S. Nielsen, Validation of two-phase outflow model, J. Loss Prev. Process Ind.,1991, Vol. 4, July.

N ijsing (1988),
R. N ijsing, T reatment of moving phase boundaries and mixture-density discontinuities in axial two phase flow,
Paper presented at the 1988 E uropean T wo Phase F low G roup M eeting at Brussels 30 M ay-1 June, 1988.

NIST (1993),
NIST Thermodynamic Properties of Refrigerants and Refrigerant M ixtures, Version 5.0,
N ational Institute of Standards and T echnology 221/A320, G aithersburg, MD 20897, USA.

N olan, P.F ., H ardy, N .R., P ettitt, G .N . (1991), The physical M odelling of two phase releases following the sudden failure of pressurised vessels,
Int. C onf. and W orkshop on modelling and mitigating the consequences of accidental releases of hazardous materials (AIC hE ), pp 125-146.

N yren (1983),
K. N yren and S. Winter, T wo phase discharge of liquefied gases through pipes, field experiments with ammonia and theoretical model,
Symposium Series of the IC hemE, Symposium on L oss Prevention, H arrogate, England, 1983.

N yren (1987),
K. N yren and S. Winter, Discharge of condensed sulfur dioxide: a field test study of the source behaviour with different release geometries,
J. of H azardous M aterials, 14, 1987, 365-386.

Olorunmaiye (1993),
J.A. Olorunmaiye and N.E. Imide, C omputation of natural gas pipeline rupture problems using the method of characteristics,
J. of H azardous M aterials, 34,1993, 81-98.

Papadourakis, A., C aram, H.S., B arner, C.L. (1991),
U pper and lower bounds of droplet evaporation in two-phase jets,
J. Loss Prev. Process Ind., 4, pp 93-101.

Pattison, M.J. (1992),
The behaviour of binary droplets, report M PS/15, CLOU D/1, Imperial C ollege of Science, T echnology and M edicine,
Dept. of Chem. Eng. and Chem. T echn., London.
Perry (1973),
R.H. Perry and C.H. Chilton, Chemical Engineers'H andbook, fifthe edition, M cG raw-Hill K ogakusha LT D, 1973.

Pilz (1976),
V. Pilz and W. van Herck, Chemical Engineering Investigations with respect to the safety of large chemical plants,
Third symposium on Iarge chemical plants, European F ederation of $C$ hemical Engineering, Antwerp, 1976.

Prins (1996),
Personal communications with J. Prins at the T echnical U niversity of D elft, H olland.

Radford (1990),
M .D. Radford, A comprehensive list of pipe coefficients of friction for the H azenWilliams and $M$ anning formulae derived from the D arcy-W eisbach formula and C olebrook-W hite transition law for roughness values (k),
Water SA Vol. 16 N o. 4 O ctober 1990.

Ramskill (1987),
P.K. R amskill, D ischarge rate calculation methods for use in plant safety assessment, SRD R352, February 1987.

Riznic (1989),
J.V. Riznic and M. Ishii, Bubble number density and vapor generation in flashing flow, Int. J. H eat M ass T ransfer, No. 10.

Sallet (1990,1),
D.W. Sallet, Subcooled and saturated liquid flow through valves and nozzles, J. of H azardous M aterials, 25, 1990,2 181-191.

Sallet (1990,2),
D.W. Sallet, C ritical two-phase mass flow rates of liquefied gases, J. Loss Prev. Process Ind.,1990, Vol. 3, January, page 38-42.

Sallet (1990,3),
D.W. Sallet, On the prevention of two-phase fluid venting during safety valve action, J. Loss Prev. Process Ind.,1990, Vol. 3, January, page 53-58.

Schmidli, J., Y adigaroglu, G., B anerjee, S. (1992),
Sudden release of superheated liquids, HT D-Vol. 197, T wo-phase flow and heat transfer 1992, ASM E, pp 207-214.

Sheppard (1993),
C.M. Sheppard, DIERS churn-turbulent disengagement correlation extended to horizontal cylinders and spheres,
J. Loss Prev. Process Ind.,1993, Vol. 6, N umber 3.

Sheppard (1994),
C.M. Sheppard, DIERS bubbly disengagement extended to horizontal cylinders and spheres,
J. Loss Prev. Process Ind.,1994, Vol. 7, N umber 1.

Skouloudis (1990),
A.N. Skouloudis, K. Bell, M. K ottowski, Venting of vessels containing reacting fluids: a parametric study with SAFIRE and DEERS,
J. Loss Prev. Process Ind.,1990, Vol. 3, January.

Sommerfeld (1993),
J.T. Sommerfeld and M .P. Stallybrass, Elliptic integral solutions for fluid discharge rates from puncture holes horizontal cylindrical vessels,
J. Loss Prev. Process Ind., 1993, Vol. 6, No 1.

Starling (1973),
K .E. Starling, Fluid Thermodynamic Properties for Light Petroleum Systems, Gulf Publishing Company, H ouston, 1973.

Sumathipala (1990),
K. Sumathipala, J.E.S. Venart and F.R. Steward, T wo-Phase Swelling and entrainment during pressure relief valve discharges, J. of H azardous M aterials, 25, 1990, 219-236.

T am (1990),
V.H.Y. T am and R.B. Higgins, Simple T ransient release rate models for releases of pressurised liquid petroleum pipelines,
J. of H azardous M aterials, 25,1990, 193-203.

Tilton, J.N ., Farley, C.W. (1990),
Predicting liquid jet breakup and aerosol formation during the accidental release of pressurised hydrogen fluoride,
Plant/O perations Progress 9/2, pp 120-124

TNO (1983),
LPG a study, M ay 1983, T N O, A peldoorn, T he N etherlands.

Vandroux-K oenig, S., Berthoud, G., C ordero, D., K ahn, H., M ercier, P. (1991), $M$ odelling of multiphase jets in the immediate vicinity of a containment breach: application to a propane reservoir, note technique ST R/L M L/91-21, C.E.A C entre d'E tudes N ucleaires de G renoble.

Vesala, T. (1990),
Binary evaporation Report series in aerosol science No 13, Finnish association for aerosol research/U niversity of H elsinki, D ept. of physics, H elsinki

Vesala, T., K ukkonen, J. (1992),
A model for binary droplet evaporation and condensation, and its application for ammonia droplets in humid air, Atmospheric Environment, 26A/9 pp 1573-1581.

Webber, D.M ., Brighton, P.W.M . (1989),
Generalisation of the two-phase jet model TRAUM A to other substances than ammonia, report SRD/H SE/R 494, SRD, Culcheth, C heshire, U.K.

W ebber, D.M ., T ickle, G.A., W ren, T ., K ukkonen, J. (1991), M athematical modelling of two-phase release phenomena in hazard analysis, AEA T echnology, Culcheth, Cheshire, U .K ., report SRD /CEC/22939/01.

W ebster (1981),
Websters' T hird N ew International Dictionary, 1981.

W eiss (1988),
M .N . W eiss, K .K . Botros, W .M . Jungowski, Simple method predicts gas-line blowdown times,
Oil\&G as Journal, D ec. 12, 1988.
Wheatley, C.J. (1987),
D ischarge of liquid ammonia to moist atmospheres - survey of experimental data and model for estimating initial conditions for dispersion calculations, SRD, Culcheth, Cheshire, U.K., report SRD/H SE/R 410.

W heatley (1987),
C.J. W heatley, A users guide to T RAU M A, SRD/H SE-report R 394, A pril 1987.

Wierzba, A. (1990),
D eformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers,
Experiments in Fluids 9, pp 59-64.

Wilday (1992),
A.J. Wilday, Pressure relief systems, C onference $T$ he Safe $H$ andling of Pressure Liquefied gases,
26/27 N ovember 1992, L ondon.

Woodward, J.L. (1993),
Expansion zone modelling of two-phase and gas discharges,
J. of H azardous M aterials, 33 pp 307-318.

W oodward, J.L., Papadourakis, A. (1991),
M odelling of droplet entrainment and evaporation in a dispersing jet, Int. Conf. and W orkshop on modelling and mitigating the consequences of accidental releases of hazardous materials.

W oodward (1991),
J.L. W oodward and K.S. M odan, Liquid and gas discharge rates through holes in process vessels,
J. Loss Prev. Process Ind.,1991, Vol. 4, April.

W orldbank (1988),
T echniques for Assessing Industrial H azards - A manual -,
W orld Bank Technical Paper number 55, by T echnica Ltd.

Y an (1990),
F. Y an, M .G iot, L. Bolle, M odelling of flashing during adiabatic release through pipes, U nité $T$ hermodynamique et $T$ urbomachines, U niversité $C$ atholique de Louvain, L ouvain-la-N euve, Belgium.

Y ellow Book (1988),
$M$ ethods for the calculation of physical effects of the escape of dangerous materials, CPR-14E, M inistery of Social Affairs and E mployment, T he N etherlands.

## Appendix 2.1 Some properties of chemicals used in the TPD IS model [Kukkonen, 1990]

Physical properties of air, water, ammonia, chlorine, sulphur dioxide, propane, hydrogen fluoride and water are given as a function of temperature, in the original form created by Kukkonen. The relations are based on data from Landolt and Bornstein [1960], CRC Handbook [1984-85], Chlorine Institute [1981], Reid et al. [1987].

Subscripts:
$\mathrm{x}_{\mathrm{A}} \quad$ : physical property x of ammonia
$x_{\text {Air }} \quad$ : physical property $x$ of air
$x_{\text {Ch }}$ : physical property $x$ of chlorine
$x_{\mathrm{HF}} \quad$ : physical property $x$ of hydrogen fluoride
$x_{p} \quad$ : physical property $x$ of propane
$x_{\text {SD }}$ : physical property $x$ of sulpher dioxide
$x_{w}$ : physical property $x$ of water
$x_{V} \quad$ : vapour phase
$x_{L} \quad$ : liquid phase

The temperature values referred to by T , are given in degrees K elvin. T he following notations are used:

$$
\tau \quad=\mathrm{T}-223.15
$$

Saturation vapour pressure [Pa]:

```
P
P
P
P
P
P
```

The density of the vapour phase in saturated state $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ :

$$
\begin{aligned}
& \rho_{\mathrm{V}, \mathrm{~A}}=1 /\left(-0.7974 \times 10^{-5} \times \tau^{3}+0.001472 \times \tau^{2}-0.09552 \times \tau+2.373\right) \\
& \rho_{\mathrm{V}, \mathrm{C}}=1 /\left(-0.143 \times 10^{-5} \times \tau^{3}+0.000271 \times \tau^{2}-0.0185 \times \tau+0.508\right) \\
& \rho_{\mathrm{V}, \mathrm{SD}}=1 /\left(-0.5043 \times 10^{-5} \times \tau^{3}+0.0009981 \times \tau^{2}-0.07006 \times \tau+1.849\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{\mathrm{V}, \mathrm{P}}=-0.586 \times 10^{-6} \times \mathrm{T}^{3}+0.00371 \times \mathrm{T}^{2}-1.57 \times \mathrm{T}+174 \\
& \rho_{\mathrm{V}, H F}=22.29 \times\left(\mathrm{P}_{\mathrm{HF}}(\mathrm{~T}) /(\mathrm{R} \times \mathrm{T})+33.7\right) \\
& \mathrm{R}
\end{aligned}
$$

The density of the liquid phase in saturated state $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ :

$$
\begin{aligned}
& \rho_{\mathrm{L}, \mathrm{~A}}=-14.25 \times 10^{-5} \times \tau^{3}+0.01386 \times \tau^{2}-1.613 \times \tau+704.7 \\
& \rho_{\mathrm{L}, \mathrm{Ch}}=10^{6} /\left(18.23 \times 10^{-6} \times \tau^{3}+1.836 \times 10^{-3} \times \tau^{2}+0.9873 \times \tau+625.6\right) \\
& \rho_{\mathrm{L}, \mathrm{SD}}=9.050 \times 10^{-5} \times \tau^{3}-0.01713 \times \tau^{2}-1.642 \times \tau+1549 \\
& \rho_{\mathrm{L}, \mathrm{P}}=0.624 \times 10^{-6} \times \mathrm{T}^{3}-0.00395 \times \mathrm{T}^{2}+0.635 \times \mathrm{T}+639.0 \\
& \rho_{\mathrm{L}, \mathrm{HF}}=3.125 \times 10^{-3} \times(\tau-50)^{2}-2.2625 \times(\tau-50)+1002
\end{aligned}
$$

T he entropy of the vapour phase in saturated state $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ :

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{V}, \mathrm{~A}}=1.407 \times 10^{-4} \times \tau^{3}+0.05444 \times \tau^{2}-19.31 \times \tau+6156 \\
& \mathrm{~S}_{\mathrm{V}, \mathrm{Ch}}=-0.688 \times 10^{-4} \times \tau^{3}+0.02130 \times \tau^{2}-3.98 \times \tau+3090 \\
& \mathrm{~S}_{\mathrm{V}, \mathrm{SD}}=-6.575 \times 10^{-5} \times \tau^{3}+0.01612 \times \tau^{2}-5.486 \times \tau+1834 \\
& \mathrm{~S}_{\mathrm{V}, \mathrm{P}}=-8.163 \times 10^{-7} \times \mathrm{T}^{3}+5.173 \times 10^{-3} \times \mathrm{T}^{2}-4.670 \times \mathrm{T}+6540 \\
& \mathrm{~S}_{\mathrm{V}, H F}=5.192 \times \mathrm{T}+7106
\end{aligned}
$$

The entropy of the liquid phase in saturated state [J/( $\mathrm{kg} \cdot \mathrm{K})$ ]:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{L}, \mathrm{~A}}=1.491 \times 10^{-4} \times \tau^{3}-0.04481 \times \tau^{2}+20.09 \times \tau-197.0 \\
& \mathrm{~S}_{\mathrm{L}, \mathrm{Ch}}=-0.1567 \times 10^{-4} \times \tau^{3}-0.008123 \times \tau^{2}+4.297 \times \tau+1764 \\
& \mathrm{~S}_{\mathrm{L}, \mathrm{SD}}=-1.122 \times 10^{-4} \times \tau^{3}+0.01232 \times \tau^{2}+4.992 \times \tau-52.73 \\
& \mathrm{~S}_{\mathrm{L}, P}=-2.202 \times 10^{-7} \times \mathrm{T}^{3}-1.359 \times 10^{-3} \times \mathrm{T}^{2}+10.16 \times \mathrm{T}+1576 \\
& \mathrm{~S}_{\mathrm{L}, H F}=8.981 \times \mathrm{T}+1092
\end{aligned}
$$

The heat of vaporisation in saturated state [J/kg]:

$$
\begin{aligned}
& L_{v, A}=-0.03238 \times \tau^{3}-6.131 \times \tau^{2}-2700 \times \tau+1418 \times 10^{3} \\
& L_{v, C h}=-0.00639 \times \tau^{3}-0.631 \times \tau^{2}-547 \times \tau+296 \times 10^{3}
\end{aligned}
$$

## CPR 14E

Chapter 2 of the ' $Y$ ellow B ook'

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{v}, \mathrm{SD}}=0.02126 \times \tau^{3}-9.951 \times \tau^{2}-450.8 \times \tau+421.0 \times 10^{3} \\
& \mathrm{~L}_{\mathrm{v}, \mathrm{P}}=5.862 \times 10^{-4} \times \mathrm{T}^{3}-3.689 \times \mathrm{T}^{2}+583.8 \times \mathrm{T}+481.5 \times 10^{3} \\
& \mathrm{~L}_{\mathrm{v}, \mathrm{HF}}=374 \times 10^{3}
\end{aligned}
$$

The enthalpy of the vapour phase in saturated state [J/kg]:

$$
\begin{aligned}
& H_{V, A}=0.9139 \times \tau^{3}-140.9 \times \tau^{2}+7685 \times \tau+1298 \times 10^{3} \\
& H_{V, C h}=-0.005212 \times \tau^{3}-0.4526 \times \tau^{2}-417.9 \times \tau+518.1 \times 10^{3} \\
& H_{V, S D}=-0.02733 \times \tau^{3}-1.753 \times \tau^{2}+557.8 \times \tau+410.3 \times 10^{3} \\
& H_{V, P}=-6.187 \cdot 10^{-5} \times T^{3}+0.3908 \times T^{2}+951.3 \times T+87.92 \times 10^{3} \\
& H_{V, H F}=L_{v, H F}(T)+1.272 \times T^{2}+1712 \times T
\end{aligned}
$$

$N$ ote: the liquid phase enthalpy is given by

$$
H_{L}=H_{V}-L_{V}
$$

Specific heat capacities at constant pressure are approximately constant in the temperature range considered

$$
\begin{aligned}
& C_{p, w}=1860 \mathrm{~J} /(\mathrm{kg} \times \mathrm{K}) \\
& \mathrm{C}_{\mathrm{p}, \mathrm{air}}=1005 \mathrm{~J} /(\mathrm{kg} \times \mathrm{K})
\end{aligned}
$$

## Appendix 2.2 Relations for changes in enthalpy and entropy

The following statements are valid for systems that perform pressure-volumetric work ( $\mathrm{P} \cdot \Delta \mathrm{V}$ ) only; it may contain liquids, vapours and gases.

## Changes in enthalpy

The change in enthalpy of any system is given by

$$
\begin{equation*}
d H=C_{p} \times d T-\left[T \times(\partial v / \partial T)_{p}-v\right] \times d P \tag{J/kg}
\end{equation*}
$$

C hanges in enthalpy at constant pressure for any system is given by

$$
\begin{equation*}
d H_{p}=C_{p} \times d T \tag{J/kg}
\end{equation*}
$$

It can easily be inferred that for ideal gas the term between brackets is equal to zero. So, for ideal gases the following expression is valid for any change

$$
\begin{equation*}
\mathrm{dH}_{\mathrm{v}}=\mathrm{C}_{\mathrm{p}, \mathrm{v}} \times \mathrm{dT} \tag{J/kg}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\Delta H_{v}=C_{p, v, a v} \times\left(T_{2}-T_{1}\right) \tag{J/kg}
\end{equation*}
$$

F or real gases and vapours this relation may hold approximately.
The difference in enthalpy between the liquid and vapour phase at temperature $T$ is always equal to the negative heat of evaporation at that temperature, so

$$
\begin{equation*}
H_{L}(T)=H_{v}(T)-L_{v}(T) \tag{J/kg}
\end{equation*}
$$

M ostly we are only interested in changes of enthalpy. The expressions above lead to the following expression for the change of enthalpy of a liquid

$$
\begin{align*}
\Delta H_{L} & =\Delta H_{v}-\Delta L_{v}  \tag{A.2.4}\\
& \approx C_{p, v, a v} \times\left(T_{2}-T_{1}\right)-\left(L_{v}\left(T_{2}\right)-L_{v}\left(T_{1}\right)\right) \tag{J/kg}
\end{align*}
$$

## Changes in entropy

The change in entropy of any system is given by

$$
\begin{equation*}
d S=C_{p} / T \times d T-(\partial v / \partial T)_{p} \times d P \tag{kg•K}
\end{equation*}
$$

C hanges in entropy at constant pressure for any system is given by

$$
\mathrm{dS}_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}} / \mathrm{T} \times \mathrm{dT}
$$

It can easily be inferred that for ideal gas the following expression is valid for any change of system

$$
d S_{v}=C_{p, v} / T \times d T-R / P \times d P
$$

which means that

$$
\begin{equation*}
\Delta \mathrm{S}_{\mathrm{v}}=\mathrm{C}_{\mathrm{p}, \mathrm{v}, \mathrm{av}} \times \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)-\mathrm{R} \times \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right) \tag{kg•K}
\end{equation*}
$$

F or real gases and vapours this relation may hold approximately.
The difference in entropy between the liquid and vapour phase at temperature $T$ is always equal to

$$
\begin{equation*}
S_{L}(T)=S_{v}(T)-L_{v}(T) / T \tag{kg•K}
\end{equation*}
$$

M ostly we are only interested in changes in enthalpy. The expressions above lead to the following expression for the change in entropy of a liquid

$$
\begin{aligned}
& \Delta \mathrm{S}_{\mathrm{L}}=\Delta \mathrm{S}_{\mathrm{v}}-\Delta\left(\mathrm{L}_{\mathrm{v}} / \mathrm{T}\right) \quad(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{~K})) \quad(\mathrm{A} .2 .7) \\
& \approx \mathrm{C}_{\mathrm{p}, \mathrm{v}, \mathrm{av}} \times \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)-\mathrm{R} \times \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)-\left(\mathrm{L}_{\mathrm{v}}\left(\mathrm{~T}_{2}\right) / \mathrm{T}_{2}-\mathrm{L}_{\mathrm{v}}\left(\mathrm{~T}_{1}\right) / T_{1}\right) \\
&(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{~K})) \quad(\mathrm{A} .2 .8)
\end{aligned}
$$

## W here

$C_{p}=$ specific heat at constant pressure
$[J /(\mathrm{kg} \times \mathrm{K})]$
$C_{p, a v}=$ temperature average $C_{p}$
H = enthalpy
$[J /(\mathrm{kg} \times \mathrm{K})]$
$H_{v}$ = enthalpy of vapour or gas
[J/kg]
$H_{L} \quad=$ enthalpy of liquid
[J/kg]
$L_{v}(T)=$ heat of vaporisation at temperature $T$
[J/kg]
$P_{1}=$ start pressure of a system
[J/kg]
$\mathrm{P}_{2}=$ end pressure of a system
$\mathrm{S}=$ entropy
[K]
[K]
$\mathrm{T}_{1}=$ start temperature of a system
$[\mathrm{J} /(\mathrm{kg} \times \mathrm{T})]$
$\mathrm{T}_{2}=$ end temperature of a system
[K]
$v \quad=$ specific volume
[K]
[ $\mathrm{m}^{3} / \mathrm{kg}$ ]

Chapter 3
Pool evaporation
C.J.H. van den Bosch

## Modifications to Chapter 3 (Pool Evaporation) with respect to the first print (1997)

N umerous modifications were made concerning typographical errors. A list is given below for the pages on which errors have been corrected.

Page 3.19: $\quad$ Several symbols have been added in between the text to clarify the equations on this page.
Page 3.20: $\quad$ C orrection for the proper use of the english language in the first sentence.
Page 3.22: $\quad$ C orrection of the equations 3.7, 3.8 and 3.8a
Page 3.23: $\quad$ C orrection of the symbol $\mathrm{T}_{\mathrm{a}}$ in $\mathrm{T}_{\mathrm{w}}$ in the last sentence.
Page 3.25: Correction of the equation 3.10d and in the explanation of the symbols. The explanation of the symbol $D_{a}$ has been added.
Page 3.30: $\quad$ The symbol $c_{i}$ has been added in the text for clarification, and the equation 3.14 has been corrected.
Page 3.34: The symbols in the text on this page have been better indicated for clarification.
Page 3.35: $\quad$ C orrection of equation 3.18a (more scientific notation).
Page 3.39: $\quad$ The symbol $c_{i}$ has been added in the text for clarification.
Page 3.40: $\quad$ On this page, for the symbol of the radius of the liquid pool is now used $r_{p}$.
Page 3.47-3.57: $\quad$ N o modifications have been made to the U ser M anual of GASP.
Page 3.58: $\quad$ C orrection of the symbol $\mathrm{Tq}_{\mathrm{s}}$ in the equations 3.77 and 3.79.
Page 3.62: $\quad$ C orrection of the symbol for the subsoil surface temperature.
Page 3.66: Page number added for the chapter on "Vapour Cloud D ispersion"
Page 3.67: $\quad$ C orrections made to the equations 3.120 and 3.122b.
Page 3.68: $\quad$ C orrection in the equation 3.123 (more scientific notation).
Page 3.69: $\quad$ C orrection in the equation 3.128 (more scientific notation).
Page 3.72: $\quad$ Corrections for the proper use of the english language.
Page 3.76: $\quad$ Correction in the equation 3.140 (more scientific notation), First setence below equation 3.140 was corrected, equation 3.122a has been extended and in T able 3.5 (last column) should read $\mathrm{a}_{\mathrm{s}} \times 10^{-7}$.
Page 3.78: $\quad$ C orrected for the reference to the heat balance in equation 3.4, updated the symbol $\mathrm{T}_{\mathrm{p}}$ in equation 3.142a.
Page 3.79: $\quad$ Corrections in the equations 3.144, 3.145a and 3.145b (more scientific notation). U pdated the symbol $\mathrm{T}_{\mathrm{p}}$ in equation 3.145 a and 3.145 b .
Page 3.88: $\quad U$ pdated $\mathrm{NH}_{3(\mathrm{I})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}=\mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$.
Page 3.92: $\quad$ Thermal diffusivity $\mathrm{a}_{\mathrm{s}}=11 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$.

## List of symbols Chapter 3

| a | thermal diffusivity (3.6) | $\mathrm{m}^{2} / \mathrm{s}$ |
| :---: | :---: | :---: |
| $\mathrm{a}_{\mathrm{gr}}$ | thermal diffusivity gravel (3.128) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{a}_{5}$ | thermal diffusivity of subsoil (3.97) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{a}_{\text {si }}$ | intrinsic permeability of soil (3.21b) | $\mathrm{m}^{2}$ |
| $a_{v}$ | thermal diffusivity of vapour (3.132) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{a}_{\text {w }}$ | thermal diffusivity of water (3.137) | $\mathrm{m}^{2} / \mathrm{s}$ |
| A | total liquid pool area (3.1) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\text {s }}$ | cross-sectional area river (3.154) | $\mathrm{m}^{2}$ |
| $A_{\text {top }}$ | liquid top area (3.29) | $\mathrm{m}^{2}$ |
| Ar | Archimedes number (3.110) | - |
| b | half width of the river (3.146c) | m |
| C* | limiting concentration (3.160) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\mathrm{C}_{\mathrm{i}}$ | concentration component i (3.2) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\mathrm{c}_{\mathrm{i}, \max }$ | maximum concentration (3.162) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| C | C onstant (3.64) | - |
| $\mathrm{C}_{\text {A }}$ | A ntoine coefficient (3.85) | K |
| $\mathrm{C}_{\text {B }}$ | A ntoine coefficient (3.85) | K |
| $\mathrm{C}_{\mathrm{C}}$ | A ntoine coefficient (3.85) | K |
| $\mathrm{C}_{\text {DE }}$ | constant defined by (3.156a) | $\mathrm{m}^{1 / 6}$ |
| $\mathrm{C}_{\mathrm{d} 1}$ | first order decay rate coefficient (3.146b) | 1/s |
| $\mathrm{C}_{\mathrm{f}}$ | turbulent friction coefficient (3.70) | - |
| $\mathrm{C}_{\mathrm{F}}$ | frictional resistance term (3.62) | $\mathrm{m} / \mathrm{s}^{2}$ |
| $\mathrm{C}_{\text {FL }}$ | laminar expression for $C_{F}$ (3.64) | $\mathrm{m} / \mathrm{s}^{2}$ |
| $\mathrm{C}_{\text {FT }}$ | turbulent expression for $\mathrm{C}_{\mathrm{F}}(3.70)$ | $\mathrm{m} / \mathrm{s}^{2}$ |
| $\mathrm{C}_{\mathrm{H}}$ | correlation coefficient (3.26) | $\mathrm{kg} /\left(\mathrm{s} \cdot \mathrm{m}^{2} \cdot \mathrm{k}\right)$ |
| $\mathrm{C}_{\mathrm{m} \& \mathrm{~m}}$ | mass transfer coefficient of $M$ acK ay \& $M$ atsugu (3.24) ( $\mathrm{m}^{0.33} / \mathrm{s}^{0.22}$ ) |  |
| $\mathrm{C}_{\text {M RF }}$ | M anning roughness factor (3.151) | - |
| $\mathrm{C}_{\mathrm{p}, \mathrm{a}}$ | air specific heat (3.6a) | J/(kg•K) |
| $\mathrm{C}_{\mathrm{p}, \mathrm{L}}$ | liquid specific heat (3.4) | J/(kg $\cdot \mathrm{K}$ ) |
| $\mathrm{C}_{\mathrm{p}, \mathrm{s}}$ | specific heat of subsoil (3.121) | J/(kg $\cdot \mathrm{K}$ ) |
| $\mathrm{C}_{\mathrm{p}, \mathrm{ss}}$ | specific heat of sand (3.20) | J/(kg•K) |
| ${ }^{\text {C }} \mathrm{p}$, v | vapour specific heat (3.111) | J/(kg $\cdot \mathrm{K}$ ) |
| ${ }^{\text {C }}$ p,w | specific heat of water (3.130a) | $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ |
| $\mathrm{C}_{\mathrm{R}}$ | correction factor defined by (3.124) | - |
| $\mathrm{C}_{5}$ | arbitrary spreading constant (3.15) | $\mathrm{m} / \mathrm{s}^{\mathrm{Es}}$ |
| $\mathrm{C}_{\mathrm{u}^{*}}$ | constant defined by (3.151a) | $\mathrm{m}^{1 / 6}$ |
| D | dispersion coefficient (3.155) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{D}_{\mathrm{a}}$ | diffusion coefficient of air (3.10e) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{D}_{\mathrm{v}}$ | diffusion coefficient vapour in air (3.13) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{D}_{\mathrm{x}}$ | dispersion coefficient in downstream direction (3.146a) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{D}_{\mathrm{y}}$ | dispersion coefficient in cross-stream direction (3.146a) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\mathrm{D}_{\text {z }}$ | dispersion coefficient in depth direction (3.146a) | $\mathrm{m}^{2} / \mathrm{s}$ |


| $\mathrm{E}_{\text {s }}$ | arbitrary spreading exponent (3.13) | - |
| :---: | :---: | :---: |
| erfc* | a modified complementary error function (3.102) | - |
| f | factor for the effect of radial water flow under pool (3.67) | - |
| $\mathrm{f}_{\mathrm{T}}$ | function of temperature (3.135b) | - |
| $\mathrm{f}_{0}$ | constant (3.84b) | - |
| $\mathrm{f}_{1}$ | constant (3.84c) | - |
| $\mathrm{f}_{2}$ | constant (3.84d) | - |
| $\mathrm{f}_{3}$ | constant (3.84e) | - |
| $\mathrm{F}_{1}$ | function defined by (3.114) | - |
| $\mathrm{F}_{2}$ | function defined by (3.115) | - |
| $\mathrm{F}_{\mathrm{N}}$ | function implicitly, defined by (3.88) | - |
| Fo | F ourier number (3.8c) | - |
| Fr | modified Froude number (3.44) | - |
| $\mathrm{Fr}_{\text {rad }}$ | Froude number for radial spread (3.74) | - |
| $\mathrm{F}_{\mathrm{x}}$ | function (3.146b) | - |
| $\mathrm{F}_{y}$ | function (3.146c) | - |
| $\mathrm{F}_{\mathrm{z}}$ | function (3.146d) | - |
| g | acceleration due to gravity (3.11) | $\mathrm{m} / \mathrm{s}^{2}$ |
| $\mathrm{g}_{\mathrm{g} / \mathrm{gr}}$ | g or reduced g (3.34) | $\mathrm{m} / \mathrm{s}^{2}$ |
| $\mathrm{G}\left(\mathrm{e}^{\chi}\right)$ | Green's function (3.80) defined in (3.84a) | - |
| G* | Green's function defined by (3.103) (m.s) ${ }^{-1}$ | - |
| Ga | Galileo number (3.109) | - |
| h | mean liquid pool depth (3.4) | m |
| $h_{c}, \infty$ | minimum depth spreading vaporising pool (3.11) | m |
| $h_{\text {d }}$ | river depth (3.147a) | m |
| $\mathrm{h}_{\mathrm{e}}$ | mean dynamic liquid pool depth (3.38) | m |
| $\mathrm{h}_{\mathrm{f}}$ | liquid pool depth at the edge (3.42) | m |
| $\mathrm{hgr}_{\mathrm{gr}}$ | height gravel layer (3.128) | m |
| $\mathrm{h}_{\mathrm{p}}$ | mean puddle depth (3.38) | m |
| $\mathrm{h}_{\mathrm{r}}$ | roughness scale (3.54) | m |
| $\mathrm{h}_{0, \text { max }}$ | $=\max \left(\mathrm{h}_{\sigma, f,}, \mathrm{~h}_{\mathrm{c}, \infty}\right)(3.49)$ | m |
| $\mathrm{h}_{\mathrm{o}, \mathrm{f}}$ | frontal pool depth (3.48) | m |
| H | heat flux (3.20) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{a}}$ | convected heat flux from air (3.4) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{c}}$ | heat flux by conduction from the (3.5) subsoil or convected from water body | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{c}, \mathrm{n}}$ | heat flux in the nucleate boiling regime (3.130a) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{c}, \mathrm{m}}$ | heat flux in the metastable boiling regime (3.135a) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{c}, \mathrm{f}}$ | heat flux in the film-boiling regime (3.132) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{cl}}$ | 1-D approximation of $\mathrm{H}_{\mathrm{c}}$ (3.97) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{c} 3}$ | 3-D formulation of $\mathrm{H}_{\mathrm{c}}$ (3.105) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\text {cr }}$ | critical heat flux for film-boiling (3.116) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{r}}$ | total heat flux radiated into the pool (3.96) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\mathrm{rl}}$ | long-wave solar radiated heat flux (3.4) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\text {rs }}$ | solar radiated heat flux (3.4) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\text {s/w }}$ | heat flux from surface beneath (3.4) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{H}_{\text {w }}$ | heat flux by heat transfer from water (3.9) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |


| j(s) | function (3.46) | - |
| :---: | :---: | :---: |
| $j_{k}$ | clay volume fraction (3.126a-c) | $\mathrm{m}^{3} / \mathrm{m}^{3}$ |
| $\mathrm{k}_{\mathrm{H}}$ | heat transfer coefficient (3.99) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)$ |
| $\mathrm{K}_{\mathrm{H}, \mathrm{a}}$ | heat transfer coefficient to the atmosphere (3.10a) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)$ |
| $\mathrm{k}_{\mathrm{H}, \mathrm{w}}$ | heat transfer coefficient on water (3.9) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)$ |
| $\mathrm{k}_{\mathrm{H}, \mathrm{f}}$ | film-boiling heat transfer coefficient (3.112) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)$ |
| $\mathrm{k}_{\mathrm{m}}$ | mass transfer coefficient related to concentration (3.2) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{k}_{\mathrm{m}, \mathrm{P}}$ | mass transfer coefficient related to partial pressure (3.164) | $\mathrm{s} / \mathrm{m}$ |
| $\mathrm{K}_{0}$ | hydraulic conductivity soil at saturated conditions (3.21a) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{I}_{\mathrm{c}}$ | film-boiling critical length-scale (3.108) | m |
| $\mathrm{I}_{\mathrm{p}}$ | length pool along-wind direction (3.23a) | m |
| $I_{\sigma}$ | capillary depth parameter (par. 3.5.2.4) | m |
| L | characteristic length of the spill (3.168c) | m |
| $L_{v}(\mathrm{~T})$ | heat of vaporisation at temperature T (3.4) | J/kg |
| $L_{v R}$ | dimensionless heat of evaporation (3.111) | - |
| $\mathrm{m}_{\mathrm{w} \text {,ms }}$ | weight (mass) fraction moist in subsoil (3.124) | kg/kg |
| $\mathrm{m}_{\mathrm{w}, \mathrm{NH} 3}$ | mass fraction solved ammonia in water (3.186) | kg/kg |
| $\mathrm{m}_{\mathrm{m}}$ | molar fraction solved chemical in water (3.159) | $\mathrm{mol} / \mathrm{mol}$ |
| $\mathrm{m}_{\mathrm{m}}$ * | limiting molar fraction solved chemical in water (3.172) | $\mathrm{mol} / \mathrm{mol}$ |
| $\mathrm{m}_{\mathrm{m}, \mathrm{v}}$ | mole fraction of vapour above liquid pool (3.80) | $\mathrm{mol} / \mathrm{mol}$ |
| n | wind profile index (3.80) defined by (3.87) | - |
| N | function (3.52) | - |
| Nu | N usselt number (3.10b) | - |
| $\mathrm{N}_{\text {steps }}$ | number of steps in iteration (par. 3.6.4.6) | - |
| $\mathrm{Pa}_{\mathrm{a}}$ | atmospheric pressure (3.86) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{v}}$ | vapour pressure (3.13) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{v}, \mathrm{i}}$ | partial vapour pressure chemical i (3.164) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{v}, \mathrm{NH} 3}$ | partial vapour pressure ammonia (3.186) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{v}, \mathrm{H} 2 \mathrm{O}}$ | partial vapour pressure water (3.186) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{v}}{ }^{\circ}(\mathrm{T})$ | saturated vapour pressure at temperature T (3.3) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{Pr}_{\mathrm{a}}$ | Prandtl number of air (3.10b) | - |
| $\mathrm{Pr}_{\mathrm{v}}$ | Prandtl number of vapour (3.113) | - |
| $\mathrm{q}_{\mathrm{ch}}$ | characteristic evaporation rate (3.174) | - |
| $\mathrm{q}_{\mathrm{d}}$ | mass rate of spray deposition (3.187) | kg/s |
| $\mathrm{q}_{\mathrm{D}}$ | drainage rate (3.32) | kg/s |
| $q_{\text {nett, air }}$ | mass flow rate remaining airborne (3.188a) | kg/s |
| $\mathrm{q}_{\mathrm{R}}$ | dimensionless evaporation rate (3.178) | - |
| $\mathrm{q}_{\text {s }}$ | liquid source discharge rate (3.11) | kg/s |
| $\mathrm{q}_{\mathrm{v}}$ | liquid evaporation rate (3.1) |  |
| $q^{\prime \prime}{ }^{\text {v }}$ | (mean) vaporisation mass flux (3.1) | $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| Q | mass (3.31) | kg |
| $\mathrm{Q}_{\mathrm{d}}$ | mass deposited spray (3.189) | kg |
| $\mathrm{Q}_{\mathrm{L}}$ | mass of liquid spilt (3.1) | kg |
| $\mathrm{Q}_{\text {nett,air }}$ | mass remaining airborne spray (3.189) | kg |


| $\mathrm{Q}_{\mathrm{v}}$ | mass of vapour evolved (3.177) | kg |
| :---: | :---: | :---: |
| $\mathrm{Q}_{\mathrm{ch}}$ | characteristic vapour mass (3.177) | kg |
| $\mathrm{Q}_{\mathrm{R}}$ | dimensionless mass of evolved vapour (3.177) |  |
| Q ${ }_{\text {H }}$ | total amount of heat conducted into the pool (3.7a) | $\mathrm{J} / \mathrm{m}^{2}$ |
| $r$ | liquid pool radius (3.10c) | m |
| $\mathrm{r}_{\mathrm{a}}$ | semi-axis of the elliptic region on the water surface (3.160) | m |
| $r_{\text {b }}$ | semi-axis of the elliptic region on the water surface (3.161) | m |
| $r_{\text {body }}$ | radius of the heat conducting body (3.8a) | m |
| $r_{\text {d }}$ | drop radius (3.12) | m |
| $\mathrm{r}_{\mathrm{gr}}$ | (average) radius gravel stones (3.128) | m |
| $\mathrm{r}_{\mathrm{h}}$ | hydraulic radius defined by (3.148d) | m |
| $\mathrm{r}_{\mathrm{i}}$ | inner radius of annular liquid pool (3.45) | m |
| R | gas constant (3.13) | $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$ |
| Re | Reynold's number $\mathrm{Re}=\rho \times \mathrm{u} \times(2 \times r) / \eta$ (3.10b) | - |
| $R e_{\text {oa }}$ | ambient roughness R eynolds number (3.92) | - |
| S | depth profile shape factor (3.42) | - |
| Sc | Schmidt number Sc = v/D (3.14a) | - |
| $\mathrm{Sc}_{\mathrm{t}}$ | turbulent Schmidt number (3.80) | - |
| $\mathrm{Sc}_{\mathrm{L}}$ | laminar Schmidt number $\mathrm{Sc}_{\mathrm{L}}=v_{\mathrm{L}} / \mathrm{D}_{\mathrm{a}}(3.82)$ | - |
| Sh | Sherwood's number (3.22) | - |
| t | time after the start of the release (3.1) | S |
| $\mathrm{t}_{\mathrm{c}}$ | time noticeable concentrations near river banks (3.152) | S |
| $\mathrm{t}_{\mathrm{c}<\text { lim }}$ | time beyond which chemical concentration (3.163) everywhere is less than the limiting concentration | S |
| $t_{H}$ | horizontal conduction time-scale (3.104) | S |
| $t_{1}$ | validity period for dispersion model (3.153) | S |
| $\mathrm{t}_{\text {sp }}$ | arbitrary duration pool spreading (3.145) | S |
| $\mathrm{t}_{\mathrm{z}}$ | time of liquid penetration (3.21a) | S |
| $\mathrm{t}_{0}$ | heat transfer time-scale (3.100) | S |
| T | liquid pool temperature (3.4) | K |
| $\mathrm{T}_{0}$ | initial liquid pool temperature (par. 3.6.2) | K |
| Ta | ambient temperature (3.10a) | K |
| $\mathrm{T}_{\text {A }}$ | a temperature scale constant (3.27) | K |
| Tb | (normal) boiling point liquid (3.20) | K |
| T ${ }_{\text {c }}$ | critical temperature spilt chemical (3.134) | K |
| T $\mathrm{gr}, 0$ | initial gravel temperature (3.128) | K |
| $\mathrm{T}_{\mathrm{L}}$ | liquid temperature (3.130a) | K |
| Ts | subsoil surface temperature (3.99) | K |
| $\mathrm{T}_{\mathrm{s}, 0}$ | initial subsoil temperature (3.120) | K |
| T $\mathrm{q}_{5}$ | liquid source temperature (3.77) | K |
| Tps | liquid temperature at pool surface (3.13) | K |
| $\mathrm{T}_{\mathrm{p}, \mathrm{a}}$ | T or $\mathrm{T}_{\mathrm{a}}$ (3.99) | K |
| T ${ }_{5 s, 0}$ | initial sand temperature (3.20) | K |
| Tv | vapour temperature (3.133) | K |
| Tw | water temperature (3.9) | K |



| $\alpha_{w}$ | thermal expansivity of water (3.138) | $1 / \mathrm{K}$ |
| :--- | :--- | :--- |
| $\alpha(\mathrm{s})$ | a profile factor (3.71) | - |
|  |  |  |
| $\beta$ | function of $\mathrm{Sc} \mathrm{L}_{\mathrm{L}}$ and $\mathrm{Sc} \mathrm{C}_{\mathrm{t}}$ (3.83) | - |
| $\beta(\mathrm{s})$ | a profile factor (3.64) | - |
| $\beta_{1}$ | intermediate (3.126a) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\beta_{2}$ | intermediate (3.126a) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\beta_{3}$ | intermediate (3.126c) | - |
| $\gamma$ | Euler's constant (3.81a) | - |


| $\varepsilon_{\text {p }}$ | porosity (void fraction) sand (3.20) | - |
| :---: | :---: | :---: |
| $\varepsilon$ | $8 \times u^{2} /(g \times a)(3.55)$ | - |
| $\eta_{L}$ | dynamic liquid viscosity (3.21b) | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\eta_{\mathrm{a}}$ | dynamic air viscosity (3.10d) | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\eta_{\text {w }}$ | dynamic water viscosity (3.69) | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\kappa$ | von K arman's constant (3.80) | - |
| $\lambda$ | thermal conductivity (3.5) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{\mathrm{a}}$ | thermal conductivity of air (3.10c) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{\text {gr }}$ | thermal conductivity of gravel (3.128) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{L}$ | thermal conductivity of liquid (3.130) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{\text {s }}$ | thermal conductivity of subsoil (3.97) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{\text {s, }}$ | thermal conductivity of (dry) sandy subsoil (par. 3.6.4.1) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{V}$ | thermal conductivity of vapour (3.112) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{w}$ | thermal conductivity of water (3.137) | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\mu_{\mathrm{i}}$ | molecular weight of substance i (3.13) | $\mathrm{kg} / \mathrm{mol}$ |
| $\mu_{L}$ | molecular weight of spilt liquid (3.159) | kg/mol |
| $\mu_{w}$ | molecular weight of water (3.159) | kg/mol |
| $v_{\text {a }}$ | kinematic air viscosity (3.10e) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $v_{\text {L }}$ | kinematic viscosity liquid chemical (3.11) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $v_{v}$ | kinematic vapour viscosity (3.14a) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $v_{\text {w }}$ | kinematic water viscosity (3.69) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\xi$ | function (3.68) | - |
| $\rho_{\mathrm{a}}$ | air density (3.10d) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{L}}$ | liquid density (3.4) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{s}}$ | density of subsoil (3.121) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{s}, \mathrm{s}}$ | density of sand (3.20) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{V}$ | vapour density (3.108) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{V}, 0}$ | vapour density at the source (3.192) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{w}$ | density of water (3.12) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\sigma$ | liquid pool surface tension (3.12) | $\mathrm{N} / \mathrm{m}$ |
| $\tau$ | dimensionless time (3.176) | - |
| $\tau_{0}$ | wall shear stress (3.150) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\Phi_{\text {r }}$ | reduced temperature variable (3.27) | - |
| $\Phi(\mathrm{s})$ | function of s (3.63) | - |
| $\Phi_{\text {T }}$ | function of temperature $\mathrm{T}(\mathrm{t})-\mathrm{T}_{\mathrm{a}}(3.98)$ | K |
| $\Phi_{1}(\varepsilon)$ | function (3.54) | - |
| $\Phi_{2}(\varepsilon)$ | function (3.58) | - |
| $\Phi_{3}(\varepsilon)$ | function (3.59) | - |
| $\chi$ sc | argument of (3.80) defined for $\mathrm{U}_{\mathrm{rA}}$ (3.81) | - |
| $\chi_{\text {Pr }}$ | argument of (3.118) defined for $\mathrm{H}_{\mathrm{a}}$ (3.118a) | - |

CPR 14E
C hapter 3 of the ' $Y$ ellow B ook'

| $\psi$ | auxiliary variable (3.97) |
| :--- | :--- |
| $\omega$ | temperature smoothing factor (3.79) |
| $M$ athematical symbols |  |
| $d X / d x$ | differential of quantity $X$ to $x$ <br> $\partial X / \partial x$ |
| partial differential of quantity $X$ to $x$  <br> $\Delta x$ small change in quantity $x$ <br> change in quantity $x$  |  |
| $N$ ote: the numbers between brackets refer to equations. |  |

## Glossary of terms

flash
heat transfer
liquid pool
physical effects models
pressurised liquefied gas
quality
rain out
regression rate
source term

Part of a superheated liquid which evaporates rapidly due to a relative rapid depressurisation until the resulting vapour/liquid-mixture has cooled below boiling point at the end pressure.

Transport of heat due to difference in temperature caused by (a combination of) transport mechanism(s), such as conduction, convection, and radiation.

L ayer of liquid on a subsoil or water surface

M odels that provide (quantitative) information about physical effects, mostly in terms of heat fluxes (thermal radiation), blast due to explosions, and environmental (atmospheric) concentrations.

Gas that has been compressed to a pressure equal to saturated vapour pressure at storage temperature, so that the larger part has condensed to the liquid state.

The mass fraction of vapour in a liquid vapour mixture (two-phase mixture).

Dropping of the small liquid drops from that fraction of the flashing liquid that remains initially suspended in the atmosphere.

The rate of decrease in depth of a liquid pool

Physical phenomena that take place at a release of a chemical from its containment before entering the environment of the failing containment, determining:

- the amount of chemical entering the surroundings in the vicinity of the containment,
- the dimensions of the area or space in which this process takes place,
- the thermodynamic state of the released chemical, like concentration, temperature, and pressure,
- velocities of the outflowing chemical at the boundaries of the source region.
source term model
specific volume

two-phase flow | M odels that provide (quantitative) information |
| :--- |
| about the source term, to be input into a |
| subsequent physical effect model. |

| Volume of one kilogram of a substance |
| :--- |
| (chemical); reciprocal of density. |

vapour | Flow of material consisting of a mixture of liquid |
| :--- |
| and gas, while the gas (vapour) phase is |
| developing due to the vaporisation of the |
| superheated liquid during the flow caused by |
| decreasing pressure along the hole or pipe due to |
| the pressure drop over the resistance. |

void fraction | Chemical in the gaseous state which is in |
| :--- |
| thermodynamic equilibrium with its own liquid |
| under the present saturation pressure at given |
| temperature. |

N ote: $\quad$| The volumefraction of vapour in aliquid-vapour |
| :--- |
| mixture (two-phase mixture). |

some definitions have been taken from [Jones, 1992], [AIChE, 1989],

## Table of Contents

Modifications to Chapter 3: Pool Evaporation ..... 3
List of symbols Chapter 3 ..... 5
Glossary of terms ..... 13
3 Pool evaporation ..... 17
3.1 Introduction ..... 17
3.2 Phenomenon of pool evaporation ..... 19
3.2.1 Introduction to section 3.2 ..... 19
3.2.2 H eat balance ..... 20
3.2.3 Pool spreading ..... 26
3.2.4 M ass transfer ..... 30
3.3 General overview of existing models ..... 33
3.3.1 Introduction to section 3.3 ..... 33
3.3.2 H eat balance ..... 33
3.3.3 Pool spreading ..... 34
3.3.4 M ass transfer ..... 39
3.3.5 Advanced integral models ..... 41
3.4 Selection of models ..... 43
3.4.1 Introduction to section 3.4 ..... 43
3.4.2 Pool evaporation on subsoil and on water surface. ..... 43
3.4.3 Evaporation of chemicals mixed in water ..... 44
3.4.4 Evaporation of chemicals that sink in water ..... 44
3.4.5 Application of simple models ..... 45
3.5 D escription of models ..... 47
3.5.1 Introduction to section 3.5 ..... 47
3.5.2 GASP [W ebber, 1990] ..... 47
3.5.3 Evaporation of cryogen (boiling liquid) on a permeable subsoil ..... 66
3.5.4 Film and nucleate boiling on water surfaces ..... 71
3.5.5 Simple models for evaporation within bunds ..... 75
3.5.6 HACS-R ..... 79
3.6 Application of the selected models: calculation examples ..... 91
3.6.1 Introduction to section 3.6 ..... 91
3.6.2 Calculation example GASP ..... 91
3.6.3 C alculation example H ACS-R ..... 109
3.6.4 Supplementary models. ..... 110
3.7 Interfacing to other models ..... 119
3.7.1 Introduction to section 3.7 ..... 119
3.7.2 Outflow and Spray Release ..... 119
3.7.3 Vapour cloud dispersion ..... 121
3.8 Discussion ..... 123
3.8.1 Introduction to section 3.8 ..... 123
3.8.2 General remarks ..... 123
3.8.3 G asp ..... 123
3.8.4 HACS-R ..... 124
3.8.5 Epilogue ..... 124
3.9 References ..... 125

## 3 Pool evaporation

## $3.1 \quad$ Introduction

M any hazardous chemicals are stored and transported as liquids. Gases may be liquefied by pressurisation, like Liquefied $N$ atural $G$ as (LNG) and Liquefied Petroleum G as (LPG), or by refrigeration, like ammonia ( $\mathrm{NH}_{3}$ ).
A release of volatile or cryogenic liquid may be hazardous to people outside the plant because the released liquid will evaporate while the evolving vapour will disperse into the atmosphere and may reach population centres. Near the source released flammable liquid may be ignited leading to a pool fire.
In case of sudden release of a pressurised liquefied gas, part of the flashing liquid may rain out and form a liquid pool on the subsoil or on water surface. Then, the evolvement of vapour will be additive to the relative large amount of vapour resulting from the fast evaporation of liquid droplets in the air caused by the flashing of the liquid. This topic is described in chapter 2 'Outflow and Spray release'.

The principal purpose of liquid pool evaporation models is to give estimates of the evaporation rate, the duration of the vapour development and the maximum amount of vapour that can evolve. The pool evaporation models will act as a source term for subsequent dispersion models or pool fire models.
Evaporation models require definition of the spill rate, pool area for spills on subsoil and also subsoil density and thermal properties, roughnesses of the subsoil, and subsoil temperature, water temperature and size and depth of the water body for spill onto water, atmospheric conditions like ambient temperature, wind speed and solar radiation. Furthermore, several physical properties of the spilt chemical like vapour pressure as function of temperature, heat capacity, heat of vaporisation, liquid density, viscosity and emissitivity are needed as input, [AIChE, 1989].

In the following sections pool evaporation phenomena will be addressed. Each section will treat the subject from another perspective.
Section 3.2 provides the principles and basic understanding of the phenomenon of pool vaporisation. It will address relevant thermodynamics and transport laws.
Section 3.3 provides an overview of methods and models published in open literature, for the estimation of the characteristics of evaporating pools.
In section 3.4 the considerations which have led to the selection of the recommended models will be elucidated.
Section 3.5 provides complete detailed descriptions of the recommended models and methods. Whenever calculations or analyses have to be made, all necessary information can be found in this chapter, except for the physical properties of the chemical.
Section 3.6 provides examples in using the selected models and methods.
In section 3.7 the interfacing to other models, i.e. the necessary transformation of the results, will be addressed.
Finally, in section 3.8 general considerations are given regarding the models presented and present gaps in the knowledge about pool evaporation.

Other evaporation phenomena that play a roll, for instance in two-phase pipe flows or in spray releases, will be treated in chapter 2 'O utflow and Spray Release'.

### 3.2 Phenomenon of pool evaporation

### 3.2.1 Introduction to section 3.2

A liquid spilt onto the subsoil or water surface will spread. Depending on the properties of the liquid and ambient conditions, the pool will evaporate rapidly or slowly.
In case the pool is confined to a bund, the surface area A of the pool is limited. If this is not the case (transport accidents), the liquid pool will spread and the surface area of the pool $A(t)$ will be a function of time too.
The larger the pool surface, the higher the emission rate, [ $M$ elhelm, 1993]. Once the evaporation of liquefied gases per unit of time and per unit of area has been established, then the evaporation of the spreading pool can be calculated.

T he decreasing liquid mass $Q_{L}$ of an evaporating pool is depending on the mean local evaporation flux $q{ }^{\prime \prime}$ vand the (time-dependent) surface area $A(t)$ of the liquid pool

$$
\begin{align*}
d Q_{L} / d t & =q_{v}  \tag{kg/s}\\
& =q_{v}{ }_{v} \times A(t) \tag{3.1}
\end{align*}
$$

The mean local vaporisation flux $q^{\prime \prime}{ }_{v}$ and the changing pool area $A(t)$ due to spreading, can be considered almost independent, as is the common approach.
$T$ he mean local vaporisation flux $q^{\prime \prime}{ }_{v}$ is depending on the mass transfer coefficient $k_{m}$ and the atmospheric concentration $c_{i}$ just at the liquid pool surface

$$
q^{\prime \prime}{ }_{v}=k_{m} \times c_{i}(z=0) \quad\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

The atmospheric concentration at the surface of the pool is depending on the saturated vapour pressure $P_{v}{ }^{\circ}(T)$ and, therefore, on the liquid pool temperature

$$
\begin{equation*}
c_{i} \sim P_{v}{ }^{\circ}(T) \quad\left(\mathrm{kg} / \mathrm{m}^{3}\right) \tag{3.3}
\end{equation*}
$$

where
$A(t)=$ surface area of the pool as a function of time $\quad\left[\mathrm{m}^{2}\right]$
$c_{i}=$ concentration component $i \quad\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
$\mathrm{k}_{\mathrm{m}} \quad=$ mass transfer coefficient related to concentration [m/s]
$\mathrm{P}_{\mathrm{V}}{ }^{\circ}(\mathrm{T})=$ saturated vapour pressure at temperature $\mathrm{T} \quad\left[\mathrm{N} / \mathrm{m}^{2}\right]$
$q_{v} \quad=$ liquid evaporation rate
[kg/s]
$q^{\prime \prime}{ }_{v} \quad=$ (mean) local vaporisation flux
[ $\left.\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$\mathrm{Q}_{\mathrm{L}} \quad=$ mass of liquid spilt
[kg]
$\mathrm{t}=$ time after the start of the release [s]
$\mathrm{T}=$ liquid pool (surface) temperature [K]
z = coordinate in vertical direction [m]

Summarising, this means that the crucial factors determining the vaporisation rate of an evaporating liquid pool are:

1. average liquid pool temperature T , governed by the heat balance over the liquid pool;
2. liquid pool surface area $A(t)$;
3. mass transfer coefficient $\mathrm{k}_{\mathrm{m}}$.

In the following sections the three crucial factors will be addressed in detail.
Subsection 3.2.2 addresses the heat balance and possible heat sources to the liquid pool. Subsection 3.2.3 addresses the spreading of liquid on subsoil, and floating on water and mixing or sinking into water.
In subsection 3.2.4 the (limiting) mass transfer to the atmosphere will be explained.

### 3.2.2 Heat balance

The evaporation of a liquid requires heat. Heat will be drawn from the surroundings and also from the heat content of the pool itself, tending to decrease the average liquid pool temperature. The general case which must be considered, is that of a liquid pool spreading on subsoil or on water surface, and of which the temperature is changing. W e therefore need to calculate the heat flux transferred into such a pool.

For spills on subsoil the initial stage of vaporisation is usually controlled by the heat conduction from the subsoil, especially for spills of liquids with boiling points far below ambient temperature, under cryogenic conditions.
L ater on, other heat sources will prevail, such as solar heat flux and heat transfer from the atmosphere.

The general formulation of laws of conservation is given by

$$
\text { change content }=\text { input }- \text { output }+ \text { production }- \text { consumption }
$$

So, the conservation of energy, neglecting all mechanical friction terms, applied to an evaporating pool, gives the following heat balance per unit area:

$$
\begin{equation*}
\frac{d\left(\mathrm{~h} \times \rho_{\mathrm{L}} \times \mathrm{C}_{\mathrm{p}, \mathrm{~L}} \times \mathrm{T}\right)}{\mathrm{dt}}=\mathrm{H}_{\mathrm{s} / \mathrm{w}}+\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{rl}}+\mathrm{H}_{\mathrm{rs}}-q^{\prime \prime} \times \mathrm{L}_{\mathrm{v}} \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.4}
\end{equation*}
$$

where
$C_{p, L}=$ specific heat liquid
[J/(kg-K)]
$h=$ pool depth
[m]
$\mathrm{H}_{\mathrm{s} / \mathrm{w}}=$ heat flux from surface beneath (subsoil/water) $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$\mathrm{H}_{\mathrm{a}}=$ convected heat flux from air
[J/( $\left.\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ ]
$\mathrm{H}_{\mathrm{rl}}=$ long-wave solar radiated heat flux
$\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$\mathrm{H}_{\mathrm{rs}}=$ solar radiated heat flux
[J/( $\left.\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ ]
$L_{v}=$ latent heat of vaporisation
[J/kg]
$\mathrm{q}^{\prime \prime}{ }_{v}=$ evaporation flux
t = time after the start of the spill
[s]
$\mathrm{T}=$ temperature of the liquid pool
[K]
$\rho_{\mathrm{L}} \quad=$ liquid density


Figure 3.1 Heat transfer to a liquid pool; taken from [Raj, 1987]

## H eat flux from the subsoil

In case of an instantaneous spill on a solid subsoil, heat will immediately be transferred to the relatively cold evaporating pool from the relatively warm subsoil by heat conduction.
T he resulting heat flow can be estimated by means of the F ourier equation based on the heat penetration theory into a semi-infinite medium (body).
The heat balance over the body has to take into account the change of temperature (heat content) of the body and the heat conduction in the body described by F ourier's law

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}=-\lambda \times \mathrm{dT} / \mathrm{dz} \tag{3.5}
\end{equation*}
$$

$$
\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

| $\mathrm{H}_{\mathrm{c}}=$ heat flux by conduction | $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ |  |
| :--- | :--- | :--- |
| T | $=$ (local) temperature | $[\mathrm{K}]$ |
| z | $=$ depth (coordinate) | $[\mathrm{m}]$ |
| $\lambda$ | $=$ thermal conductivity | $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$ |

$\mathrm{H}_{\mathrm{c}}=$ heat flux by conduction $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$z=$ depth (coordinate) $[\mathrm{m}]$
$\lambda=$ thermal conductivity $\quad[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$
After some manipulations of the equations the heat balance can mathematically be expressed by

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\mathrm{a} \times \frac{\partial^{2} T}{\partial z^{2}} \tag{K/s}
\end{equation*}
$$

with

$$
\begin{equation*}
a=\lambda /\left(\rho \times C_{p}\right) \quad\left(\mathrm{m}^{2} / \mathrm{s}\right) \tag{3.6a}
\end{equation*}
$$

where
a $=$ thermal diffusivity $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$C_{p}=$ specific heat $\quad[J /(\mathrm{kg} \cdot \mathrm{K})]$
Assuming the following conditions:
a. the body is initially at uniform temperature $\mathrm{T}_{0}$;
b. resulting from a sudden fixed change in temperature at the outside to temperature T ${ }_{1}$;
c. due to the fact that the heat conducting medium is considered semi-infinite, the temperature will not change at a very long (infinite) distance from the outside;
summarised mathematically:
$\begin{array}{llll}\text { a) initial condition: } & T(z, t)=T_{0} & \text { for } z \geq 0 & \text { at } t=0 \\ \text { b) boundary condition: } & T(z, t)=T_{1} & \text { at } z=0 \text { for } t \geq 0 \\ \text { c) boundary condition: } & T(z, t)=T_{0} & \text { at } z \rightarrow \infty \text { for } t>0\end{array}$
where
$\mathrm{T}_{0}=$ initial temperature $[\mathrm{K}]$
$\mathrm{T}_{1}=$ new temperature $[\mathrm{K}]$

By doing this the actual dimensions of finite heat conducting bodies are neglected, which leads to the remarkably simple analytical solution given by F ourier.
Applied to the problem at hand this results in the time-dependent heat flux $\mathrm{H}_{\mathrm{c}}(\mathrm{t})$ from the subsoil into the evaporating pool, and is given by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}(\mathrm{t})=-\lambda \times \mathrm{dT} /\left.\mathrm{dt}\right|_{\mathrm{z}=0}=\frac{\lambda \times\left(\mathrm{T}_{0}-\mathrm{T}_{1}\right)}{\sqrt{(\mathrm{a} \times \pi \times \mathrm{t})}} \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.7}
\end{equation*}
$$

The total amount of heat conducted into the pool per square meter during the period until timet, is given by

$$
\begin{equation*}
Q^{\prime \prime}{ }_{H}=2 \times H_{C}(\mathrm{t}) \times \mathrm{t} \tag{3.7a}
\end{equation*}
$$

The denominator of the quotient $\sqrt{(a \times \pi \times t)}$, with dimension length, is often called 'heat penetration depth', see Figure 3.2,

$$
\begin{equation*}
z_{p, H}=\sqrt{(a \times \pi \times t)} \tag{m}
\end{equation*}
$$

This penetration depth plays a roll in case the heat source can not be regarded as semi-infinite. In general the heat penetration theory may be applied if

$$
\begin{equation*}
z_{p, H}=\sqrt{(a \times \pi \times t)} \ll r_{\text {body }} \tag{3.8a}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { Fo } 0<0.2 \tag{-}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{Fo}=\mathrm{a} \times \mathrm{t} / \mathrm{r}_{\text {body }}^{2} \tag{-}
\end{equation*}
$$

```
Fo = Fourier number [-]
r body = radius of the heat conducting body [m]
```

It must be mentioned that the time-dependent boundary condition at the subsoil surface (given by equation (3.7)) makes the heat balance over the evaporating pool a complex problem to solve.


Figure 3.2 Penetration of heat into a semi-infinite medium; taken from [Beek, 1975]

The boiling-rate of spilt cryogens is mainly controlled by the rate at which heat can get into the liquid. F or cryogen spilt onto land, the heat conduction from the subsoil is the prevailing heat source in the initial stages.
In experiments carried out recently by T akeno [1994], it has been reported that for spills of liquid oxygen and hydrogen, the evaporation rates were inversely proportional to the square root of time, except in the early stage just after the start of vaporisation.

It must be mentioned that the approach above is valid for flat solid surfaces. When the subsoil is permeable, for instance like (dry) sand and gravel, the heat penetration theory has to be modified.

H eat flux from the water body
In case of a cold pool floating on water, the heat transfer into the pool will depend on convection currents within the water. It can be assumed that these are sufficient to keep the water at a more or less uniform temperature $\mathrm{T}_{\mathrm{w}}$, and that the heat flux into the pool is

$$
\begin{equation*}
\mathrm{H}_{\mathrm{w}}=\mathrm{k}_{\mathrm{H}, \mathrm{w}} \times\left(\mathrm{T}_{\mathrm{w}}-\mathrm{T}\right) \tag{3.9}
\end{equation*}
$$

where

| $\mathrm{H}_{\mathrm{w}}=$ heat flux by heat transfer from water | $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ |  |
| :--- | :--- | :--- |
| $\mathrm{K}_{\mathrm{H}, \mathrm{w}}=$ heat transfer coefficient on water | $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)\right]$ |  |
| T | $=$ liquid pool temperature | $[\mathrm{K}]$ |
| $\mathrm{T}_{\mathrm{w}}=$ water temperature | $[\mathrm{K}]$ |  |

For boiling on water surface three boiling regimes can be distinguished: nucleate boiling, transition boiling and film-boiling.
The vapour bubble formation at the water liquid interfacing disturbs the heat transfer. The coalescence of bubbles may form an insulation layer between liquid and water, leading to a decrease of heat transfer between water and liquid that results in a decrease of evaporation rate. T his type of boiling is called metastable boiling. The heat transfer coefficient is different for each boiling regime.

If ice formation occured, this would have a considerable effect on the heat transfer from the water body to the liquid pool.
In the past ice formation was considered possible for releases of cryogens on still water surfaces. T he underlying references stem from 1975-1978. W hat is meant by the term 'still waters' in this model remains unclear; for instance, it is unlikely that the depth of the water body would not be relevant.
Zumsteg [1991] reports the formation of small ice particles under experimental conditions, that were dragged by the evolving vapour due to a spill of cryogen onto water. C hang [1982] also reported ice formation on the water surface in experiments on laboratory scale. A survey of experimental spills of cryogenic liquids is given in Prince [1985]; it appears that each cryogen behaves in its own typical way if spilt onto water.
H owever, there is experimental evidence that ice does not form at the water-cryogen interface because of vigorous boiling. W ater droplets may be carried into the evolving vapour, [M elhelm, 1993].
Pool evaporation may be influenced by waves leading to a larger contact surface, and better mixing of the top layer of the water body.
Webber assumes [W ebber, 1990], that an ice crust will not be formed if cryogens are spilt on water. H is model is intended for analyses of spills on large extents of water and all evidence of ice formation seems to stem from small-scale experiments where a limited amount of water was available as a heat source.

H eat flux from the atmosphere

The convected heat flux from air $\left(\mathrm{H}_{\mathrm{a}}\right)$ is given by:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{a}}=\mathrm{k}_{\mathrm{H}, \mathrm{a}} \times\left(\mathrm{T}_{\mathrm{a}}-\mathrm{T}\right) \tag{3.10a}
\end{equation*}
$$

where
$\mathrm{k}_{\mathrm{H}, \mathrm{a}}=$ heat transfer coefficient to the atmosphere
$\left[J /\left(m^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)\right]$
$\mathrm{T}_{\mathrm{a}}=$ ambient temperature
[K]

T he heat transfer coefficient $\mathrm{k}_{\mathrm{H}, \mathrm{a}}$ may be estimated by assuming a turbulent flow over a flat plate by the following equations

$$
\begin{equation*}
\mathrm{Nu}=0.037 \times \mathrm{Pr}_{\mathrm{a}}{ }^{1 / 3} \times \mathrm{Re}^{0.8} \tag{-}
\end{equation*}
$$

for turbulent flow Re>5×105,
with

$$
\begin{align*}
\mathrm{Nu} & =\mathrm{k}_{\mathrm{H}, \mathrm{a}} \times\left(2 \times \mathrm{r}_{\mathrm{p}}\right) / \lambda_{\mathrm{a}}  \tag{-}\\
\mathrm{Re} & =\rho_{\mathrm{a}} \times \mathrm{u}_{\mathrm{w}, 10} \times(2 \times \\
\mathrm{Pr}_{\mathrm{a}} & =v_{\mathrm{a}} / \mathrm{D}_{\mathrm{a}} \\
& \approx 0.786
\end{align*}
$$

where
$r_{p}=$ pool radius [m]
$\mathrm{Nu}=\mathrm{N}$ usselt's number
[-]
$\operatorname{Pr}_{\mathrm{a}}=$ Prandtl's number for air
Re $=$ Reynolds' number
[-]
$\mathrm{u}_{\mathrm{w}, 10}=$ wind speed at 10 metres height [m/s]
$\eta_{\mathrm{a}} \quad=$ dynamic viscosity air $\quad\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right]$
$\lambda_{\mathrm{a}} \quad=$ thermal conductivity of air $\quad[\mathrm{J} /(\mathrm{K} \cdot \mathrm{m} \cdot \mathrm{s})]$
$\rho_{\mathrm{a}}=$ density air $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$v_{\mathrm{a}}=$ kinematic viscosity of air $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$D_{a}=$ diffusion coefficient of air $\quad\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$H$ eat flux from radiation

The rate of long-wave radiation heat exchange $\left(\mathrm{H}_{\mathrm{rl}}\right)$ between the pool surface and the surroundings and the solar radiation ( $\mathrm{H}_{\mathrm{rs}}$ ) can be calculated by equations (4.36) and (4.37) of the chapter Vapour cloud dispersion (page 4.62).

H eat transfer in the bulk of the pool

Studer [1988] states that a rigorous way to describe the evaporation of a liquid pool requires an incorporation of all heat and mass transfer components, without ignoring the impact of the intra-pool heat transfer resistance. This latter assumption is considered to be a conservative one, and often made implicitly by assuming a uniform liquid pool temperature.
A deep pool, resulting from a major chemical release, behaves as if it consisted of two separate elements: a thin surface layer and the bulk liquid pool.
Studer shows the effect of intra-pool heat transfer resistance can be ignored in case the initial height of the instantaneous pool is about 4 metres.
It may be expected, however, that the bulk heat transfer resistance will have a substantial effect on spills in bunds with huge barriers, but not in case of unbounded spreading while the liquid height quickly diminishes in time.

### 3.2.3 Pool spreading

Released liquid will spread onto the subsoil or the water surface in the immediate vicinity of the failing containment.
The spreading will continue unless the pool is contained by a dike or channelled into a sump, or when the liquid has spread to such an extent that its thickness is of the same magnitude as the subsoil roughness, or until the evaporation rate is equal to the release rate so that the amount of liquid in the pool does not increase any more.
The maximum pool diameter of a spreading liquid pool will depend on the topography of the subsoil near the release point. In industrial plants often vessels have been placed in bunds (low walls or dikes). In case the pool is confined to a bund the surface area of the pool is limited. If not, the liquid pool will spread and the surface area of the pool will be a function of time during a large part of the evaporation.

On subsoil most liquid spills at industrial plants will be confined, however not in the case of transportation. Spills onto water will be unbounded, although the width of the water body (channels) may act as a barrier. In practice, very often no barrier is provided around storage tanks for gases liquefied by compression. T his means that for the determination of the evaporation of released condensed gases, the spreading of the liquid must be considered. T he extent of spreading of an unconfined liquid spill is a key factor that effects the emission rate from the pool surface.
As the liquid spreads, three flow regimes are recognised [M elhelm, 1993]:

1. gravity - inertia regime: gravitational acceleration of the descending liquid mass is counter-balanced by inertia,
2. gravity - viscous regime: in which the gravitational spreading force is opposed by friction at the liquid-subsoil interface,
3. surface tension - viscous regime: in which for very thin liquid films, surface tension replaces gravity as the driving force.

Cryogenic spills rarely reach the gravity-inertia regime because of their rapid evaporation. The surface tension - viscous regime is of importance for heavy hydrocarbons on water.
For the calculation of the evaporation of liquefied gases on subsoil, a distinction should be made between a permeable and a non-permeable subsoil, as the spilt liquid may sink into the ground.

### 3.2.3.1 Release on land within bunds

T he presence of second containments (bunds) reduces the evaporation rate by limiting the pool area, and providing for longer contact times between liquid and subsoil, leading to reduction of heat conduction from the subsoil to the evaporating liquid [W orld Bank, 1988].
In case the liquid is caught in a bund, the spreading of the spill will be limited. T he maximum pool size will be the size of the bund. Of course, this will only be the case when the dimensions of the bund are well designed. If the bund is too small, the released liquid will simply spill over the dike. F urthermore, bund overtopping due to dynamic force may be the cause for secondary containments not to be able to cope with a sudden release of large amounts of liquid [W ilkinson, 1991].

Also in Phelps [1992] a model based on computational fluid dynamics has been presented that is able to predict the behaviour of a running liquid against vertical or inclined walls.

### 3.2.3.2 Continuous release on land without a bund

T he pool will stop spreading when the release of liquid has stopped due to a cut-off or exhaustion. Also when the evaporation rate of the pool equals the release rate on the subsoil the pool will reach its maximum diameter.
In case of a continuous rel ease of liquid, the liquid pool will eventually reach a specific depth, where evaporation through the surface balances the steady discharge into the centre of the pool.

A simple model of viscous effects appears reasonably realistic [W ebber, A pr. 1991] and leads to depth of order

$$
\begin{equation*}
\mathrm{h}_{\mathrm{c}, \infty}=\left(\frac{6 \times v_{\mathrm{L}} \times \mathrm{q}_{\mathrm{S}}}{\left(\rho_{\mathrm{L}} \times \pi \times \mathrm{g}\right)}\right)^{0.25} \tag{m}
\end{equation*}
$$

where
$\mathrm{g}=$ acceleration due to gravity $\quad\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$h_{c, \infty}=$ minimum depth spreading and vaporising [m]
liquid pool under a steady discharge
$q_{s} \quad=$ liquid source discharge rate
[kg/s]
$v_{\mathrm{L}}=$ kinematic liquid viscosity
[ $\mathrm{m}^{2} / \mathrm{s}$ ]
$\rho_{\mathrm{L}} \quad=$ liquid density

Experimentally, M oorhouse and Carpenter [Webber, Apr. 1991] have studied continuous releases of LN G on smooth concrete, and concluded a spreading depth of around 1 centimetre.

### 3.2.3.3 Instantaneous release on land without a bund

In practical situations the pool will spread until it reaches some minimum thickness which is related to the surface roughness. As typical values a lower limit of 5 millimetres for very smooth surfaces and for rough surfaces several centimetres were suggested earlier, see table 3.1.
Another suggestion is simply to assume a maximum pool area based on the topography of the surroundings, according to the analyst's judgement.

Table 3.1 Characteristic average roughnesses of some subsoils

| Subsoil | Average roughness <br> $\mathbf{( m )}$ |
| :--- | :---: |
| Flat sandy soil, concrete, stones, industrial site | 0.005 |
| Normal sandy soil, gravel, railroad yard | 0.010 |
| Rough sandy soil, farmland, grassland | 0.020 |
| Very rough, grown over sandy soil with pot-holes | 0.025 |

The pool area can be estimated conservatively by assuming that all of the released liquid spreads instantaneously to the minimum thickness, and reaches its maximum pool size immediately.
This simplifying assumption leads to overpredictions for the vaporisation rate shortly after the spill. This can be neglected for non-boiling volatile liquids because of the relatively long duration of the evaporation at low evaporation flux $\mathrm{q}^{\mathrm{v}} \mathrm{v}$.

Low volatile liquid releases at ambient conditions evaporate at considerable rates only when the pool surface is relatively large, compensating for a relatively low vaporisation mass flux. This may be the case when large amounts of liquid run into a large bund or can spread out to a large extent.

### 3.2.3.4 Evaporation of chemicals mixed in water [Raj, 1974]

When a soluble chemical water is spilt on water, it rapidly dissolves. Chemicals may not only be readily miscible with water, but may also have high vapour pressures at ambient temperature. W hen such liquids are spilt, vapour may be generated. When a water-miscible liquid is spilt on a water surface, mixing takes place, thereby diluting the spilt liquid.
The mixing is caused by molecular diffusion in calm water and mass convection (turbulent diffusion) in streaming rivers. In rivers, the main cause for mixing is stream turbulence. M ixing may take place preferentially in one direction. It depends on flow conditions, flow geometry and water density gradients.
In rivers, waves are not important. In general the effects of salinity-driven mixing can be ignored.

### 3.2.3.5 Evaporation of chemicals that sink in water [Raj, 1974]

There are many liquid chemicals with densities larger than that of water, whose boiling point at atmospheric pressures are less than the water temperature, for instance, chlorine. When such liquids are spilt on water, they may sink and vaporise at the same time because of their low-boiling point.
When a large mass ('blob') of a heavy liquid is spilt on the surface of water in a very short time, the liquid sinks 'en masse' only for a small depth. T he increasing sinking velocity of the blob results in a pressure force on the front face. When this pressure force exceeds the internal resistance of the blob, the blob will be broken into small-
sized drops. D ue to the break-up of the large blob of heavy liquid into smaller drops, the liquid will evaporate rapidly due to massive heat transfer from the surrounding water.

e
Figure 3.3 Schematic illustration of the sequence of blob break-up into drops [Raj, 1974]

The parameter which determines the stability of a blob or a drop, or resistance to breaking, is the Weber number, being the ratio of the pressure force to the surface tension force:

$$
\begin{equation*}
 \tag{3.12}
\end{equation*}
$$

$$
(-)
$$

Experimental evidence indicates that most liquids tend to break-up when the W eber number is larger than about 10. It can be shown that the duration over which a large mass, such as occurs in a spill, breaks up into smaller drops, is very short. Experiments indicate that, when a big blob breaks up, drops of various sizes are formed with the drop-size distribution being a function of various physical properties, parameters such as the properties of the liquid and the medium, the agency which causes the break-up, and others.

### 3.2.4 Mass transfer

For liquids having normal boiling points near or above ambient temperature, mass transfer by diffusion will be the limiting factor. The wind is removing vapour from the pool surface, and due to the resulting concentration gradient mass transfer is induced; liquid will evaporate in order to restore the partial pressure which is in thermodynamic equilibrium to the liquid in the pool at its temperature.
So, the evaporation of a non-boiling liquid depends mainly on the rate at which the vapour can be removed by the air flow above the pool.
In case of boiling liquids with a mass transfer that is very fast, the mass transfer resistance may be neglected as a reasonable first approximation.

When a volatile (non-boiling) soluble liquid is spilt into water, the vaporisation of the chemical takes place only at the water surface, and is caused by the difference in (partial) vapour pressure of the solved chemical at the water surface and in the atmosphere. T he evaporation mass flux $q$ " ${ }_{v}$ depends on the mass transfer coefficient $\left(k_{m}\right)$ and the vapour concentration ( $c_{i}$ ) at the liquid pool surface. The vapour concentration is proportional with the saturated vapour pressure of the liquid at the pool surface, depending on its temperature. A pplying the ideal gas law results to

$$
\begin{aligned}
\mathrm{q}^{\prime \prime} & =\mathrm{D}_{\mathrm{v}} \times \mathrm{dc}_{\mathrm{i}} / \mathrm{dz} \\
& =\mathrm{k}_{\mathrm{m}} \times \mathrm{c}_{\mathrm{i}}(\mathrm{z}=0)
\end{aligned}
$$

$$
\begin{equation*}
\approx k_{m} \times P_{v}\left(T_{p s}\right) \times \mu_{i} /\left(R \times T_{p s}\right) \tag{3.13}
\end{equation*}
$$

where
$c_{i}=$ concentration component $\mathrm{i} \quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$D_{v}=$ diffusion coefficient vapour in air
[ $\mathrm{m}^{2} / \mathrm{s}$ ]
$\mathrm{k}_{\mathrm{m}} \quad=$ mass transfer coefficient related to concentration
[ $\mathrm{m} / \mathrm{s}$ ]
$q^{\prime \prime}{ }_{v}=$ vaporisation mass flux
$\left[\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$P_{v}(T)=$ vapour pressure at temperature $T$
[ $\mathrm{N} / \mathrm{m}^{2}$ ]
$\mathrm{R} \quad=$ international gas constant
[J/(mol $\cdot \mathrm{K})]$
$\mathrm{T}_{\mathrm{ps}}=$ liquid temperature at pool surface
[K]
$z=$ coordinate in vertical direction
[m]
$\mu_{\mathrm{i}} \quad=$ molecular weight of substance i
[kg/mol]
Several empirical correlations for estimation of the mass transfer coefficient have been proposed in literature in the following generalised form

$$
\begin{equation*}
k_{m}=f\left(u_{w, 10}, r_{p}, S c\right) \tag{3.14}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{Sc}=v_{\mathrm{V}} / \mathrm{D}_{\mathrm{v}} \tag{3.14a}
\end{equation*}
$$

where
$\mathrm{r}_{\mathrm{p}}=$ liquid pool radius [m]
Sc $=$ Schmidt number
$D_{v} \quad=$ diffusion coefficient of vapour into air
[ $\mathrm{m}^{2} / \mathrm{s}$ ]

CPR 14E
Chapter 3 of the 'Y ellow B ook'

$$
\begin{array}{lll}
v_{\mathrm{v}} & =\text { kinematic viscosity vapour } & {\left[\mathrm{m}^{2} / \mathrm{s}\right]} \\
\mathrm{u}_{\mathrm{w}, 10}=\text { wind speed at standard } 10 \text { metres height } & {[\mathrm{m} / \mathrm{s}]}
\end{array}
$$

A model for the mass transfer coefficient $\mathrm{k}_{\mathrm{m}}$ based on a more up-to-date understanding of the turbulent atmospheric flow has been developed by [Brighton, 1987]. In this model molecular diffusion is incorporated in the boundary conditions.

Experimental data about mass transfer from evaporating liquid pools as reported in $K$ awamura and $M$ acK ay [1987] are given below. $N$ ote that the wind velocity was not made explicit in this publication.
$N$ ote that the dimensions of the air temperature and vaporisation mass flux are degrees C elsius ${ }^{\circ} \mathrm{C}$ and $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~h}\right)$ respectively.

Table 3.2 Steady state evaporation rate of liquid pools (after 15 minutes),
without subsoil conduction (insulated pan)

| Chemical | $\mathbf{T}_{\text {air }}$ <br> $\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{q} \mathbf{q}^{\mathbf{v}}$ <br> $\mathbf{( k g} /\left(\mathbf{m}^{2} \cdot \mathbf{h}\right) \mathbf{)}$ |
| :---: | :---: | :---: |
| 1 | Toluene | 21 |
| 2 | Toluene | 4.49 |
| 3 | Cyclohexane | 29 |
| 4 | Cyclohexane | 24 |
| 5 | Hexane | 25 |
| 6 | Hexane | -5 |
| 7 | Methanol | 22 |
|  |  | 7 |
| 8 | Dichloromethane | -6 |
| 9 | Dichloromethane | 1 |
| 10 | Dichloromethane | 21 |
| 11 | Dichloromethane | 25 |
| 12 | Pentane | 1 |
| 13 | Pentane | 5.89 |
| 14 | Pentane | 7 |
| 15 | Pentane | 7 |
| 16 | Freon11 | 9 |
| 17 | Freon11 | 0 |

Table 3.3 Average evaporation rate of liquid pools during the experiment, with subsoil conduction.

| Chemical | $\mathbf{T}_{\text {air }}$ <br> $\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{q}^{\mathbf{\prime \prime}} \mathbf{v}$ <br> $\left(\mathbf{k g} / \mathbf{m}^{2} \cdot \mathbf{h}\right)$ |  |
| :--- | :--- | :---: | :---: |
| 18 | Toluene | 25 | 3.90 |
| 19 | Cyclohexane | 29 | 9.38 |
| 20 | Hexane | 27 | 7.28 |
| 21 | Pentane | 23 | 23.00 |
| 22 | Pentane | 25 | 27.10 |
| 23 | Freon11 | 31 | 34.88 |

Note that in conformity with the original publication the vaporisation mass flux has been given in kilogram per square metre per hour, and the temperature in degrees Celsius.

### 3.3 General overview of existing models

### 3.3.1 Introduction to section 3.3

The various models for pool evaporation on subsoil or water surface presented in the open literature have a broadly similar structure [W ebber, 1991]. All models comprise a heat balance, pool spreading models, and correlations for the local vaporisation flux.
The models differ in:

- the number of heat sources taken into account;
- the collection of selected submodels for spreading and mass transfer;
- the way of approximation by analytical solutions (partially);
- the degree of complexity due to ignoring effects;
- the applied numerical methods to solve the set of equations.

M ost models have been based on the same limited number of publications dealing with mass transfer to the atmosphere and pool spreading.

In general the classic models are based on the sharp distinction between boiling and non-boiling liquids, on a non-adequate representation of the expected behaviour of pools of different viscosity on different surfaces [W ebber, 1991], and sometimes still on the rather antique mass transfer relation of Sutton. Furthermore, simplifying assumptions were made to describe the spreading of the pool.
These models can be improved from a scientific viewpoint and from the viewpoint of an adequate numerical solution. Advanced and complete but complex models have been found in recent literature. The pool evaporation model GASP has been developed by SRD (AEA)/H SE. Similar models have been found in literature.

In the following section, submodels will be addressed first, dealing separately with the heat balance, mass transfer, or pool spreading.
In this section the following themes are addressed:

- subsection 3.3.2 addresses the submodelling of the heat balance;
- subsection 3.3.3 addresses the submodelling of pool spreading;
- subsection 3.3.4 addresses the submodelling of mass transfer;
- subsection 3.3.5 addresses recent models, which solve the problem integrally.


### 3.3.2 Heat balance

Simple modelling is based on a sharp distinction between boiling and nonboiling liquids. A sudden switch between models have to be made when describing the transition from boiling to non-boiling. This results in a rather unpleasant discontinuity in the evaporation rate at an arbitrary vapour pressure.
In the modelling of evaporation of boiling liquids, only the heat conduction from the subsoil or from the water surface has been taken into account.

In recent models [Webber, 1990], [W oodward, 1990], [SuperChems 4.0] the complete heat balance is taken into account and thus none of the heat sources are ignored to simplify the model; see paragraph 3.2.2. N o principal distinction is made between boiling and non-boiling pools.

### 3.3.2.1 Film and nucleate boiling on water surfaces

In the previous Y ellowBook a method has been described to estimate the boiling rate of a cryogen on a water surface, which has been recognised as meta-stable boiling for most industrial commodities [Y ellowBook, 1988].

In the GASP-model a more simplified approach has been chosen. It is assumed that the spilt chemical boils in the film-boiling regime when the heat flux into the liquid pool exceeds the so-called critical heat flux. If not, the heat flux into the pool is described with a constant heat transfer coefficient.

### 3.3.3 Pool spreading

### 3.3.3.1 Pool spreading on land

Simple models for pool spreading on solid surface
Simple spreading models consist of simple mathematical expressions, mostly power expressions, that relate the radius of the spreading liquid pool to the time from the start of the release

$$
\begin{equation*}
r(t)=C_{s} \times t^{E s} \tag{m}
\end{equation*}
$$

```
r = radius of the spreading liquid pool [m]
```

$\mathrm{t}=$ time from of the release [s]
The values for constant $\mathrm{C}_{\mathrm{s}}$ and exponent $\mathrm{E}_{\mathrm{s}}$ differ for liquids spreading on land and for liquids spreading on water. T he constant $\mathrm{C}_{5}$ and exponent $\mathrm{E}_{\mathrm{s}}$ depend on the type of release: continuous or instantaneous.
An overview of these simple models can be found in Raj [1981], Raj [1987]. Other models have been given in Shaw [1978], WorldBank [1988], M elhelm [1993] and Frie [1992].
M ost remarkable is that the model equations of the three groups differ, regarding which seem qualitatively the same spreading conditions.

Obviously, this varied collection of relations leads to the conclusion that correlations have been made for different situations or have been based on different assumptions. $M$ any previous analyses based on ordinary differential equations, have used the simple assumption that the radial spreading rate ( $u$ ) of a circular liquid pool is proportional to $\sqrt{(\mathrm{g} \cdot \mathrm{h})}$, where $(\mathrm{g})$ is the acceleration due to gravity and $(\mathrm{h})$ is the mean pool depth. For pools spreading on water, this is valid for a restricted time interval after any initial radial acceleration phase and before the pool becomes thin enough for turbulent or viscous effects to become important. In this case (g) must be multiplied by the relative density difference. In other circumstances the spreading behaviour is quite different and generally more complicated [W ebber, Jan. 1991].

T he sharp distinctions between instantaneous and continuous releases, and between spreading liquid pools and fixed (confined) pools, are made to simplify the spreading model. These rather academic idealisations always shift the problem to the application of the model in practical situations. Consequently, often these ideal assumptions will not hold.

Shallow layer equations governing pool spreading on land

It should be noted that the sharp distinction between continuous and instantaneous releases, which is basically made in the simple spreading models, puts forward the question what to choose in case of semi-continuous or time-dependent releases that appear in reality. In the following a more general approach is made in order to cover the whole range of different spreading regimes for different types of liquid releases.

If the horizontal dimension of the pool is much larger than its depth, the usual fluid equations may be reduced to the approximate form, the so-called 'shallow layer equations', [W ebber, 1986]. In case of axial symmetry and instantaneous release, ignoring the vaporisation, the horizontal momentum equation may be expressed as

$$
\begin{equation*}
\partial u / \partial t+u \times \partial u / \partial r=-g \times \partial h / \partial r \quad \quad\left(\mathrm{~m} / \mathrm{s}^{2}\right) \tag{3.16}
\end{equation*}
$$

and secondly, the conservation of mass:

$$
\begin{equation*}
\partial \mathrm{h} / \partial \mathrm{t}+\mathrm{u} \times \partial \mathrm{h} / \partial \mathrm{r}+\mathrm{h} / \mathrm{r} \times \partial(\mathrm{r} \times \mathrm{u}) / \partial \mathrm{r}=0 \tag{3.17}
\end{equation*}
$$

where

| $u$ | $=$ radial velocity | $[\mathrm{m} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| $r$ | $=$ radius of the spreading liquid pool | $[\mathrm{m}]$ |
| h | $=$ liquid pool height | $[\mathrm{m}]$ |
| g | $=$ gravitational acceleration | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ |

Instead of the gravitational acceleration on subsoil, the reduced acceleration due to gravity will be needed for pools spreading on water.
The process of pool spreading is controlled by the gravitational acceleration of the descending liquid mass and the surface tension, versus the inertia of the liquid mass and the friction due to liquid viscosity.

The solutions that can be derived for the shallow layer equations will not be in the form of one simple power relation for the growth of the pool radius versus time: $r(t) \approx t^{n}$. H owever, the solution may be somewhat artificially split up into regimes. These regimes could be approximated by power relations $r(t) \approx t^{n}$, although these are merely a tangent to the curve, [W ebber and Brighton, 1987].
F or pools spreading on subsoil, the following approximating power relations could be distinguished:

1a. inviscid or gravity-inertia regime: $r(t) \approx \sqrt{\left(C_{0}+C_{1} \times t^{2}\right)}(m)$
1b. gravity-turbulent regime:
$r(t) \approx C_{2} \times t^{2 / 7}$
(m)
2. gravity-viscous regime:
$r(t) \approx C_{3} \times t^{1 / 8} \quad(m)$
(3.18c)


Figure 3.4 A non-volatile pool spreading on subsoil; [Webber and Brighton 1987]

For spills onto water the density difference between water and the floating liquid should be taken into account, and, furthermore, the motion of the water beneath the pool [W ebber and Brighton, 1987]:

1a. inviscid or gravity-inertia regime: $r(t) \approx C_{4} \times t^{1 / 2} \quad(m)$
1b. gravity-turbulent regime:
$r(t) \approx C_{2} \times t^{2 / 7} \quad(m)$
$r(t) \approx C_{5} \times t^{1 / 4} \quad(m)$

Obviously one simple power relation between pool radius versus time can not describe the spreading of a pool on a flat surface for all regimes. T his may explain why so many spreading relations have been found in literature.

Evaporation of cryogen (boiling liquid) on a permeable subsoil
A spilt cryogen may soak into permeable subsoil. F reezing of water in the soil column may prevent the liquid from penetration into the subsoil.
Obviously, the effect of percolation into the subsoil is more important for small spills than large spills where the liquid pool may be substantially thicker than the penetration depth into the subsoil.

M odels for evaporation of cryogens have been given earlier for dry and moist porous subsoil and gravel layers [Y ellowBook, 1988]. These models are all based on the time-dependent heat penetration theory as has been explained in paragraph 3.2.2.

In T akeno [1994], laboratory experiments have been reported in which cryogenic spills of oxygen on a dry sand layer, liquid oxygen was observed to vaporise while
constantly soaking into and rolling up the upper section of the layer. T he leading edge of the rolled-up sand layer was observed to move downwards into the sand layer.

The evaporation rate was determined simply by the velocity of liquid penetration into the dry sand layer, which was nearly independent of the liquid depth. T his indicates that the evaporation rate is independent of time and that its rate can be determined by the liquid penetration velocity alone, by

$$
\begin{equation*}
H=\rho_{s s} \times C_{p, s s} \times\left(T_{s s, 0}-T_{b}\right) \times\left(1-\varepsilon_{p}\right) \times u_{p} \tag{3.20}
\end{equation*}
$$

| H | $=$ heat flux | $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ |
| :--- | :--- | :--- |
| $\rho_{s s}$ | $=$ density of sand | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{C}_{p, s s}=$ specific heat of sand | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |  |
| $\mathrm{T}_{s s, 0}=$ initial sand temperature | $[\mathrm{K}]$ |  |
| $\mathrm{T}_{\mathrm{b}}=$ boiling point liquid | $[\mathrm{K}]$ |  |
| $\varepsilon_{p}=$ porosity (void fraction) sand | $[-]$ |  |
| $\mathrm{u}_{\mathrm{p}}$ | $=$ penetration velocity in the sand | $[\mathrm{m} / \mathrm{s}]$ |

In the experiments the liquid penetration velocity was merely constant at about $0.0014 \mathrm{~m} / \mathrm{s}$, regardless of the liquid depth.
U nfortunately, T akeno [1994] does not supply a model for the calculation of the penetration velocity in the sand $u_{p}$, and an additional submodel have to be taken from elsewhere.

T he penetration of fluids into soil is a complex phenomen which depends on the type, geometry and resistance properties of the soil, the penetrating material properties and ambient conditions [M elhelm, 1992].
The penetrating fluids into soil is governed by gravitational and capillary forces. In case of low-boiling fluids and cryogens the evolving vapour will cause an opposite vapour flow against the soaking liquid. Apparently the upward force due to the outblowing vapour due to vaporisation by extracting heat from the sand grains, is in equilibrium with gravitation. When the heat content of the sand at a certain height is exhausted, the liquid will sink deeper into the subsoil.
A rather simplified model presented in M elhelm [1992] assumes liquid penetration to behave as saturated piston flow, influenced by gravitational forces only. So, in this approach all effects of capillary forces, vaporisation of liquid, freezing of the moisture in the subsoil, lateral spreading and heat conduction, have been neglected. In M elhelm [1992] the penetration depth of liquid soaking into porous subsoil is given by

$$
\begin{align*}
& z_{p}=K_{0} \times t_{z}  \tag{m}\\
& K_{0}=\rho_{\mathrm{L}} \times g \times a_{\mathrm{si}} / \eta_{\mathrm{L}}\left(\mathrm{~T}_{\mathrm{b}}\right)
\end{align*}
$$

So, that

$$
u_{p} \approx K_{0}
$$

(m/s)
(3.21c)
where

| $\mathrm{a}_{\mathrm{si}}$ | $=$ intrinsic permeability of the soil | $\left[\mathrm{m}^{2}\right]$ |
| :--- | :--- | :--- |
| g | $=$ gravitational acceleration | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ |
| $\mathrm{K}_{0}$ | $=$ hydraulic conductivity of the soil | $[\mathrm{m} / \mathrm{s}]$ |
|  | at saturated conditions |  |
| $\mathrm{t}_{\mathrm{z}}$ | $=$ time of penetration | $[\mathrm{s}]$ |
| $\rho_{\mathrm{L}}\left(\mathrm{T}_{\mathrm{b}}\right)$ | $=$ liquid density at boiling point | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{z}_{\mathrm{p}}$ | $=$ depth of liquid penetration | $[\mathrm{m}]$ |
| $\eta_{\mathrm{L}}\left(\mathrm{T}_{\mathrm{b}}\right)$ | $=$ dynamic viscosity liquid at boiling point | $\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right]$ |

Some values for the intrinsic permeability have been given in M elhelm [1992].

Table 3.4 Intrinsic permeability for
some subsoil types

| Subsoil type | $\mathbf{a}_{\mathbf{s i}}\left(\mathrm{m}^{2}\right)$ |
| :---: | :---: |
| coarse sand | $10^{-9}$ |
| silty sand | $10^{-12}$ |
| clay till | $10^{-15}$ |

The remarkably different outcome of both models in Yellow Book [1988] and Takeno [1994] concerning the time-dependency of the evaporation rate, might be due to a difference in ratio between the initial liquid height and the height of the sand layer.

### 3.3.3.2 Releases of non-floating chemicals on water

M ixers

HACS-R is an evaporation model for volatile water-soluble chemicals into water, like methanol. It has been developed for U.S. C oast Guard by Raj and is described in a NTIS-report [Raj, 1974]. D odge reported good model performance in 1982.
It is assumed that the entire liquid spilt goes into solution in water first. After estimating the liquid concentration in the water, the vapour pressure on the water surface of the chemical can be estimated, as well as the vaporisation rate.
The model HACS-R has recently been applied with some modifications [D harmavaram, 1994].

## Sinkers

In a NTIS-report [Raj, 1974] a model has been given describing the evaporation phenomena for liquids heavier than water with boiling temperatures less than ambient.
An evaporative model has been worked out based on the assumption of drop formation when a blob of heavy, low-boiling-point liquid is spilt on a water surface. It has been assumed that the initial blob of liquid breaks up into uniform and equallysized drops because of pressure forces and instability of the blob.
The details of drag on a deformable drop have been included in the analysis to calculate the terminal velocity of drops. A heat-mass similarity model is used to predict the vaporisation rate. In this model it is assumed that the liquid is immiscible with water.

### 3.3.4 Mass transfer

The wind is removing vapour from the pool surface, and due to the resulting concentration gradient, mass transfer is induced; liquid will evaporate in order to restore the partial pressure which is in thermodynamic equilibrium to the liquid in the pool at its temperature. Thus, the evaporation of a non-boiling liquid depends mainly on the rate at which the vapour can be removed by the air flow above the pool.

The evaporation mass flux $q^{\prime \prime}{ }_{v}$ depends on the mass transfer coefficient $\left(k_{m}\right)$ and the vapour concentration $c_{i}$ at the liquid pool surface

$$
\begin{equation*}
q^{\prime \prime}{ }_{v}=k_{m} \times c_{i}(z=0) \quad\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.2}
\end{equation*}
$$

where

| $\mathrm{c}_{\mathrm{i}}$ | $=$ concentration component i | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{k}_{\mathrm{m}}$ | $=$ mass transfer coefficient | $[\mathrm{m} / \mathrm{s}]$ |
| $\mathrm{q}^{\prime \prime}{ }_{\mathrm{v}}$ | $=$ vaporisation mass flux | $\left[\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ |
| z | $=$ coordinate in vertical direction | $[\mathrm{m}]$ |

The dimensionless correlation of R aj \& $M$ orris for the mass transfer coefficient $k_{m}$, is based on the heat-mass analogy [Raj, 1987], [Studer, 1988]

$$
\begin{equation*}
S h=0.037 \times\left(\operatorname{Re}^{0.8}-15500\right) \times S c^{1 / 3} \tag{-}
\end{equation*}
$$

with

$$
\begin{equation*}
S h=k_{m} \times I_{p} / D_{v} \tag{-}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}=\rho_{\mathrm{a}} \times u_{\mathrm{w}, 10} \times\left(2 \times \mathrm{r}_{\mathrm{p}}\right) / \eta_{\mathrm{a}} \tag{-}
\end{equation*}
$$

where

| Re | $=$ Reynold's number | $[-]$ |
| :--- | :--- | :--- |
| $\rho_{\mathrm{a}}$ | $=$ density air | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{u}_{\mathrm{w}, 10}=$ wind speed at standard 10 metres height | $[\mathrm{m} / \mathrm{s}]$ |  |
| $\eta_{a}=$ dynamic viscosity air | $\left[\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right]$ |  |
| Sh | $=$ Sherwood's number | $[-]$ |
| $\mathrm{k}_{\mathrm{m}}=$ mass transfer coefficient | $[\mathrm{m} / \mathrm{s}]$ |  |
| $I_{\mathrm{p}}=$ length pool along-wind direction | $[\mathrm{m}]$ |  |
| $\mathrm{D}_{\mathrm{v}}=$ diffusion coefficient vapour in air | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |  |

N ote that Sherwood's number Sh for mass transfer is on the analogy of the N usselt's number Nu for heat transfer.

In the past the correlation of Sutton has been given for the mass transfer coefficient $\mathrm{k}_{\mathrm{m}}$. This relation works well for laboratory experiments but the peculiar dimensionality of the result makes extrapolation suspect [W ebber, 1987].

A similar model has been given by $M$ acK ay \& M atsugu [K awamura, 1987] which has been validated against a number of experiments

$$
\begin{equation*}
\mathrm{k}_{\mathrm{m}}=\mathrm{C}_{\mathrm{m} \& \mathrm{~m}} \times \mathrm{u}_{\mathrm{w}, 10} 0.78 \times\left(2 \times \mathrm{r}_{\mathrm{p}}\right)^{-0.11} \times \mathrm{Sc}^{-0.67} \tag{3.24}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{Sc}=v_{\mathrm{V}} / \mathrm{D}_{\mathrm{a}} \tag{-}
\end{equation*}
$$

where

| $\mathrm{C}_{\mathrm{m} \& \mathrm{~m}}=0.004786$ | $\left[\mathrm{~m}^{0.33} / \mathrm{s}^{0.22}\right]$ |  |
| :--- | :--- | :--- |
| $\mathrm{D}_{\mathrm{a}}=$ diffusion coefficient vapour in air | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |  |
| $\mathrm{k}_{\mathrm{m}}=$ mass transfer coefficient | $[\mathrm{m} / \mathrm{s}]$ |  |
| $\mathrm{r}_{\mathrm{p}}$ | $=$ radius of the liquid pool | $[\mathrm{m}]$ |
| $\mathrm{u}_{\mathrm{w}, 10}=$ wind speed at standard 10 metres height | $[\mathrm{m} / \mathrm{s}]$ |  |
| $\mathrm{Sc}=$ Schmidt number | $[-]$ |  |
| $v_{\mathrm{V}}=$ kinematic viscosity vapour | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |  |

$N$ ote that in general for gases and vapours, $\mathrm{Sc} \approx 0.8$. T he original relation of M acK ay \& $M$ atsugu was expressed in other dimensions.
The correlations by Sutton, Raj and K awamura have the Schmidt number in common. In Brighton [1990] it is stated that the exponent is under dispute and is no sound basis for up-scaling the results derived from laboratory experiments only. The alternative model of Brighton is based on scientific knowledge about atmospheric turbulence [Brighton, 1987]. In this model molecular diffusion is incorporated in the boundary conditions. T he model is valid for neutral atmospheric stability. Brighton's theory can be matched with experiments although deviation between predictions and experimental results is large.

### 3.3.5 Advanced integral models

### 3.3.5.1 GASP

Quite recently, SRD/H SE developed the model GASP. GASP is an acronym for 'G as Accumulation over Spreading Pools' [W ebber, 1990]. GASP is an evaporation model that has incorporated all of the heat and mass transfer components. GASP solves the set of equations based on a complete heat balance and the shallow water equations (3.16) and (3.17) governing the pool spreading both on subsoil or water surface simultaneously. The mass transfer model is based on the work of Brighton [Brighton, 1987]. The model forces the transition of boiling to nonboiling to be smooth.

The model is able to give correct predictions [Webber, 1990]. The GASP model is only able to cope with (spreading) pools on a subsoil and onto water surface. It is not able to deal with volatile soluble liquids into water, and boiling liquids heavier than water that will sink. The GASP model, and the research and data which it is based upon, have been extensively given attention by several SRD/H SE-publications. The numerical procedure to solve the equations seems to be robust and does not take too much time on a 486-PC. The computerised model is commercially available.

### 3.3.5.2 LPOOL

In Woodward [1990] the model LPOOL is given. The model has been developed by T echnica Inc. T he model is a complete pool evaporation model.

The model makes use of a grid of annular rings to solve the two-dimensional shallow layer equations for radial flow over flat terrain (3.16) and (3.17). It relies on the mass transfer coefficient of $M$ acK ay and $M$ atsugu, [K awamura and $M$ acK ay, 1987]. The heat transfer coefficient on water has been correlated to the heat of evaporation (no references)

$$
\mathrm{k}_{\mathrm{H}, \mathrm{w}}=\mathrm{C}_{\mathrm{H}} \times \mathrm{L}_{\mathrm{V}}
$$

$$
\begin{equation*}
\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~K} \cdot \mathrm{~s}\right)\right) \tag{3.26}
\end{equation*}
$$

with

$$
C_{H}=0.001
$$

where
$\mathrm{k}_{\mathrm{H}, \mathrm{w}}=$ heat transfer coefficient [J/(m².K $\left.\cdot \mathrm{s}\right)$ ]
$\mathrm{L}_{\mathrm{v}}=$ heat of evaporation $\quad[\mathrm{J} / \mathrm{kg}]$
$\mathrm{C}_{\mathrm{H}}=$ correlation coefficient $\quad\left[\mathrm{kg} /\left(\mathrm{s} \cdot \mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$

Also numerical methods have been briefly addressed regarding how to solve the set of equations. The solutions of the set formed by the continuity equation (mass balance) and (momentum balance) and submodels are found by using a C rowley second-order finite difference solution, superimposing the homogeneous and forced solution.

The spreading model has been validated against small-scale, low-release-rate experiments of Belore and $M$ cBean who tested pool spread rates with water, and data for crude oil spilt onto frozen arctic ground.
The model has been computerised and is commercially available, though part of a much larger software package [T echnica, 1994].

### 3.3.5.3 SuperChems

The large software package SuperChems of A.D. Little comprises a pool evaporation model that is based on a time-dependent solution of the 'shallow water equations' [Superchems 4.0]. It calculates the liquid regression rate for a spreading pool on different soil types and water. Solubility of the chemical spilt in water is incorporated. The complete heat balance accounts for all possible heat sources. T he different spreading regimes are also accounted for. The model accepts timedependent release rates. The model is commercially available.

### 3.4 Selection of models

### 3.4.1 Introduction to section 3.4

In section 3.4 the considerations which have led to the selection of the models that are included in section 3.5 , will be explained. In section 3.5 these models will be described in detail.
In general the selection is based on the following considerations:

1. The availability of powerful (personal) computers creates the opportunity to avoid simplified (analytical) solutions, that are only able to cope with idealised situations.
2. M odels based on computational fluid dynamics (CFD) can not be used in safety studies and hazard assessment, due to the time-consuming data collection in order to supply the required input and analysis of the results, and due to the large computer power they require.
3. M odels should have been validated against unambiguous experimental data.
4. Increased complexity of the model must result in more reliable predictions; unnecessary complications should be avoided.
5. The model should be available in literature; and preferably available in computerised form at minimum cost

### 3.4.2 Pool evaporation on subsoil and on water surface

In addition the selection of liquid pool evaporation models has been based on the following considerations:

1. The heat balance should take into account all heat source terms;
2. The artificial distinction between boiling and non-boiling liquids should be avoided;
3. The spreading of the liquids should be described by solutions of the shallow layer equations, giving a general solution;
4. The mass transfer should be modelled by a widely applicable model based on experimental data.

Advanced and complete models have been found in recent literature.
The pool evaporation model GASP has been developed by SRD (AEA)/H SE .
Similar models have been found in literature: LPOOL [W oodward, 1990],
SuperC hems of A.D. Little [Superchems 4.0].
T he recent integral models are really a step forward in supplying a realistic description of the pool evaporation. A major drawback is the relatively high cost of computerised versions commercially available.
B ased on the accessibility of the model description in literature, and availability of the computer program, it was preferred to describe the GASP model in more detail in the following section.
The mass transfer model developed by Brighton [Brighton, 1987] is under development and has limited applicability. For practical situations it would be advisable to use the correlation of $M$ acK ay and $M$ atsuga, [ $K$ awamura and $M$ acK ay, 1987], because it is based on experiments carried out in the open. However, the GASP model uses Brighton's model. F or reasons of consistency, the description of the GASP model follows the original publications.

The GASP model is not able to predict evaporation rates of volatile soluble liquids in water. H owever, the H ACS-R model [Raj, 1974] is.

### 3.4.2.1 Boiling regimes

In literature a lot of attention is given to nucleate boiling and film-boiling. However, metastable boiling is often not taken into consideration, due to its complexity.
$M$ any common industrial liquefied gases will boil in the metastable boiling regime. So, the evaporation should be based on the model for metastable boiling. It must be mentioned however that the selected GASP-model applies a somewhat simplified approach to incorporate the effects of film-boiling.

### 3.4.2.2 Evaporation of cryogen on sand

T wo remarkable different models have been encountered regarding the evaporation of cryogenes on sand.
The approach by T akeno [1994] looks promising, but an adequate model to calculate the penetration velocity of the boiling liquid into the subsoil is lacking and can not easily be developed. N evertheless, the extended model of T akeno has been addressed in detail in paragraph 3.3.3.1.
While the model for liquid penetration is probably too simple, the TNO-model for evaporation on sand is to be preferred. It must be mentioned however, that the model in YellowBook [1988] concerning evaporation in gravel layers ignores all kind of complications, and may give unrealistically high evaporation rates. Therefore, some additional criteria have to be added.

### 3.4.3 E vaporation of chemicals mixed in water

In the NTIS-report [Raj, 1974] a model has been given that describs the evaporation phenomena for volatile liquids which are soluble or miscible in water and have a boiling point greater than the water temperature, but less than $100{ }^{\circ} \mathrm{C}$. So, the chemical must have a considerable vapour pressure at water temperature. Because it is the only model found in literature to predict evaporation rates the HACS-R model will be described.
In the literature it is reported that the HACS-R model has recently been used for prediction of the evaporation rate of an ammonia spill onto water [D harmavaram, 1994].

### 3.4.4 E vaporation of chemicals that sink in water

In the NTIS-report [Raj, 1974] a model has been given that describes the evaporation phenomena for liquids heavier than water with boiling temperatures less than ambient. The use of packed-bed correlation or single-sphere heat transfer
correlations in the model leads to high evaporation rates. In general all of the spilt liquid is predicted to vaporise within a period of about 10 seconds.
No experimental evidence is available to test the results of this theory.
F or dispersion predictions purposes, it is acceptable in most cases just to assume a instantaneous release in case of a spill of a boiling liquid heavier than water. It may be valid to use the spill rate itself as the evaporation rate in the case of semicontinuous spills. Therefore the model will not be included in section 3.5.

### 3.4.5 Application of simple models

The GASP-model is a very complex model and has to be computerised before any prediction can be made.
In case spreading of the liquid pool can be ignored, as may be the case for instantaneous liquid releases in bunds, it is possible to use simple models to guess the magnitude of the evaporation rate, at least with some accuracy.
So, for convenience, simple models will also be presented in section 3.5, though the GASP model is to be preferred from a scientific point of view.

### 3.5 Description of models

### 3.5.1 Introduction to section 3.5

Section 3.5 provides descriptions of the recommended models and methods for liquid pool evaporation. It contains all necessary information to perform the calculations. For background of the models the reader should review section 3.3.

Section 3.5 provides detailed descriptions of the models and methods regarding the following topics. Subsection 3.5 .2 gives a description of GASP valid for liquid pools (spreading) on subsoil and floating on water.
Subsection 3.5.3 and 3.5.4 treat the evaporation of cryogenes on subsoil and water. Subsection 3.5.5 provides simple models for pool evaporation in bunds, for which complicated calculations may be avoided without losing too much accuracy.
Subsection 3.5.6 gives a description of HACS-R, valid for volatile (non-boiling) liquid chemicals into water.
In section 3.8 some additional remarks on the limitations of the models presented are given.

### 3.5.2 GASP [Webber, 1990]

### 3.5.2.1 Introduction

GASP is an acronym for 'G as Accumulation over Spreading Pools'. The description of the GASP model has been taken from 'A model for pool spreading and vaporisation and its implementation in the computer code G*A*S*P', by D.M. Webber [Webber, 1990]; courtesy AEA-technology.

The GASP model aims at the description of the spreading and vaporisation of a evaporating liquid pool to predict the evaporation rate and pool size.

The complete specification of the model will be concise and will use results that have been derived by others. References made in the original publication of Webber [W ebber, 1990] will not be repeated here.
The model will be defined with reference to the computational methods which are used to solve the equations, and relevant numerical aspects will be touched upon here.

The model is able to predict the vaporisation rate of a circular liquid pool on subsoil or water. T he surface onto which the liquid is spilt, is assumed to be flat, horizontal and statistically uniform. Subsoil may be 'rough' so liquid puddles may be formed. L iquid spills onto water are assumed to float on the water surface and not to mix with or to solve into the water.
The pool may be retained within a bund, spread until it meets a bund, or be completely unbunded. The liquid may be released instantaneously, or at a time-
dependent discharge rate. T he vaporisation rate is controlled both by the atmospheric dispersion of the vapour and by the heat transfer to the pool.
The model can be applied to any liquid, irrespective of its boiling point.

### 3.5.2.2 Model structure

The basic structure of the model is a set of coupled ordinary differential equations for the bulk properties of the liquid pool. T his scheme has to be solved simultaneously by a numerical method.

T he equations are not easily to be solved numerically due to the large variety of timescales introduced by the several physical phenomena modelled.
Six 'primary' variables have been defined that are expressed by a differential equation as a function of time.
(3.60SW) and (3.61R)

Scheme 1 Structure of the GASP-model

The model will be specified by defining the right-hand sides of these six equations in terms of so-called 'secondary' variables, such as pool depth, pool area, mean temperature of the pool, vaporisation rate, and various contributions to the heat flux into the pool.

$$
\begin{align*}
& d r / d t=\ldots \\
& \mathrm{du} / \mathrm{dt}=\ldots  \tag{3.62}\\
& \mathrm{dV} / \mathrm{dt}=\ldots  \tag{3.32}\\
& d \Phi_{r} / d t=  \tag{3.79}\\
& d V_{d} / d t=\ldots  \tag{3.28}\\
& d V_{E} / d t=\ldots  \tag{3.29}\\
& \text { where } \\
& r \quad=\text { radius of the pool [m] } \\
& \mathrm{u} \quad=\text { radial liquid velocity at the edge }[\mathrm{m} / \mathrm{s}] \\
& \mathrm{V}=\text { volume of liquid in the pool } \\
& \Phi_{r} \quad=\text { measure of pool temperature (3.27) } \\
& \mathrm{V}_{\mathrm{d}}=\text { volume of liquid which has been } \\
& \text { [-] } \\
& {\left[\mathrm{m}^{3}\right]} \\
& \mathrm{V}_{\mathrm{E}}=\text { volume of vaporised liquid } \quad\left[\mathrm{m}^{3}\right]
\end{align*}
$$

T he set of differential equations can be solved by the so-called 'variable-order variable time-step Gear's method'. Within this procedure the values of the six primary variables will be calculated simultaneously for every following time-step.
In general the secondary variables are algebraic functions of the primary variables, except for the heat conducted into the pool from a solid subsoil. This is obtained from a Green's function solution of the Fourier conduction equation in the solid, and is expressed as an integral over time. In case of a spreading pool on the ground this integral has to be solved within every time-step.

T he solution of the scheme requires:

1. specification of the initial values of the six primary variables;
2. constants, like ambient conditions;
3. (time-dependent) discharge rate.

Some of the basic quantities have been transformed into functions that match the requirements of the numerical solution procedure.
In the scheme $\Phi_{r}$ is used which is related to the liquid pool temperature $T$ by the definition

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{A}} \times \mathrm{e}^{-\Phi_{\mathrm{r}}} \tag{K}
\end{equation*}
$$

where $\mathrm{T}_{\mathrm{b}}[\mathrm{K}]$ is the boiling point and $\mathrm{T}_{\mathrm{A}}[\mathrm{K}]$ is a suitable constant temperature scale. Any real value of $\Phi_{r}$ corresponds to a temperature below boiling point. By using quantity $\Phi_{\mathrm{r}}$ instead of temperature $T$, numerical problems can be avoided.

### 3.5.2.3 Release and Evaporation

First the three primary volume variables, the volume of the liquid in the pool V , the volume of liquid that has been discharged into the pool $\mathrm{V}_{\mathrm{d}}$, and the volume of liquid that has vaporised $\mathrm{V}_{\mathrm{E}}$, are considered.

$$
\begin{equation*}
\mathrm{dV} \mathrm{~V}_{\mathrm{d}} / \mathrm{dt}=\mathrm{q}_{\mathrm{s}} / \rho_{\mathrm{L}} \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right) \tag{3.28}
\end{equation*}
$$

where
$\mathrm{V}_{\mathrm{d}} \quad=$ liquid volume discharged into the pool $\left[\mathrm{m}^{3}\right]$
$\rho_{\mathrm{L}} \quad=$ density discharged liquid $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\mathrm{q}_{\mathrm{s}}=$ release rate liquid [kg/s]
$\mathrm{t}=$ time from the start of the release [s]
where $q_{s}$ is the discharge rate which must be specified. T he discharge rate $q_{s}$ may be zero for an instantaneous release, in which case $\mathrm{V}_{\mathrm{d}}$ and V must initially be non-zero and equal. Otherwise $q_{s}$ is a given function of time. There may or may not be liquid in the pool initially.

$$
\begin{equation*}
\mathrm{dV}_{\mathrm{E}} / \mathrm{dt}=\mathrm{u}_{\mathrm{rA}} \times \mathrm{A}_{\text {top }} \tag{3.29}
\end{equation*}
$$

where
$A_{\text {top }}=$ top area of the liquid $\quad\left[\mathrm{m}^{2}\right]$
$\mathrm{u}_{\mathrm{rA}}=$ averaged liquid surface regression rate over the pool $\quad[\mathrm{m} / \mathrm{s}]$
$\mathrm{V}_{\mathrm{E}}=$ liquid volume that has vaporised $\left[\mathrm{m}^{3}\right]$
The area $A_{\text {top }}$ may differ from the overall pool area $A$ if the pool is not simply connected.

The regression rate $u_{r A}$ is related to the evaporation mass flux density $q^{\prime \prime}{ }_{v}$ and the liquid density $\rho_{\mathrm{L}}$ by

$$
\mathrm{q}^{\prime \prime}{ }_{\mathrm{v}}=\rho_{\mathrm{L}} \times \mathrm{u}_{\mathrm{rA}} \quad\left(\mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

and $\mathrm{V}_{\mathrm{E}}$ is related to the mass Q which has vaporised by

$$
\begin{equation*}
\mathrm{Q}=\rho_{\mathrm{L}} \times \mathrm{V}_{\mathrm{E}} \tag{kg}
\end{equation*}
$$

where
$\rho_{\mathrm{L}}=$ liquid density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$u_{r A}$ will be used as the standard measure of the vaporisation rate.
$T$ he variations in the volume of liquid in the pool $V$ can be described by

$$
\begin{equation*}
\mathrm{dV} / \mathrm{dt}=\mathrm{q}_{\mathrm{s}} / \rho_{\mathrm{L}}-\mathrm{u}_{\mathrm{rA}} \times \mathrm{A}_{\text {top }}-\mathrm{q}_{\mathrm{D}} / \rho_{\mathrm{L}} \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right) \tag{3.32}
\end{equation*}
$$

where
$\mathrm{V}=$ liquid volume in the pool $\left[\mathrm{m}^{3}\right]$
$q_{D}=$ drainage rate [kg/s]
where $q_{D}$ is a 'drainage' rate which may account for loss of liquid other than by vaporisation seeping into porous subsoil or running into drains. This may also be time-dependent.
H ere only problems with no drainage $\left(q_{D}=0\right)$ will be considered, thus

$$
\begin{equation*}
\mathrm{V}=\mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{E}} \tag{3.33}
\end{equation*}
$$

$$
\left(m^{3}\right)
$$

This is a minor limitation of the GASP model, which could easily be overcome by taking $q_{D}$ into account in the integration procedure.

The remaining features of the model can now split up into spreading phenomena (dr/dt, du/dt, A) and vaporisation phenomena ( $\mathrm{d} \Phi_{\mathrm{r}} / \mathrm{dt}, \mathrm{T}, \mathrm{u}_{\mathrm{rA}}$ ).

### 3.5.2.4 Spreading of the liquid pool over a surface

Spreading on three possible surfaces will be considered:
(S): on smooth subsoil
$(R)$ : on subsoil rough enough to retain liquid in puddles
(W): on water

T he spreading equations will be slightly different for each case.

The reduced acceleration due to gravity for pools spreading on water will be needed, where $\rho_{w}$ is the density of the water and $\rho_{\mathrm{L}}$ is the density of the pool

$$
\begin{equation*}
g_{g / g r}=g \times\left(\rho_{w}-\rho_{L}\right) / \rho_{w} \quad\left(m / s^{2}\right) \tag{3.34W}
\end{equation*}
$$

F or spreading on subsoil the acceleration due to gravity will be

$$
g_{g / g r}=g \quad\left(m / \mathrm{s}^{2}\right)
$$

The depth profile and area of the pool

F or spreading on smooth subsoil or on water the area of the pool $A$ is, where $r$ is the radius of the pool

$$
A=\pi \times r^{2}
$$

and the mean depth is h given by

$$
\begin{equation*}
\mathrm{h}=\mathrm{V} / \mathrm{A} \tag{m}
\end{equation*}
$$

For spreading on rough, puddle-forming subsoil two layers of liquid can be distinguished: a 'dynamic' region of mean depth $h_{e}$ over a 'stagnant' region within the depressions of the subsoil.
The mean depth of puddles, averaging over the entire subsoil surface, is defined as $\mathrm{h}_{\mathrm{p}}$.

So for spreading on rough subsoil per definition
$\mathrm{h}_{\mathrm{e}}=\mathrm{V} / \mathrm{A}-\mathrm{h}_{\mathrm{p}}$
(m)
$\mathrm{V}_{\mathrm{e}}=\mathrm{V}-\mathrm{h}_{\mathrm{p}} \times \mathrm{A}$
$\left(m^{3}\right)$
and for spreading on smooth subsoil and water

$$
\begin{align*}
& \mathrm{h}_{\mathrm{e}}=\mathrm{h}  \tag{3.40SW}\\
& \mathrm{~V}_{\mathrm{e}}=\mathrm{V}
\end{align*}
$$

The depth $h_{f}$ at the edge of the pool is not in general equal to the mean depth $h$.

In an integral approach it is necessary to retain some measure of the depth profile in the pool. This can be done by defining a dimensionless shape factor $s$

$$
\begin{equation*}
s=h_{f} / h \tag{-}
\end{equation*}
$$

K nowing $s$, the depth $h_{f}$ at the edge of the pool can be determined.
The value of $s$ will affect gravity spreading. For $s<1$ the pool will spread outward on average, for s > 1 inward.
In the following expressions for estimation the dimensionless shape factor $s$ will be presented.

Self-similar solutions of the shallow water equations for an instantaneously released, inviscid, non-volatile pool on subsoil or water can be found in which the pool has a parabolic surface.
Self-similar solutions of the shallow water equations, are solutions described by functions of the same form but with a different scaling parameter.


Figure 3.5 Spreading liquid pools on subsoil and on water [Webber, 1990]

On smooth subsoil (see Figure 3.5) the pool has a convex surface and

$$
\begin{equation*}
s=0 \tag{3.43S}
\end{equation*}
$$

on water (see Figure 3.5) the front resistance leads to a concave surface ( $s>1$ ), and with constant s given by

$$
\begin{equation*}
s=u^{2} /\left(\mathrm{Fr}^{2} \times \mathrm{g}_{\mathrm{g} / \mathrm{gr}} \times \mathrm{h}\right) \tag{-}
\end{equation*}
$$

where
$\mathrm{Fr}=$ Froude number [-]
$u \quad=$ radial liquid spreading velocity $\quad[\mathrm{m} / \mathrm{s}]$
H ere $1 / F r^{2}$ can be regarded as a frontal drag coefficient and the expression for s can be inferred from the requirement that a front resistance pressure of $\rho_{w} \times u^{2} /\left(2 \times F r^{2}\right)$ is sufficient to provide the hydrostatic pressure at the pool edge.
These expressions for $s$ must be modified to allow for surface tension and other effects.
In this simple paraboloid model, values of s greater than 2 correspond to an annular pool with inner radius $r_{i}$ given by

$$
\begin{align*}
r_{i}^{2} & =r^{2} \times(s-2) / s & & \text { if } s>2  \tag{3.45}\\
& =0 & & \text { if } s<2
\end{align*}
$$

If solutions are found where $s>2$ for part of the flow, this may indicate pool breakup, rather than adherence to a literal interpretation of an annular pool.
The model equations will not in general be analytic at $s=2$, and it is convenient to define a function $j(s)$ by

$$
\begin{align*}
j(s) & =1 & & \text { if } s>2  \tag{-}\\
& =2 / s & & \text { if } s<2 \tag{3.46}
\end{align*}
$$

For example the top area is given by

$$
\begin{equation*}
A_{\text {top }}=j(s) \times A \tag{2}
\end{equation*}
$$

The shape factor s depends on a number of factors which are relevant to the frontal depth $\mathrm{h}_{\mathrm{f}}$.
Surface tension is included in the model by setting the frontal depth to a constant value $h_{o, f}$ at which surface tension may hold a pool against gravitational spread

$$
\begin{equation*}
h_{\sigma, f} \approx \sqrt{ }\left(\sigma /\left(g \times \rho_{L}\right)\right) \tag{m}
\end{equation*}
$$

But its precise value will vary with the liquid and the surface on which it is spilt. Alternatively it has been estimated that viscous effects give rise to a minimum depth $h_{c, \infty}$ during a continuous discharge at (volumetric) rate $\mathrm{q}_{\mathrm{s}}$ (see subsection 3.2.3.2)

$$
\begin{equation*}
\mathrm{h}_{\mathrm{c}, \infty}=\left(\frac{6 \times v_{\mathrm{L}} \times \mathrm{q}_{\mathrm{S}}}{\left(\rho_{\mathrm{L}} \times \pi \times \mathrm{g}\right)}\right)^{0.25} \tag{m}
\end{equation*}
$$

F or whatever effect is the greater, the following definition holds

$$
\begin{equation*}
\mathrm{h}_{0, \max }=\max \left(\mathrm{h}_{\mathrm{o}, \mathrm{f}}, \mathrm{~h}_{\mathrm{c}, \infty}\right) \tag{m}
\end{equation*}
$$

Following the above, discussion on smooth subsoil is set

$$
\begin{equation*}
s=h_{0, \max } / h \tag{-}
\end{equation*}
$$

and on water

$$
\begin{equation*}
s=N+\sqrt{ }\left(N^{2}+\left(h_{0, \max } / h\right)^{2}\right) \tag{-}
\end{equation*}
$$

with
$N=u^{2} /\left(2 \times \mathrm{Fr}^{2} \times g_{g / g r} \times h\right)$
if $u>0$
$=0$
if $u<0$

The expression for son water is derived by assuming that surface tension and front resistance forces combine additively to slow the spread of the pool.

In the case where subsoil roughness dominates

$$
\begin{equation*}
s=\Phi_{1}(\varepsilon) \times h_{r} /(2 \times h) \tag{-}
\end{equation*}
$$

with

$$
\begin{equation*}
\varepsilon=8 u^{2} /\left(g \times h_{r}\right) \tag{-}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{1}(\varepsilon)=\sqrt{ }(1+\varepsilon)-1 \tag{-}
\end{equation*}
$$

where $h_{r}$ is the roughness scale.
In the model for pool spreading on rough subsoil the functions of $\varepsilon$ allow for the removal of mass and momentum from the dynamic part of the pool as it spreads over the depressions.

A trivial example is that in which the pool is confined to a bund. In this case

$$
\begin{equation*}
s=1 \tag{-}
\end{equation*}
$$

For future reference the following functions are defined
$\Phi_{2}(\varepsilon)=1-2 / \varepsilon \times \Phi_{1}(\varepsilon)$
(-)
$\Phi_{3}(\varepsilon)=\Phi_{2}(\varepsilon)+4 / \varepsilon \times \Phi_{1}(\varepsilon)-2 / \sqrt{ }(1+\varepsilon)$

## Pool spreading Equations

The radius of the pool for spreading on smooth subsoil or water is given by

$$
\begin{equation*}
\mathrm{dr} / \mathrm{dt}=\mathrm{u} \quad(\mathrm{~m} / \mathrm{s}) \tag{3.60SW}
\end{equation*}
$$

For spreading on rough subsoil it is modified to (see equation (3.58))

$$
\begin{equation*}
\mathrm{dr} / \mathrm{dt}=\mathrm{u} \times \Phi_{2}(\varepsilon) \tag{m/s}
\end{equation*}
$$

The overall force balance on the pool is expressed by

$$
\begin{equation*}
d u / d t=\Phi(\mathrm{s}) \times\left(4 \times \mathrm{g}_{\mathrm{g} / \mathrm{gr}} \times \mathrm{h}_{\mathrm{e}} / \mathrm{r}\right)-\mathrm{C}_{\mathrm{F}} \tag{3.62}
\end{equation*}
$$

where $C_{F}$ is a turbulent or viscous resistance term and the coefficient in the first $\Phi(\mathrm{s})$ gravity driving term is given by

$$
\begin{align*}
\Phi(s) & =1-s & & \text { if } s<2  \tag{-}\\
& =-s^{2} / 4 & & \text { if } s>2 \tag{3.63}
\end{align*}
$$

In the case of an inviscid ( $C_{F}=0$ ), non-volatile pool, these equations summarise the results of the self-similar analysis of the shallow-water equations discussed above.
$N$ ote that the gravity driving force is directed outwards for a pool with a convex top surface ( $s<1$ ) and inwards for a concave ( $s>1$ ) surface.
The resistance forces depend on whether the flow is laminar or turbulent.
The resistance to laminar flow will be modelled as

$$
\begin{equation*}
C_{F L}=\beta(s) \times\left(C \times v_{L} \times u / h_{e}^{2}\right) \times(1-f) \quad\left(m / s^{2}\right) \tag{3.64}
\end{equation*}
$$

where $v_{\mathrm{L}}$ is the kinematic viscosity of the liquid, $\mathrm{h}_{\mathrm{e}}$ is given by (3.38/40), and C is a factor determined by the vertical velocity profile in the pool; for on land

$$
\begin{equation*}
C=3.0 \tag{-}
\end{equation*}
$$

and for on water

$$
\begin{equation*}
C=0.66 \tag{-}
\end{equation*}
$$

This has been derived from lubrication theory for spreading on subsoil, but involves empirical knowledge for spreading on water.
The coefficient $\beta(\mathrm{s})$ given by

$$
\begin{equation*}
\beta(s)=2.53 \times j(s)^{2} \tag{-}
\end{equation*}
$$

is a factor determined by radial profiles, and f is a factor which allows for the radial motion of water under the pool.
Specifically for spreading on subsoil

$$
\begin{equation*}
f=0 \tag{-}
\end{equation*}
$$

whereas for spreading on water $f$ is given by an implicit function

$$
\begin{equation*}
\xi \times f^{3 / 2}=1-f \tag{3.68W}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi=\eta_{\mathrm{L}} / \eta_{\mathrm{w}} \times \sqrt{ }\left(\mathrm{u} \times \mathrm{h}^{2} /\left(v_{\mathrm{w}} \times \mathrm{r}\right) \times(1 / \mathrm{j}(\mathrm{~s}))\right. \tag{-}
\end{equation*}
$$

where $\eta_{L}, \eta_{w}$ are the viscosities of the pool and the water beneath, and $v_{w}$ is the kinematic viscosity of the water.

The model for the resistance to turbulent flow is

$$
\begin{equation*}
C_{F T}=\alpha(\mathrm{s}) \times C_{f} \times u^{2} / h_{e} \tag{3.70}
\end{equation*}
$$

where $C_{F T}$ is a turbulent friction coefficient and

$$
\begin{equation*}
\alpha(s)=4.49 \times j(s) \tag{-}
\end{equation*}
$$

is a radial profile factor. The optimum value of $C_{f}$ is in the region of 0.0015 .
The resistance term $C_{F}$ in (3.62) will be modelled as

$$
\begin{equation*}
C_{F}=\operatorname{sign}(u) \times \max \left(C_{F L}, C_{F T}\right) \tag{3.72}
\end{equation*}
$$

The transition from turbulent to laminar now is implicitly controlled by the Reynolds number Re

$$
\begin{equation*}
\operatorname{Re}=u \times h / v . \tag{-}
\end{equation*}
$$

## Constants

The constants which have appeared in the model description comprise:

- well-defined physical properties of liquids;
- factors arising as integrals over profiles of the relevant fields both radially and vertically;
- turbulent friction coefficient $\mathrm{C}_{\mathrm{f}}$;
- puddle depth parameter $h_{p}$;
- capillary depth parameter $I_{\sigma}$;
- front resistance parameter Fr for spreading on water.

The constants $I_{\sigma}$ and $h_{p}$ depend on the nature of the surface on which the liquid is spreading and must therefore be estimated for any given application.
Fr can be estimated from empirical observations of liquids spreading on water.
In case of an instantaneous release of a large amount of non-volatile liquid onto water, after the initial radial acceleration, there will be a phase where the resistance terms are negligible compared to inertia and gravity forces.

In this case the spreading equations for a spill on water are solved with constant V , and $\mathrm{u}_{\mathrm{rA}}=0$ and $\mathrm{C}_{\mathrm{F}}=0$, to give spreading with pool area proportional to time

$$
\begin{equation*}
\mathrm{u}=\mathrm{Fr} \mathrm{r}_{\mathrm{rad}} \times \sqrt{ }\left(\mathrm{g}_{\mathrm{g} / \mathrm{gr}} \times \mathrm{h}\right) \tag{m/s}
\end{equation*}
$$

where $\mathrm{Fr}_{\text {rad }}$ is a F roude number given by

$$
\begin{equation*}
\mathrm{Fr}_{\mathrm{rad}}=4 \times \mathrm{Fr}^{2} /\left(4-\mathrm{Fr}^{2}\right) \tag{-}
\end{equation*}
$$

This spreading regime is well-established and an empirical value

$$
\begin{equation*}
\mathrm{Fr}_{\mathrm{rad}}=1.64 \tag{-}
\end{equation*}
$$

has been obtained in LNG experiments by Chang and Reid. Therefore the value $\mathrm{Fr}=1.078$ will be adapted. There is however some uncertainty introduced by the existence of other experiments which measure this quantity, and which obtain different values. It is important to emphasise that this spreading regime will be valid only for a limited time until viscous effects become important.

## Remarks

The incorporated spreading model is derived from shallow-layer theory and lubrication theory for an instantaneously released, non-volatile pool where V is constant.
In fact it is implicitly assumed that the model is adequate when V is not constant due to vaporisation and release of liquid into the pool.
Vaporisation will only have a significant effect on the spreading behaviour when the radial velocity of the spreading liquid $u$ has decreased to a magnitude comparable with the liquid regression rate $\mathrm{u}_{\mathrm{rA}}$.
F or continuous releases the different time-scales implicit in the discharge rate and the rate at which the pool wants to spread, make it much more difficult to solve the shallow-layer equations. However, by introducing a minimum pool depth $h_{0}$, see before, it is possible to incorporate the limit at which the pool is large enough for vaporisation to balance discharge.

### 3.5.2.5 Evaporation

## Pool T emperature

The pool temperature is described by the average liquid pool temperature $T$ according to the following heat balance

$$
\begin{equation*}
\frac{d T}{d t}=\frac{A_{\text {top }}}{\left(C_{p, L} \times \rho_{L} \times V\right)} \times\left(H-\rho_{L} \times u_{r A} \times L_{v}\right)+\left(\frac{q_{s}}{\left(\rho_{L} \times V\right)}\right) \times\left(T_{q_{s}}-T\right) \tag{K/s}
\end{equation*}
$$

where

| $\mathrm{A}_{\text {top }}$ | $=$ liquid top area | $\left[\mathrm{m}^{2}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{p}, \mathrm{L}}$ | $=$ specific heat of the liquid | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |
| $\mathrm{H}^{2}$ | $=$ heat flux density from above and below | $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ |
| $\mathrm{L}_{\mathrm{v}}(\mathrm{T})$ | $=$ latent heat of vaporisation | $[\mathrm{J} / \mathrm{kg}]$ |
| $\mathrm{q}_{\mathrm{s}}$ | $=$ liquid source discharge rate | $[\mathrm{kg} / \mathrm{s}]$ |
| t | $=$ time from start release | $[\mathrm{s}]$ |
| T | $=$ (average) liquid pool temperature | $[\mathrm{K}]$ |
| $\mathrm{T}_{\mathrm{a}_{\mathrm{s}}}$ | $=$ liquid source temperature | $[\mathrm{K}]$ |
| $\mathrm{u}_{\mathrm{rA}}$ | $=$ liquid surface regression rate | $[\mathrm{m} / \mathrm{s}]$ |
| V | $=$ volume of liquid in pool | $\left[\mathrm{m}^{3}\right]$ |
| $\rho_{\mathrm{L}}$ | $=$ liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |

Specifically for $\exp \left(H / \rho_{\mathrm{L}} \times \mathrm{u}_{\mathrm{rA}} \times \mathrm{L}_{\mathrm{v}}\right) \gg 1$ the solutions exhibit an almost instantaneous transition from a regime where temperature increases as heat is supplied, to one where $\mathrm{dT} / \mathrm{dt}=0$ very close to the boiling point.
This problem can be overcome by defining

$$
\begin{equation*}
\Phi_{\mathrm{r}}=\ln \left(\mathrm{T}_{\mathrm{A}} /\left(\mathrm{T}_{\mathrm{b}}-\mathrm{T}\right)\right) \tag{-}
\end{equation*}
$$

where $T_{b}$ is the boiling point and $T_{A}$ a arbitrary temperature scale, taken to be 1 K . So, the following equation can be written

$$
\begin{align*}
\frac{d \Phi_{r}}{d t}= & \omega \times e^{\Phi r} \times \sqrt{\left(\omega^{2}+e^{2 \Phi r}\right)} \times\left(\frac{1}{T_{A}}\right) \times \\
& \frac{A_{\text {top }}}{\left(C_{p, L} \times \rho_{L} \times V\right)} \times\left(H-\rho_{L} \times u_{r A} \times L_{v}\right)+\left(\frac{q_{S}}{\left(\rho_{L} \times V\right)}\right) \times\left(T_{q_{s}}-T\right) \tag{1/s}
\end{align*}
$$

$\omega \quad=$ temperature smoothing factor [-]

For finite $\omega$ the transition from boiling to non-boiling is smoothed suitably for numerical computation without otherwise affecting the results. T he equation above therefore forms the basic temperature equation of the model.
In practice $\omega$ should be chosen small enough to enable the stiffness of the problem to be sufficiently mitigated to avoid numerical problems, but large enough so it does not smooth the solution too much. A value of about 1000 seems to be sufficient.

N ote that $\Phi_{r} \rightarrow \infty$ at the boiling point, which is never actually reached. This is reasonable as the existence of temperature gradients in a real evaporating liquid pool means generally that the average temperature is below the boiling point.

## Transport of V apour

The model for the liquid surface regression rate $u_{r A}(T)$ is that of Brighton, and is given by

$$
u_{r a}(T)=-\mu_{i} \times P_{v}(T) /(R \times T) \times\left(u_{* p} / \rho_{\mathrm{L}}\right) \times\left(\kappa / \mathrm{Sc}_{\mathrm{t}}\right) \times(1+\mathrm{n}) \times \mathrm{G}\left(\mathrm{e}^{\mathrm{x}_{\mathrm{sc}}}\right) / \mathrm{m}_{\mathrm{m}, \mathrm{v}} \times \ln \left(1-\mathrm{m}_{\mathrm{m}, \mathrm{v}}\right)
$$

where
$\mu_{\mathrm{i}} \quad=$ molecular weight liquid
[kg/mol]
$G\left(e^{\chi_{s c}}\right)=$ function given by equation (3.84a)
[-]
$\mathrm{m}_{\mathrm{m}, \mathrm{v}}=$ mole fraction of vapour above liquid pool surface $\quad[-]$
$\mathrm{n} \quad=$ wind profile index
[-]
$\mathrm{P}_{\mathrm{v}}(\mathrm{T})=$ vapour pressure above the pool
[ $\mathrm{N} / \mathrm{m}^{2}$ ]
$\mathrm{R}=$ gas constant
[J/(mol $\cdot \mathrm{K})]$
$\mathrm{Sc}_{\mathrm{t}} \quad=$ turbulent Schmidt number ( $\approx 0.85$ )
[-]
$\kappa \quad=$ von $K$ arman constant ( $\approx 0.4$ )
$u_{* p} \quad=$ atmospheric friction velocity above the pool
[-]
[m/s]
$\rho_{\mathrm{L}} \quad=$ liquid density
$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$

The argument $\chi_{\mathrm{sc}}$ is given by

$$
\begin{equation*}
\chi_{\mathrm{Sc}}=1 / n+2-\gamma+\ln \left(2(1+n)^{2}\right)-\left(\kappa / S c_{\mathrm{t}}\right) \times(1+n) \times \beta\left(S \mathrm{C}_{\mathrm{L}}\right) \quad(-) \tag{3.81}
\end{equation*}
$$

where $\gamma$ is Euler's constant and $S c_{L}$ is the (Iaminar) Schmidt number of the vapour in air, given by

$$
\begin{align*}
& \gamma \approx 0.57722  \tag{3.81a}\\
& S C_{L}=v_{L} / D_{V}  \tag{3.82}\\
& v_{L}=\text { kinematic vapour viscosity } \\
& \mathrm{D}_{\mathrm{V}}=\text { diffusion coefficient vapour in air } \\
& {\left[\mathrm{m}^{2} / \mathrm{s}\right] } \\
& {\left[\mathrm{m}^{2} / \mathrm{s}\right] }
\end{align*}
$$

The function $\beta\left(\mathrm{Sc}_{\mathrm{L}}\right)$ is given by

$$
\begin{equation*}
\beta\left(\mathrm{Sc}_{\mathrm{L}}\right)=7.3 \times \mathrm{Re}_{0} 0.25 \times \sqrt{ } \mathrm{Sc}_{\mathrm{L}}-5 \times \mathrm{Sc}_{\mathrm{t}} \tag{-}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta\left(S c_{L}\right)=\left(3.85 \times S c_{L}^{1 / 3}-1.3\right)^{2}+\left(S c_{t} / \kappa\right) \times \ln \left(0.13 \times S c_{L}\right) \tag{3.83b}
\end{equation*}
$$

according to whether or not one considers the pool to be aerodynamically rough. H ere $R e_{0}$ is the roughness $R$ eynolds number $u_{*} \times z_{0} / v_{a}$ constructed from the friction velocity and the aerodynamic roughness length $z_{0}$ of the pool.

The function $G\left(\mathrm{e}^{\mathrm{x}}\right.$ ) is given by

$$
\begin{align*}
\mathrm{G}\left(\mathrm{e}^{\chi}\right) & =0.5-\mathrm{f}_{0} / \pi \times \operatorname{atan}(\chi / \pi)+\mathrm{f}_{1} /\left(\chi^{2}+\pi^{2}\right)+\mathrm{f}_{2} \times \chi /\left(\chi^{2}+\pi^{2}\right)^{2}  \tag{3.84a}\\
& +\mathrm{f}_{3} \times\left(\chi^{2}-\pi^{2} / 3\right) /\left(\chi^{2}+\pi^{2}\right)^{3} \tag{-}
\end{align*}
$$

with

$$
\begin{align*}
f_{0} & =1  \tag{3.84b}\\
f_{1} & =1-\gamma \approx 0.42278  \tag{3.84c}\\
f_{2} & =f(\gamma) \approx 2.824  \tag{3.84d}\\
f_{3} & =f(\gamma) \approx 1.025 \tag{-}
\end{align*}
$$

For the vapour pressure $\mathrm{P}_{\mathrm{v}}(\mathrm{T})$ the Antoine correlation is adopted, which may be written

$$
\begin{equation*}
m_{m, v}=\exp \left(C_{B} \times\left(T-T_{b}\right) /\left(\left(T+C_{C}\right) \times\left(T_{b}+C_{C}\right)\right) \quad(\mathrm{mol} / \mathrm{mol})\right. \tag{3.85}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{v}(T)=m_{m, v} \times P_{a} \quad\left(N / \mathrm{m}^{2}\right) \tag{3.86}
\end{equation*}
$$

where $P_{a}$ is atmospheric pressure, and $m_{m, v}$ is the mole fraction of the vapour just above the liquid pool surface. $H$ ere $C_{B}$ and $C_{C}$ are Antoine coefficients and the Antoine $A$-coefficient $\left(C_{A}\right)$ has been eliminated in favour of the boiling point $T_{b}$. These coefficients can be found by fitting the Antoine correlation for vapour pressures predicted by the equations presented in the annex 'Physical Properties of Chemicals'.

The vaporisation of liquid depends on how fast the atmospheric flow can remove vapour from the surface. The state of the atmosphere is modelled as a function of the friction velocity $u_{*}$ and an effective wind speed index $n$.
The latter arises from Brighton's approximation of the wind profile by a power law, which allows the derivation of (3.80). The index $n$ which best approximates a logarithmic profile over the pool is given by

$$
\begin{equation*}
1 / n=F_{N} \times\left(\sqrt{ } A / z_{0, p}\right) \times\left(\kappa^{2} / S c_{t}\right) \times\left(e^{-(1+\gamma)}\right) \tag{-}
\end{equation*}
$$

where $F_{N}(\xi)$ is a function given implicitly by

$$
\begin{equation*}
\mathrm{F}_{\mathrm{N}} \times \mathrm{e}^{\mathrm{F}_{\mathrm{N}}=\xi} \tag{-}
\end{equation*}
$$

The index n depends to a small extent on the pool size.
The friction velocity $u_{*_{p}}$ above the pool may be different from $u_{*_{a}}$ well upwind of the pool, if the pool roughness length $z_{0, p}$ is different from, $z_{0, a}$ of the surroundings. In this case an inner boundary layer grows over the pool and it can be found following Hunt and Simpson.

$$
\begin{equation*}
u_{* p}=u_{*_{\mathrm{a}}} \times\left(\xi /\left(\xi+\ln \left(\mathrm{z}_{0, \mathrm{~d}} / \mathrm{z}_{0, \mathrm{p}}\right)\right)\right. \tag{3.89}
\end{equation*}
$$

(m/s)
with

$$
\begin{equation*}
\xi=F_{N}\left(\kappa^{2} \times \sqrt{ } A / z_{0, a}\right) \tag{-}
\end{equation*}
$$

where $\sqrt{ } A$ is a measure of the pool size. Thus the friction velocity $u_{*}$ also depends on the pool size, as this determines how far the boundary layer over the pool has developed, but only weakly for most cases of interest. The ambient friction velocity is found from the wind speed at standard 10 metres height $u_{w, 10}$ and the roughness length $z_{0, a}$ assuming a neutral boundary layer

$$
\begin{equation*}
u_{*_{\mathrm{a}}}=\kappa \times u_{\mathrm{w}, 10} / \ln \left(z_{10} / z_{0, \mathrm{a}}\right) \tag{m/s}
\end{equation*}
$$

with

$$
\mathrm{z}_{10}=10 \mathrm{~m} .
$$

Alternatively, if one wishes to assume an aerodynamically smooth surface, then an effective $z_{0, a}$ can be found by taking the Reynolds number equal to

$$
\begin{equation*}
R e_{0 \mathrm{a}}=u_{*_{\mathrm{a}}} \times \mathrm{z}_{0, \mathrm{a}} / v_{\mathrm{a}} \approx 0.13 \tag{-}
\end{equation*}
$$

in which $v_{a}$ is the kinematic viscosity of the air.

This gives

$$
\begin{align*}
& \mathrm{u}_{* \mathrm{a}}=0.13 \times \mathrm{v}_{\mathrm{a}} / \mathrm{z}_{10} \times \mathrm{F}_{\mathrm{N}}\left(\kappa \times \mathrm{u}_{\mathrm{w}, 10} \times \mathrm{z}_{10} /\left(0.13 \times \mathrm{v}_{\mathrm{a}}\right)\right)  \tag{3.93}\\
& \mathrm{z}_{0, \mathrm{a}}=\mathrm{z}_{10} / \mathrm{F}_{\mathrm{N}}\left(\kappa \times \mathrm{u}_{\mathrm{w}, 10} \times \mathrm{z}_{10} /\left(0.13 \times \mathrm{v}_{\mathrm{a}}\right)\right) \tag{3.94}
\end{align*}
$$

If the pool is considered aerodynamically smooth, then $u_{*}$ and an effective $z_{0}$ are found by solving (3.89) together with

$$
\begin{equation*}
\mathrm{u}_{*} \times \mathrm{z}_{0}=0.13 \times \mathrm{v}_{\mathrm{a}} \quad\left(\mathrm{~m}^{2} / \mathrm{s}\right) \tag{3.95}
\end{equation*}
$$

This can be done in terms of the function $F_{N}$ defined above.

The heat flux into the pool
The term heat flux into the pool H in (3.77) is the sum of three contributions

1. heat $\mathrm{H}_{\mathrm{c}}$ conducted from the subsoil or convected from the water beneath;
2. heat $\mathrm{H}_{\mathrm{a}}$ convected from the air above;
3. heat $\mathrm{H}_{\mathrm{r}}$ radiation.

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{\mathrm{c}}+\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{r}} \tag{3.96}
\end{equation*}
$$

$$
\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

Liquid in contact with the surface beneath
First the heat transfer from below is considered when film-boiling is not taking place. An approximation which is in many cases quite accurate, is to neglect those components of heat transfer within the subsoil which are parallel to the surface.
A boundary condition can be defined, stating that the subsoil temperature is $T(t)$ under the surface of the spreading pool $A(t)$, and $T_{a}$ elsewhere. The subsoil is assumed initially to be uniform at temperature $T_{a}$, except on the part of the surface in contact with the pool.

In this approximation the mean heat flux density into the pool is given by

$$
\begin{align*}
\mathrm{H}_{\mathrm{c} 1}(\mathrm{t})= & -\lambda_{\mathrm{S}} \times \Phi_{T}(\mathrm{t}) / \sqrt{ }\left(\pi \times \mathrm{a}_{5} \times \mathrm{t}\right)-  \tag{3.97}\\
& \lambda_{S} / \sqrt{ }(4 \pi \times \mathrm{a}) \times \int_{0}^{\mathrm{t}}\left[\left(\mathrm{t}-\Psi /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)\right.
\end{align*}
$$

with

$$
\begin{equation*}
\Phi_{\mathrm{T}}(\mathrm{t})=\left(\mathrm{T}(\mathrm{t})-\mathrm{T}_{\mathrm{a}}\right) \tag{K}
\end{equation*}
$$

where
$\lambda_{\mathrm{s}}=$ thermal conductivity of the subsoil $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$
$a_{s}=$ thermal diffusivity of the subsoil $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
This result holds provided only that the pool spreads in such a way that an area of subsoil once covered by liquid, remains covered. T he heat flux density is in this model not dependent on the shape of the pool.
In an isothermally-bunded process this reduces to the familiar $1 / \sqrt{ }$ t law based on the penetration theory, see equation 3.7.

A gain neglecting horizontal conductions, at boundary conditions the heat flux density H at the surface is assumed to obey

$$
\begin{equation*}
H=k_{H} \times\left(T_{p, a}-T_{s}\right) \tag{3.99}
\end{equation*}
$$

where
$\mathrm{T}_{\mathrm{s}}=$ subsoil surface temperature $[\mathrm{K}]$
$\mathrm{k}_{\mathrm{H}}=$ heat transfer coefficient
$\mathrm{T}_{\mathrm{a}}=$ ambient temperature
$\mathrm{T}_{\mathrm{p}, \mathrm{a}}=\mathrm{T}$ or $\mathrm{T}_{\mathrm{a}}$
$N$ ote that $T_{p, a}$ is equal to the pool temperature $T$ where liquid is on the surface and is equal to the ambient temperature $T_{\mathrm{a}}$ elsewhere.
In this case the result corresponding to (3.97) is

$$
\begin{align*}
& \mathrm{H}_{c 1}(\mathrm{t})=-\lambda_{\mathrm{s}} \times \Phi_{\mathrm{T}}(\mathrm{t}) / \sqrt{ }\left(\mathrm{a}_{\mathrm{s}} \times \mathrm{t}_{0}\right) \times \operatorname{erfc}_{*}\left(\sqrt[V]{ }\left(\mathrm{t} / \mathrm{t}_{0}\right)\right)- \\
& \lambda s \times \int_{0}^{\mathrm{t}}\left[\mathrm{G}_{*}(\mathrm{t}-\Psi) \times\left\{\Phi_{\mathrm{T}}(\mathrm{t}) \times \mathrm{A}(\mathrm{t})-\Phi(\Psi) \times \mathrm{A}(\Psi)\right\} / \mathrm{A}(\mathrm{t})\right] \times \mathrm{d} \Psi \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.100}
\end{align*}
$$

where $t_{0}$ is the heat transfer time-scale

$$
\begin{equation*}
t_{0}=\lambda_{s}^{2} /\left(a_{s} \times k_{H}^{2}\right) \tag{s}
\end{equation*}
$$

and erfc* is defined in terms of the usual complementary error function erfc by

$$
\begin{equation*}
\operatorname{erfc}_{*}(\xi)=\exp \left(\xi^{2}\right) \cdot \operatorname{erfc}(\xi) \tag{-}
\end{equation*}
$$

and $G *$ is a $G$ reen's function

$$
\begin{equation*}
\mathrm{G}_{*}(\mathrm{t})=1 / \sqrt{ }\left(\mathrm{a}_{\mathrm{s}} \times \mathrm{t}_{0}{ }^{3}\right) \times\left\{\sqrt{ }\left(\mathrm{t}_{0} /(\pi \times \mathrm{t})\right)-\operatorname{erfc}_{*}\left(\sqrt{ }\left(\mathrm{t} / \mathrm{t}_{0}\right)\right)\right\} \tag{3.103}
\end{equation*}
$$

$N$ ote that the integral term in the right-hand side of equation (3.100) has to be solved within every time-step. This can be done by the Romberg's integration method.
$N$ ote that (3.100) reduces to (3.97) as $\mathrm{t}_{0} \rightarrow 0$. This means that the two formulae provide comparable results for $t$ larger than the order of $t_{0}$. In the computer implementation GASP of this model, both options are available.
Returning to the solution of the full three-dimensional conduction problem. The horizontal conduction time-scale $t_{H}$ is defined by

$$
\begin{equation*}
t_{H}=A /(4 \times \pi \times a) \tag{s}
\end{equation*}
$$

It has been shown that the uni-directional conduction approximation used above, is valid for $t$ smaller than the order of $t_{H}$. Whilst this can be shown for constant $A$, it is expected that this conclusion even holds for time-dependent $A$.

The solution of the full conduction equation is difficult, even for circular pools. It has been estimated that for $t \gg t_{H}$, where three-dimensional conduction effects are most important, and for constant $A$ and $T$, the heat flux density $H_{c 3}$ tends to

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c} 3}=-2 / \pi \times 1 / \sqrt{ }\left(\mathrm{a}_{\mathrm{s}} \times \mathrm{t}_{\mathrm{H}}\right) \times \lambda_{\mathrm{s}} \times \Phi_{\mathrm{T}}(\mathrm{t}) \tag{3.105}
\end{equation*}
$$

To improve the accuracy of the uni-directional approximation an ad hoc pragmatic approach is adopted in order to get a smooth transition to the asymptotic value (3.105) which respects the sign of the heat flux, by

$$
\begin{equation*}
H_{c}=\left(H_{c 1}^{3}+H_{c 3}^{3}\right)^{1 / 3} \tag{3.106}
\end{equation*}
$$

In the case of a cold pool floating on water, the heat transfer into the pool will depend on convection currents within the water. It is assumed that these are sufficient to keep the water at a more or less uniform temperature $\mathrm{T}_{\mathrm{w}}$, and that the heat flux into the pool is given by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}=\mathrm{k}_{\mathrm{H}, \mathrm{w}} \times\left(\mathrm{T}_{\mathrm{w}}-\mathrm{T}\right) \tag{3.107}
\end{equation*}
$$

$$
\left(\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)\right.
$$

where
$\mathrm{k}_{\mathrm{H}, \mathrm{w}}=$ heat transfer coefficient on water $\quad\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)\right]$

There is some experimental evidence to indicate $\mathrm{k}_{\mathrm{H}, \mathrm{w}}$ is of order $500 \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}\right)$ for butane pools, but this may be substance-dependent.

## Film-boiling

C oncerning film-boiling, the model/correlation of K limenko will be used which may be summarised briefly as follows.
The length-scale $I_{c}$ for vapour bubble formation is defined as

$$
\begin{equation*}
I_{C}=2 \pi \times \sqrt{ }\left(\sigma /\left(g \times\left(\rho_{L}-\rho_{V}\right)\right)\right) \tag{m}
\end{equation*}
$$

and also a Galileo number

$$
\begin{equation*}
\mathrm{Ga}=\mathrm{g} \times \mathrm{I}_{\mathrm{c}}^{3} / v_{\mathrm{v}}^{2} \tag{-}
\end{equation*}
$$

and an Archimedes number

$$
\begin{equation*}
\mathrm{Ar}=\mathrm{Ga} \times\left(\rho_{\mathrm{L}}-\rho_{\mathrm{V}}\right) / \rho_{\mathrm{V}} \tag{-}
\end{equation*}
$$

where

| $\sigma$ | $=$ liquid surface tension | $[\mathrm{N} / \mathrm{m}]$ |
| :--- | :--- | :--- |
| $\rho_{\mathrm{L}}$ | $=$ liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\rho_{\mathrm{V}}$ | $=$ vapour density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $v_{\mathrm{V}}$ | $=$ kinematic viscosity vapour | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |

Other dimensionless numbers which are required are the Prandtl number of the vapour $\operatorname{Pr}_{\mathrm{v}}$ and the dimensionless heat of vaporisation $L_{v R}$ given by

$$
\begin{equation*}
L_{v R}=\frac{L_{v}\left(T_{b}\right)}{\left(C_{p, v} \times\left(T_{w}-T_{b}\right)\right)} \tag{-}
\end{equation*}
$$

where
$L_{v}\left(T_{b}\right)=$ heat of vaporisation at boiling point [J/kg]
$\mathrm{C}_{\mathrm{p}, \mathrm{v}}=$ specific heat of the vapour $\quad[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$
$\mathrm{T}_{\mathrm{w}}=$ water temperature [K]
$\mathrm{T}_{\mathrm{b}}=$ liquid boiling point [K]
The heat transfer coefficient $\mathrm{k}_{\mathrm{H}, \mathrm{f}}$ for film-boiling is related to a N usselt number N u by

$$
\mathrm{k}_{\mathrm{H}, \mathrm{f}}=\lambda_{\mathrm{V}} / \mathrm{I}_{\mathrm{c}} \times \mathrm{Nu}
$$

where
$\lambda_{v} \quad=$ thermal conductivity of the vapour $\quad[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$
K limenko has correlated the N usselt number Nu as a function of other dimensionless numbers, the Archimedes number Ar and the dimensionless heat of evaporation $L_{R}$

$$
\begin{align*}
\mathrm{Nu} & =0.19 \times\left(\operatorname{Ar} \times \operatorname{Pr}_{v}\right)^{1 / 3} \times \mathrm{F}_{1}\left(\mathrm{~L}_{\mathrm{vR}}\right) & & \text { if } \mathrm{Ar}<10^{8}  \tag{3.113}\\
& =0.0086 \times \sqrt{ } \operatorname{Ar} \times \operatorname{Pr}_{v}{ }^{1 / 3} \times \mathrm{F}_{2}\left(\mathrm{~L}_{\mathrm{vR}}\right) & & \text { if } \operatorname{Ar}>10^{8}
\end{align*}
$$

with

$$
\begin{aligned}
F_{1}\left(L_{v R}\right) & =1 & & \text { if } L_{v R}<1.4 \\
& =\left(L_{v R} / 1.4\right)^{1 / 3} & & \text { if } L_{v R}>1.4
\end{aligned}
$$

and

$$
\begin{align*}
F_{2}\left(L_{v R}\right) & =1 & & \text { if } L_{v R}<2.0 \\
& =\sqrt{ }\left(L_{v R} / 2\right) & & \text { if } L_{v R}>1.4 \tag{3.115}
\end{align*}
$$

Film-boiling will take place when exceeding the so-called critical heat flux density. B ased on the work of Zuber, as reviewed by K enning, the critical heat flux density is given by

$$
\begin{equation*}
H_{c r}=0.18 \times \rho_{\mathrm{V}} \times \mathrm{L}_{\mathrm{V}}\left(\mathrm{~T}_{\mathrm{b}}\right) \times\left(\sigma \times \mathrm{g} \times \frac{\left(\rho_{\mathrm{L}}-\rho_{\mathrm{V}}\right)}{\left(\rho_{\mathrm{V}} \times\left(\rho_{\mathrm{L}}+\rho_{\mathrm{V}}\right)\right)^{1 / 4}} \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)\right. \tag{3.116}
\end{equation*}
$$

If the heat flux density $\mathrm{H}_{\mathrm{c}}$ calculated for a pool on water according to (3.107) appears to be greater than $\mathrm{H}_{\mathrm{cr}}$, then $\mathrm{H}_{\mathrm{c}}$ is replaced by

$$
\begin{equation*}
H_{c}=\mathrm{k}_{\mathrm{H}, \mathrm{f}} \times\left(\mathrm{T}_{\mathrm{w}}-\mathrm{T}\right) \tag{3.117}
\end{equation*}
$$

The heat transfer model has been simplified by neglecting the effect of metastable boiling. Webber expects that the approximation should not be too bad within the overall framework of the model.
The computer implementation GASP allows one the option of simply using either $\mathrm{k}_{\mathrm{H}, \mathrm{f}}$ or $\mathrm{k}_{\mathrm{H}, \mathrm{w}}$ in order to test the importance of film-boiling effects.

H eat transfer from the atmosphere

Heat transfer from the air is modelled similarly to the mass transfer model, as formulated by equations (3.80/81). The heat flux density is given by

$$
\begin{array}{r}
H_{a}=\rho_{a} \times C_{p, a} \times u_{*} \times\left(T_{a}-T\right) \times\left(\kappa / S_{t}\right) \times(1+n) \times G\left(e^{\chi_{P r}} / m_{m, v} \times\left(m_{m, v}-1\right) \times \ln \left(1-m_{m, v}\right)\right. \\
\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.118}
\end{array}
$$

where the argument $\chi_{\mathrm{Pr}}$ is given by

$$
\begin{equation*}
\chi_{\operatorname{Pr}}=1 / n+2-\gamma+\ln \left(2(1+n)^{2}\right)-\left(\kappa / S c_{t}\right) \times(1+n) \times \beta(\operatorname{Pr}) \quad(-) \tag{3.118a}
\end{equation*}
$$

$N$ ote that the laminar Schmidt number Sc has been replaced by the (laminar) Prandtl number Pr.

## H eat radiation from the atmosphere

The total heat flux $\mathrm{H}_{\mathrm{r}}$ radiated from the surroundings into the pool is considered to be constant in the model. The rate of long-wave radiation heat exchange ( $\mathrm{H}_{\mathrm{rl}}$ ) between the pool surface and the surroundings and the solar radiation ( $\mathrm{H}_{\mathrm{rs}}$ ) can be calculated by equations 4.36 and 4.37 of chapter 'Vapour Cloud Dispersion' (page 4.63).

$$
\mathrm{H}_{\mathrm{r}}=\mathrm{H}_{\mathrm{rl}}+\mathrm{H}_{\mathrm{rs}} \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

### 3.5.2.6 Numerical methods

T he computer implementation GASP uses the 'variable step variable order Gear's numerical method', in order to cope with sudden changes in the solution. The model of heat transfer to a pool spreading on subsoil implies that the equations being solved are integro-differential equations. M easures have been taken to evaluate the integral $\mathrm{H}_{\mathrm{c}}$ efficiently without loss of accuracy, but still requiring substantial computational effort.

### 3.5.2.7 Remarks

The model described in the previous subsections is based on an improved understanding of spreading phenomena, vaporisation, and by treating transitions between slow evaporation (non-boiling) and vigorous boiling by means of a generalised approach.

The model can still be improved on the following topics:

- incorporating dense gas effects in the vaporisation model, while density effects may not be neglected;
- the effects of waves on the pool surface;
- the effect of sloping or porous subsoil;
- multi-component liquid pools
and
- extended for permeable subsoils;
- including meta-stable boiling regimes.


### 3.5.3 E vaporation of cryogen (boiling liquid) on a permeable subsoil

A spilt liquid may sink into the subsoil. F reezing of water in the soil column may prevent the liquid from penetration into the subsoil. On the basis of data available in literature, the following cases will be considered:
a. dry porous subsoil $\left(m_{w, m s}=0\right)$;
b. moist porous subsoil ( $m_{w, m s} \geq 8$ );
c. gravel-bed.

$$
m_{w, m s}=\text { the weight fraction of moist in the subsoil }[\mathrm{kg} / \mathrm{kg}]
$$

No sufficient data are available in literature to enable a proper description for the range ( $0<\mathrm{m}_{\mathrm{w}, \mathrm{ms}}<0.08$ ).

### 3.5.3.1 Evaporation of a cryogen on a dry porous subsoil

The theoretical evaporation flux for LPG on sand, approximated as a flat solid surface, appears to be a factor 8 smaller than the experimentally determined value for a LPG-spill on sand [Y ellowBook, 1988].
This can be explained by the influence of the penetration of the evaporating liquid into the subsoil. On the basis of experimental data, it can be expected that this factor will also approximately apply to the evaporation of propane and butane on dry sand. So, a factor of about 8 must be introduced for the calculation of the evaporation on a dry and porous medium [Y ellowBook, 1988].
N eglecting all other heat sources, the evaporation mass rate $\mathrm{q}_{\mathrm{v}}$ at time t of boiling liquid may be estimated as long as it boils, by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}(\mathrm{t})=8 \times \lambda_{\mathrm{s}} \times\left(\mathrm{T}_{\mathrm{s}, 0}-\mathrm{T}_{\mathrm{b}}\right) / \sqrt{\left(\mathrm{a}_{\mathrm{s}} \times \pi \times \mathrm{t}\right)} \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.120}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{s}=\lambda_{s} /\left(\rho_{s} \times C_{p, s}\right) \tag{3.121}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{v}(t)=H_{c}(t) / L_{v}\left(T_{b}\right) \times A \tag{kg/s}
\end{equation*}
$$

Referring to equation (3.7a), the total amount of vapour evolved from the boiling pool at time $t$ after the release, may be estimated by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{v}}(\mathrm{t})=2 \times \mathrm{q}_{\mathrm{v}}(\mathrm{t}) \times \mathrm{t} \tag{kg}
\end{equation*}
$$

where

| $\mathrm{a}_{\mathrm{s}}$ | $=$ thermal diffusivity of subsoil | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| :--- | :--- | :--- |
| A | $=$ liquid pool area |  |
| $\mathrm{C}_{p, s}$ | $=$ specific heat of subsoil | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |
| $\mathrm{H}_{c}$ | $=$ heat flux by conduction | $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ |
| $\mathrm{L}_{v}\left(\mathrm{~T}_{\mathrm{b}}\right)$ | $=$ heat of vaporisation at $\mathrm{T}_{\mathrm{b}}$ | $[\mathrm{J} / \mathrm{kg}]$ |
| $\mathrm{q}_{v}$ | $=$ evaporation rate | $[\mathrm{kg} / \mathrm{s}]$ |
| t | $=$ time from the start of the release | $[\mathrm{s}]$ |
| $\mathrm{T}_{\mathrm{s}, 0}$ | $=$ initial subsoil temperature | $[\mathrm{K}]$ |
| $\mathrm{T}_{\mathrm{b}}$ | $=$ (normal) boiling point liquid | $[\mathrm{K}]$ |
| $\lambda_{s}$ | $=$ thermal conductivity of subsoil | $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$ |
| $\rho_{s}$ | $=$ subsoil density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |

### 3.5.3.2 Evaporation of a cryogen on a moist porous subsoil

E vaporation experiments with spilt cryogenes have shown that water in the subsoil freezes when the weight fraction of moist is larger than $8 \%$, preventing the vaporising liquid to penetrate into the capillaries. Then, the evaporation of boiling liquids on the moist porous subsoil can be calculated by modifying the thermal conductivity coefficient of the subsoil, to account for the freezing of the water present in the subsoil. For the calculation of the evaporation of cooled liquefied gases on a moist and permeable soil, i.e $m_{w, m s}>0.08$, the non-stationary heat conduction theory can still be applied.
The results obtained in this manner appear to be in good agreement with the experimental results. Also in T akeno [1994] reported laboratory tests, when wet sand ( $m_{w, m s}=7 \%$ ) was used, liquid oxygen or hydrogen did not soak into the subsoil, because the frozen layer of water between the liquid and the sand layer acted as a barrier. T hese experiments showed that for spills of liquid oxygen and hydrogen, the evaporation rates were indeed inversely proportional to the square root of time, except in the early stage just after the start of vaporisation.

Besides variations of the moist content, the heat conductivity of the subsoil can vary substantially due to other factors, e.g.:

- composition of the subsoil (particle size distribution);
- density of the dry soil.

For the calculation of the heat flux from the subsoil into the liquid pool the following relations can be used. T he correction term $C_{R}$ reflects the influence of the freezing of the water in the subsoil

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}(\mathrm{t})=\mathrm{C}_{\mathrm{R}} \times \lambda_{\mathrm{s}} \times\left(\mathrm{T}_{\mathrm{s}, 0}-\mathrm{T}_{\mathrm{b}}\right) / \sqrt{\left(\mathrm{a}_{\mathrm{s}} \times \pi \times \mathrm{t}\right)} \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.123}
\end{equation*}
$$

with

$$
\begin{align*}
& C_{R}=1.0+1.4 \times m_{w, m s}-3.0 \times m_{w, m s}^{2}  \tag{3.124}\\
& \lambda_{\mathrm{s}}=\left(\beta_{1} \times{ }^{10} \log \left(\mathrm{~m}_{\mathrm{w}, \mathrm{~ms}}\right)+\beta_{2}\right) \times 10^{\beta 3} \\
& \beta_{1}=0.14-0.05 \times \mathrm{j}_{\mathrm{k}}  \tag{3.125}\\
& \beta_{2}=0.33-0.12 \times \mathrm{j}_{\mathrm{k}} \\
& \beta_{3}=0.0006 \mathrm{~m}^{3} / \mathrm{kg} \times \rho_{\mathrm{s}, \mathrm{dry}} \tag{3.126a}
\end{align*}
$$

and

$$
\begin{array}{ll}
a_{s}=C_{R} \times \lambda_{s}\left(\rho_{s} \times C_{p, s}\right) & \left(\mathrm{m}^{2} / \mathrm{s}\right) \\
\rho_{s}=\left(1.0+m_{w, m s}\right) \times \rho_{s, d r y} & \left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\
C_{p, s}=\left(C_{p, s, d r y}+m_{w, m s} \times C_{p, i c e}\right) /\left(1.0+m_{w, m s}\right) \tag{3.127c}
\end{array}
$$

So, the vaporisation mass rate can be estimated by

$$
\begin{equation*}
q_{v}(t)=H_{c}(t) / L_{v}\left(T_{b}\right) \times A \tag{kg/s}
\end{equation*}
$$

where
$C_{R}=$ correction factor
$\mathrm{j}_{\mathrm{k}}=$ clay volume fraction
$\beta_{1}=$ intermediate
$\beta_{2}=$ intermediate
$\beta_{3}=$ intermediate
$\mathrm{m}_{\mathrm{w}, \mathrm{ms}}=$ weight fraction moist in subsoil
[-]
$\left[\mathrm{m}^{3} / \mathrm{m}^{3}\right]$
[J/(m•s•K)]
$[J /(m \cdot s \cdot K)]$
[-]
[kg/kg]

This empiric relation applies to L N G. In Y ellowB ook [1989] no validity ranges have been given for the moist weight fraction. Apparently, the conduction coefficient predicted by equation (3.124), increases with increasing moist content, as might be expected, however, until $\mathrm{m}_{\mathrm{w}, \mathrm{ms}} \approx 0.23$. While the free volume of a 'close packing of spheres' is about $26 \%$, and remembering the density of water to be lower than for sand, it is reasonable to conclude that the upper limit for $m_{w, m s}$ is indeed $23 \%$.
The relation for the thermal conductivity for sandy/clay subsoil is also an empiric equation.
The effects of the particle size distribution have implicitly been taken into account by distinguishing the following subsoil types:

1. sand: diameter between 0.002 and 2 millimetres;
2. clay: diameter $<0.002$ millimetres.

Particles bigger than 2 millimetres are neglected.

Takeno [1994] reported from experiments with liquid hydrogen, that the liquid did not soak into the dry sand layer, and the evaporation mechanism seemed to be the same as that for the wet layer, because the air contained within the inter-particle cavities in the dry sand layer solidifies at the boiling point of liquid hydrogen.

### 3.5.3.3 E vaporation of a cryogen in a gravel-bed

In bunds gravel may cover the subsoil. A separate model can be given for the evaporation of cryogens on a gravel-bed. Implicitly assuming a loose stacking of stones and the total outer surface of gravel stones wetted by the evaporating liquid, the evaporation mass flux at time $t$ can be estimated by the heat-penetration theory

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}(\mathrm{t})=0.89 \times \mathrm{h}_{\mathrm{gr}} / \mathrm{r}_{\mathrm{gr}} \times \lambda_{\mathrm{gr}} \times\left(\mathrm{T}_{\mathrm{gr}, \mathrm{O}}-\mathrm{T}_{\mathrm{b}}\right) / \sqrt{\left(\mathrm{a}_{\mathrm{gr}} \times \mathrm{t}\right)} \quad\left(\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)\right. \tag{3.128}
\end{equation*}
$$

with

$$
\begin{equation*}
q_{v}(t)=H_{c}(t) / L_{v}\left(T_{b}\right) \times A \tag{kg/s}
\end{equation*}
$$

where
$\mathrm{a}_{\mathrm{gr}}=$ thermal diffusivity gravel $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$\mathrm{q}_{\mathrm{v}}=$ vaporisation mass rate $\quad[\mathrm{kg} / \mathrm{s}]$
$\mathrm{h}_{\mathrm{gr}}=$ height gravel layer
[m]
$\mathrm{H}_{\mathrm{c}}=$ heat flux
$\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$

```
L
rgr = average radius gravel stones [m]
T}\mp@subsup{}{\mathrm{ gr,0 = initial gravel temperature [K ]}}{
Tb}=\mathrm{ normal boiling point spilt liquid [K]
t = time from spill [s]
\lambdagr = thermal conductivity of gravel [J/(K}\cdot\textrm{m}\cdot\textrm{s})
```

The gravel stones have been regarded as a semi-infinite medium, thus the Fourier solution can only be applied to short durations. With respect to the maximum heat content of the stone, equation (3.128) can be applied for times less than

$$
\begin{equation*}
\mathrm{t}<0.085 \times \mathrm{rgr}^{2} / \mathrm{a}_{\mathrm{gr}} \tag{s}
\end{equation*}
$$

In this approach the main problem is the assumption of fully wetted gravel stone surface in the bed. The penetration of liquid into the gravel-bed will be hindered by the generated vapour which may be blown out of the gravel-bed; see subsection 3.3.3.1.

It might be reasonable to expect that equation (3.120) will act as an upper limit for the evaporation rate in gravel-beds, while sand can be regarded as tiny gravel stones. Comparing equation (3.128) with (3.120), based on the thermal conductivity and thermal diffusivity of gravel, this assumption means that equation (3.128) holds if

$$
0.89 \times \pi \times \frac{h_{\mathrm{gr}}}{\mathrm{r}_{\mathrm{gr}}} \leq 8
$$

thus

$$
\begin{equation*}
\frac{h_{g r}}{r_{g r}}<3 \tag{3.129b}
\end{equation*}
$$

Also the spreading of the liquid in the bund determines the speed by which the gravel stones are wetted. Unrealistic predictions of the evaporation rate, especially for short periods from the start of the spill, might relate to a doubtful approximation of the release being instantaneous.

### 3.5.3.4 Evaporation of a non-boiling liquid in a gravel-bed

It can be expected that the evaporation of non-boiling liquids in gravel will decrease due to partial coverage of the liquid surface.
No model has been derived for the evaporation of non-boiling liquids in gravel. F ew data has been reported about experiments related to this topic.
An investigation has been carried out by TNO, with the purpose of determining the influence of partial coverage of a petrol pool on the evaporation. In this research in a wind tunnel, the surface of the liquid was covered with a layer of polypropylene balls, with a diameter of $10-40$ millimetres. The results indicated a reduction of the evaporation rate by $60 \%$ to $85 \%$ depending on wind velocity [ $N$ ievergeld, 1978].
For large spills, where the liquid pool may be substantially thicker than the gravel layer, the effects of the penetration into the layer will be small.

### 3.5.4 Film and nucleate boiling on water surfaces

Shortly after a cryogen spill onto water the liquid will boil vigorously, due to the relative large temperature difference between water and released liquid.

Pool boiling is defined as boiling from a heated surface submerged in a large volume of stagnant liquid. In general three boiling regimes can be distinguished: nucleate boiling, transition boiling and film-boiling. In Figure 6 a qualitative correlation between these boiling regimes and the temperature difference $\Delta T$ between liquid and water is given.
The trajectory from the origin until point 3.1 in Figure 6, is characterised by nucleate boiling. Nucleate boiling is the generation of vapour around nuclei. These noncondensable small gas bubbles or foreign bodies held in suspension in the fluid, together with gas or vapour-filled cracks or cavities in solid surfaces (known as nucleation sites), normally provide ample nuclei to act as centres of vapour formation.

Due to the temperature difference between liquid and water, vapour bubbles are generated around evaporation nuclei at the interfacing surface between liquid and water. T hese bubbles grow bigger due to evaporation and finally come loose.
This bubble formation will increase with an increasing temperature difference between liquid and water. Beyond the temperature difference $\Delta \mathrm{T}_{1}$ between liquid and water, the bubble formation will accelerate so that it will disturb the heat transfer from the water surface to the liquid. The coalescence of bubbles will form an insulation layer (vapour blanket) between liquid and water, leading to a decrease in heat transfer between water and liquid resulting in a decrease in evaporation rate. T his type of boiling is called metastable boiling.
$N$ eglecting the additional thermal resistance between the liquid and subsoil may lead to conservative estimates of the heat flux for spilt cryogens.

At a certain temperature difference the boiling rate has reached a (local) maximum value ( point 1), which may be considered the end of the nucleate boiling regime. F urther increase of the temperature difference $\Delta T$ between liquid and water will decrease the heat transfer within the metastable boiling regime.


Figure 3.6 Schematic representation of the boiling curve of liquids

At a specific temperature difference between liquid and water $\Delta \mathrm{T}_{2}$, the so-called Leidenfrost temperature, the vaporising liquid becomes completely separated from the water by a vapour film. This regime is called film-boiling.
It appears from the work of M oorhouse and C arpenter that film-boiling can only be achieved on an unheated surface if it is a highly conductive, uncoated metal surface [Webber, 1990]. So, it will be assumed that film-boiling does not take place in the case of a pool on a solid surface. C onsideration of film-boiling, then, will be for cryogens floating on water. It must be mentioned however, that in Takeno [1994] it has been reported that liquid oxygen spillt on concrete vaporised above the concrete surface.
As the subsoil surface temperature decreases, the evaporation will become less violent, and so the contact between liquid and subsoil will become better and heat transfer will occur faster in the nucleate boiling regime.

The following method enables the estimation of the boiling rate in the metastable boiling regime [Y ellowB ook, 1988].
The heat flux for nucleate boiling can be estimated by

$$
\begin{align*}
& H_{\mathrm{c}, \mathrm{n}}=4.1 \times\left(1+10 \times\left(\frac{\rho_{\mathrm{V}}}{\left(\rho_{\mathrm{L}}-\rho_{\mathrm{V}}\right)}\right)^{2 / 3}\right)^{3} \times \Delta \mathrm{T}^{3} / \\
& \left(\sigma \times \mathrm{T}_{\mathrm{b}} \times\left(\frac{\sqrt{v_{\mathrm{L}}}}{\lambda_{\mathrm{L}}}+\frac{10}{\sqrt{\left(\rho_{\mathrm{w}} \times \mathrm{C}_{\mathrm{p}, \mathrm{w}} \times \lambda_{\mathrm{w}}\right)}}\right)^{2} \times\left(1+10 \times \sqrt{\left.\frac{\left(\rho_{\mathrm{L}} \times \mathrm{C}_{\mathrm{p}, \mathrm{~L}} \times \lambda_{\mathrm{L}}\right)}{\left(\rho_{\mathrm{w}} \times \mathrm{C}_{\mathrm{p}, \mathrm{w}} \times \lambda_{\mathrm{w}}\right)}\right)}\right)\right.
\end{align*}
$$

with

$$
\begin{equation*}
\Delta T=\left(T_{w}-T_{b}\right) \tag{K}
\end{equation*}
$$

where

| $C_{p, L}=$ specific heat liquid | $[\mathrm{J} / / \mathrm{kg} \cdot \mathrm{K})]$ |  |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{p}, \mathrm{w}}=$ specific heat water | $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ |  |
| $\mathrm{H}_{\mathrm{c}, \mathrm{n}}=$ heat flux in nucleate boiling regime | $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ |  |
| $\mathrm{T}_{\mathrm{w}}=$ surface temperature water body | $[\mathrm{K}]$ |  |
| $\mathrm{T}_{\mathrm{b}}=$ normal boiling point | $[\mathrm{K}]$ |  |
| $\Delta \mathrm{T}$ | $=$ temperature difference | $[\mathrm{K}]$ |
| $\lambda_{\mathrm{L}}$ | $=$ thermal conductivity of liquid | $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$ |
| $\lambda_{\mathrm{w}}$ | $=$ thermal conductivity of water | $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$ |
| $\rho_{\mathrm{L}}$ | $=$ liquid density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\rho_{\mathrm{V}}$ | $=$ vapour density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\rho_{\mathrm{w}}$ | $=$ water density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $v_{\mathrm{L}}$ | $=$ kinematic viscosity liquid | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| $\sigma$ | $=$ liquid surface tension | $[\mathrm{N} / \mathrm{m}]$ |

The maximum heat flux for nucleate boiling $\mathrm{H}_{\mathrm{c}, \mathrm{n}, \max }$ can be estimated by

$$
\begin{equation*}
H_{c, n, \max }=0.16 \times L_{V} \times \sqrt{ } \rho_{V} \times\left(\sigma \times g \times\left(\rho_{L}-\rho_{V}\right)\right)^{1 / 4} \quad\left(J /\left(m^{2} \cdot \mathrm{~s}\right)\right) \tag{3.131}
\end{equation*}
$$

where

| $g$ | $=$ acceleration due to gravity | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{L}_{v}$ | $=$ heat of vaporisation | $[\mathrm{kg}]$ |
| $\mathrm{H}_{\mathrm{c}, \mathrm{n}, \max }$ | $=$ maximum heat flux for nucleate boiling | $\left[\mathrm{W} / \mathrm{m}^{2}\right]$ |
| $\Delta \mathrm{T}_{n, \max }$ | $=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{w}}\right)$ corresponding with $\mathrm{H}_{c, n, \max }$ | $[\mathrm{~K}]$ |

From these two equations, the temperature difference $\Delta \mathrm{T}_{\mathrm{n}, \max }$ between the evaporating liquid and the water surface for nucleate boiling, at which the heat flux is at maximum, can be estimated.

F or the minimum heat flux for film-boiling, $\mathrm{H}_{\mathrm{c}, \mathrm{f}, \min }$ can be estimated by

$$
\begin{array}{r}
H_{c, f, \min }=0.18 \times \lambda_{v} \times \Delta T_{f, \min } \times\left\{\left(\mathrm{g} /\left(v_{\mathrm{v}} \times \mathrm{a}_{\mathrm{v}}\right)\right) \times\left(\rho_{\mathrm{L}} / \rho_{\mathrm{v}, \mathrm{av}}-1\right)\right\}^{1 / 3} \\
\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.132}
\end{array}
$$

with

$$
\begin{equation*}
\mathrm{T}_{\mathrm{v}, \mathrm{av}}=\left(\mathrm{T}_{\mathrm{b}}+\mathrm{T}_{\mathrm{w}}\right) / 2 \tag{K}
\end{equation*}
$$

where
$\lambda_{v} \quad=$ thermal conductivity vapour $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$
$\mathrm{a}_{\mathrm{v}} \quad=$ thermal diffusivity vapour $\quad\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$v_{v} \quad=$ kinematic viscosity vapour $\quad\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$\rho_{\mathrm{v}, \mathrm{av}} \quad=$ vapour density at average temperature $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\mathrm{T}_{\mathrm{v}, \mathrm{av}}=$ average vapour temperature
[K]
$H_{c, f, \text { min }}=$ minimum heat flux for film-boiling
and the temperature difference $\Delta \mathrm{T}_{\mathrm{f}, \min }$ between the evaporating liquid and the water surface at which film-boiling occurs can be estimated by

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{f}, \min }=\left(\mathrm{T}_{\mathrm{c}}-\mathrm{T}_{\mathrm{b}}\right) \times\left(0.16+2.4 \times \frac{\left(\rho_{\mathrm{L}} \times \mathrm{C}_{\mathrm{p}, \mathrm{~L}} \times \lambda_{\mathrm{L}}\right)}{\left(\rho_{\mathrm{w}} \times \mathrm{C}_{\mathrm{p}, \mathrm{w}} \times \lambda_{\mathrm{w}}\right)}\right)^{1 / 4} \quad(\mathrm{~K}) \tag{3.134}
\end{equation*}
$$

where
$\mathrm{T}_{\mathrm{c}} \quad=$ critical temperature spilt chemical $[\mathrm{K}]$
$\Delta \mathrm{T}_{\mathrm{f}, \text { min }}=\left(\mathrm{T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{w}}\right)$ corresponding with $\mathrm{H}_{\mathrm{c}, \mathrm{f}, \mathrm{min}} \quad[\mathrm{K}]$

The heat flux during metastable boiling, $\mathrm{H}_{\mathrm{c}, \mathrm{m}}$ can be calculated by means of the following relation

$$
\begin{equation*}
H_{c, m}=H_{c, n, \max } \times f_{T}+\left(1-f_{T}\right) \times H_{c, f, \min } \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{T}=\left(1-\frac{\left(\Delta T-\Delta T_{n, \max }\right)}{\left(\Delta T_{f, \min }-\Delta T_{n, \max }\right)}\right)^{7} \tag{-}
\end{equation*}
$$

if

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{n}, \max }<\Delta \mathrm{T}<\Delta \mathrm{T}_{\mathrm{f}, \min } \tag{K}
\end{equation*}
$$

where
$\mathrm{f}_{\mathrm{T}} \quad=$ function of temperature $\quad[-]$
$\mathrm{H}_{\mathrm{c}, \mathrm{m}}=$ heat flux during metastable boiling $\quad\left[\mathrm{W} / \mathrm{m}^{2}\right]$
The factor $f$ represents an average value which indicates which portion of the heated surface is wetted by the evaporating liquid. F or the case $f=1$, the water surface is completely wetted by the boiling liquid and nucleate boiling takes place. F or $f=0$ it is film-boiling. T he calculated values for liquids with low-boiling temperatures are in good agreement with some of the scarce experimental results reported in literature.

If $\Delta T<\Delta T_{n, \text { max }}$ then use equation (3.130). If $\Delta T>\Delta T_{f, \text { min }}$ then use equation (3.107) or (3.117).

For liquids with a boiling temperature close to the water temperature, such as butane and ethylene oxide, the calculated evaporation rates are unrealistically high. F or those liquids the following relation has been suggested, assuming heat transfer by convection in the water

$$
\begin{equation*}
H_{c}=0.085 \times \lambda_{w} \times\left(\frac{g \times \alpha_{w} \times \Delta T^{4}}{\left(v_{w} \times a_{w}\right)}\right)^{1 / 3} \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.137}
\end{equation*}
$$

with

$$
\begin{align*}
\alpha_{w} & =1 N \times(\partial V / \partial T)_{P}  \tag{1/K}\\
& =\frac{1}{\rho} \times(\partial \rho / \partial T)_{P}
\end{align*}
$$

and again

$$
\begin{equation*}
q_{v}=H_{C} / L_{v}\left(T_{b}\right) \times A \tag{3.122a}
\end{equation*}
$$

(kg/s)
where

| $\alpha_{w}$ | $=$ thermal expansivity of water | $[1 / \mathrm{K}]$ |
| :--- | :--- | :--- |
| $\lambda_{w}$ | $=$ thermal conductivity of water | $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$ |
| $v_{w}$ | $=$ kinematic viscosity of water | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| $a_{w}$ | $=$ thermal diffusivity of water | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |

Note The thermal expansivity of water at a temperature of 300 K is equal to $2 \cdot 0 \cdot 10^{-4} 1 / K$ [Bolz, 1972].

Note In Webber [1990] the problem has been simplified by neglecting metastable boiling, with the argument that this approximation should not be too bad within the overall framework of the pool evaporation model; see section 3.5.2.5.

### 3.5.5 Simple models for evaporation within bunds

### 3.5.5.1 Boiling liquids

A pool can be considered boiling when the normal boiling point of the spilt chemical is lower than the temperature of the subsoil or the temperature of the water body which it is spilt on. C ryogen will boil off quickly after the release extracting heat mainly from the subsoil. Spilt cryogens boil at a rate mainly controlled by the rate at which heat can get into the liquid from the environment supplying the latent heat of vaporisation. Later on, other heat sources will prevail, like solar heat flux and heat transfer from the atmosphere, but then the liquid pool is not boiling any more.

T he simplified approach was based on the following arguments. As long as the liquid pool is boiling, its (average) temperature is remaining constant at normal boiling point, and no latent heat of the pool is withdrawn. Compared to rapid boiling, diffusion of vapour from the liquid into the atmosphere is relatively small. T he heat conduction flux from the subsoil at the initial stage is much larger than the heat flux due to other sources. So, by neglecting the small terms in the heat balance, and use of the heat penetration theory, results for instantaneous releases of cryogens onto subsoil in:

$$
\begin{equation*}
0=H_{c}-q^{\prime \prime} \times L_{v} \tag{3.139}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}(\mathrm{t})=\lambda_{\mathrm{s}} \times\left(\mathrm{T}_{\mathrm{s}, 0}-\mathrm{T}_{\mathrm{b}}\right) / \sqrt{\left(\mathrm{a}_{\mathrm{s}} \times \pi \times \mathrm{t}\right)} \tag{3.140}
\end{equation*}
$$

$$
\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

$\mathrm{T}_{\mathrm{s}, 0}=$ initial subsoil temperature
[K]
$\mathrm{T}_{\mathrm{b}}=$ normal boiling point spillt liquid
[K]

In this simple model the heat balance acts as service-hatch: the evaporation flux from the boiling liquid can directly be related to the time-dependent heat flux from the subsoil.

This one-dimensional model is generally applied. In Webber [1987] it is demonstrated that the implicit assumption of heat transport in the vertical direction is only justified for practical situations.
$N$ ote that the effect of spreading, causing the contact between cold liquid and warm subsoil not to be instantaneously established, has been neglected. To avoid an unrealistic high predicted evaporation rate in the initial stages of the spill $t \approx 0$, some delay has to be assumed. It could be a guess how long it will take the liquid to reach the wall of the bund.

When the surface liquid pool A is considered constant, then the evaporation rate at time t can simply be estimated by

$$
\begin{equation*}
q_{v}(t)=q v "(t) \times A=H_{c}(t) / L_{v}\left(T_{b}\right) \times A \tag{kg/s}
\end{equation*}
$$

Some heat properties of several materials have been given in the table below.

Table 3.5 Heat conduction properties of various materials; note that the italic numbers have been calculated using equation (3.6a): $a=\lambda /\left(\rho \cdot C_{p}\right)(3.6 a)$

| Material | $\lambda_{\mathbf{s}}$ <br> $(\mathbf{J} /(\mathbf{s} \cdot \mathbf{m} \cdot \mathbf{K}))$ | $\rho_{\mathbf{s}}$ <br> $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$ | $\mathbf{C}_{\mathbf{p}, \mathbf{s}}$ <br> $(\mathbf{J} /(\mathbf{k g} \cdot \mathbf{K}) \mathbf{)}$ | $\mathbf{a}_{\mathbf{s}} \times \mathbf{1 0}^{\mathbf{- 7}}$ <br> $\left(\mathbf{m}^{2} / \mathbf{s}\right)$ |
| :--- | :---: | :---: | :---: | :---: |
| Isolation concrete | 0.207 | 900 | 920 | 2.5 |
| Light concrete | 0.418 | 1800 | 920 | 2.5 |
| Heavy concrete | 1.3 | 2400 | 920 | 5.9 |
| Clinkers | 0.7 | 2000 | 836 | 4.2 |
| Average subsoil 8 wt\% moist | 0.9 | 2500 | 836 | 4.3 |
| Dry sandy subsoil | 0.3 | 1600 | 799 | 2.0 |
| Wet sand 8 wt\% moist / clay | 0.6 | 1940 | 937 | 3.3 |
| Wood | 0.2 | 550 | 2300 | 1.6 |
| Gravel | 2.5 | 2000 | 1140 | 11 |
| Carbon steel | 46 | 7840 | 460 | 128 |

### 3.5.5.2 Non-boiling liquids

After a release of a chemical with a normal boiling point higher than the subsoil temperature or the temperature of the water surface which it is spilt on, the resulting liquid pool will be non-boiling.
The evaporation of (boiling) liquids having normal boiling points near or below ambient temperature, will become non-boiling after the initial boiling stages of the release.
T he evaporation of non-boiling liquid pools depends mainly on the rate at which the vapour can be removed by the wind above the pool. T hus, for non-boiling liquids the mass transfer by diffusion will be the limiting factor, especially after the initial stages of the spill.

The simplified approach presented in this paragraph is based on the argument that for relative long duration pool evaporation, the spreading of the liquid pool can be ignored thus assuming the pool reaches its maximum area A immediately. This approach may be a good approximation in case of second containments: bunds.
The heart of the resulting pool evaporation model consists of a relatively simple linear differential equation, which describes the change of the average pool temperature in time.

The vaporisation mass flow rate $\mathrm{q}_{v}$ can be estimated by the equations (3.13), (3.24), and (3.25), i.e. the model by $M$ acK ay \& $M$ atsugu, [ $K$ awamura and $M$ ackay, 1978]

$$
\begin{equation*}
q_{v}=q^{\prime \prime}{ }_{v} \times A \tag{3.141}
\end{equation*}
$$

(kg/s)
with

$$
\begin{equation*}
q^{\prime \prime}{ }_{v}=k_{m} \times P_{v}\left(T_{p s}\right) \times \mu_{i} /\left(R \times T_{p s}\right) \tag{3.13}
\end{equation*}
$$

$$
\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

and

$$
\begin{equation*}
\mathrm{k}_{\mathrm{m}}=\mathrm{C}_{\mathrm{m} \& \mathrm{~m}} \times \mathrm{u}_{\mathrm{w}, 10} 0.78 \times(2 \times \mathrm{r})^{-0.11} \times \mathrm{Sc}^{-0.67} \tag{3.24}
\end{equation*}
$$

with

$$
\begin{align*}
\mathrm{Sc} & =v_{\mathrm{V}} / \mathrm{D}_{\mathrm{a}}  \tag{3.25}\\
& \approx 0.8
\end{align*}
$$

(-)

| where |  |  |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}_{m \& m}=$ | 0.004786 | $\left[\mathrm{~m}^{0.33} / \mathrm{s}^{0.22}\right]$ |  |
| $\mathrm{D}_{\mathrm{a}}$ | $=$ | diffusion coefficient vapour in air | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| $\mathrm{K}_{\mathrm{m}}$ | $=$ | mass transfer coefficient related to concentration | $[\mathrm{m} / \mathrm{s}]$ |
| $\mathrm{P}_{\mathrm{v}}(\mathrm{T})$ | $=$ | vapour pressure at temperature T | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| r | $=$ | liquid pool radius | $[\mathrm{m}]$ |
| R | $=$ | international gas constant | $[\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})]$ |
| Sc | $=$ | Schmidt number | $[-]$ |
| $\mathrm{T}_{\mathrm{ps}}$ | $=$ | liquid temperature at pool surface | $[\mathrm{K}]$ |
| $\mathrm{u}_{\mathrm{w}, 10}$ | $=$ | wind speed at standard 10 metres height | $[\mathrm{m} / \mathrm{s}]$ |
| $\mu_{\mathrm{i}}$ | $=$ | molecular weight of substance i | $[\mathrm{kg} / \mathrm{mol}]$ |
| $v_{V}$ | $=$ | kinematic viscosity vapour | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |

It is assumed that the surface temperature of the pool $T_{p s}$ is equal to the temperature of the bulk of the liquid $\mathrm{T}_{\mathrm{p}}$ in the pool.

Assuming the specific heat and the liquid density to change little when the liquid pool temperature decreases, the heat balance (3.4) results in

$$
\begin{equation*}
\rho_{\mathrm{L}} \times \mathrm{C}_{\mathrm{p}, \mathrm{~L}} \times \mathrm{h} \times \delta \mathrm{T}_{\mathrm{p}} / \delta \mathrm{t} \approx \Sigma \mathrm{H}-\mathrm{q}_{\mathrm{v}} \times \mathrm{L}_{\mathrm{v}} \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.142a}
\end{equation*}
$$

with

$$
\Sigma \mathrm{H}=\mathrm{H}_{\mathrm{c}}+\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{rl}}+\mathrm{H}_{\mathrm{rs}} \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

so that

$$
\begin{equation*}
\delta T_{p}=\left(\Sigma H-q^{\prime \prime}{ }_{v} \times L_{v}\right) /\left(h \times \rho_{L} \times C_{p, L}\right) \times \delta t \tag{K}
\end{equation*}
$$

$N$ ote, that the temperature $T_{p}$ after a time-step $\delta t$, is given by

$$
\begin{equation*}
T_{p}(t+\delta t)=T_{p}(t)+\delta T_{p} \tag{K}
\end{equation*}
$$

where
$C_{p, L}=$ specific heat liquid $\quad[J /(\mathrm{kg} \cdot \mathrm{K})]$
$\mathrm{h}^{\text {p,L }}=$ pool depth [m]
$\mathrm{H}_{\mathrm{c}}=$ heat flux from subsoil $\quad\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$\mathrm{H}_{\mathrm{a}}=$ convected heat flux from air $\quad\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$\mathrm{H}_{\mathrm{rl}}=$ long-wave solar radiated heat flux $\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$\mathrm{H}_{\mathrm{rs}}=$ solar radiated heat flux $\quad\left[\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$L_{v}=$ latent heat of vaporisation $\quad[\mathrm{J} / \mathrm{kg}]$
$q^{\prime \prime}{ }_{v}=$ evaporation flux $\quad\left[\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$
$\mathrm{t}=$ time from the start of the spill [s]
st $=$ small time-step [s]
$\mathrm{T}_{\mathrm{p}}=$ temperature of the liquid pool [K]
$\delta T_{p}=$ small temperature step [K]
$\rho_{\mathrm{L}}=$ liquid density $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
While the pool surface area $A$ is constant, application of the mass balance results in

$$
\begin{equation*}
\delta h=-q^{\prime \prime}{ }_{v} / \rho_{\mathrm{L}} \times \delta \mathrm{t} \tag{m}
\end{equation*}
$$

$N$ ote that the pool height h after a time-step $\delta \mathrm{t}$, is given by

$$
\begin{equation*}
h(t+\delta t)=h+\delta h \tag{m}
\end{equation*}
$$

where
$\delta h \quad=$ small change in pool depth [m]

The heat flux from the atmosphere: by convection $\mathrm{H}_{\mathrm{a}}$, and solar radiated heat flux $\mathrm{H}_{\mathrm{rs}}, \mathrm{H}_{\mathrm{rl}}$ can be estimated by the methods addressed in paragraph 3.2.2.
The estimation of the instationary heat flux from the ground $H_{c}$ encounters some difficulties. First, the liquid temperature $T_{p}$ is not constant.

But, due to the relatively fast (negative) heat penetration into the subsoil, the temperature decrease of the pool may be neglected, so applying equation (3.7) results in

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}}(\mathrm{t})=\lambda_{\mathrm{s}} \times\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{p}}(\mathrm{t})\right) / \sqrt{\left(\mathrm{a}_{\mathrm{s}} \times \pi \times \mathrm{t}\right)} \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.144}
\end{equation*}
$$

$\mathrm{T}_{\mathrm{s}} \quad=$ initial subsoil temperature $\quad[\mathrm{K}]$
$\mathrm{a}_{\mathrm{s}} \quad=$ thermal diffusivity subsoil $\quad\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$\lambda_{s} \quad=$ thermal conductivity subsoil $[\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})]$

Equation (3.144) above predicts unrealistically high vaporisation fluxes for times shortly after the start of the release, causing numerical difficulties. Furthermore, the assumption of reaching its final pool diameter instantaneously, is not physically realistic.
A practical solution is to define a time $t_{s p}$ necessary for the liquid to spread, let us say $\mathrm{t}_{\mathrm{sp}} \approx 20 \mathrm{~s}$. F or times shorter than this spreading time, the heat flux is per definition equal to the heat flux half-way the spreading, so

$$
\begin{array}{lll}
H_{c}(t)=\lambda_{s} \times\left(T_{s}-T_{p}(t)\right) / \sqrt{\left(a_{s} \times \pi \times t_{s p} / 2\right)} & \text { for } t<t_{s p} & \left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \\
H_{\mathrm{c}}(\mathrm{t})=\lambda_{\mathrm{s}} \times\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{p}}(\mathrm{t})\right) / \sqrt{\left(\mathrm{a}_{\mathrm{s}} \times \pi \times \mathrm{t}\right)} & \text { for } \mathrm{t} \geq \mathrm{t}_{\mathrm{sp}} & \left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.145b}
\end{array}
$$

### 3.5.5.3 Transition boiling to non-boiling

D ue to the decreasing temperature of the subsoil the effect of heat conduction from the subsoil will diminish in time. The initially boiling liquid pool will stop boiling eventually. D uring the transition neither the control by the rate at which heat can get into the liquid from the environment supplying the latent heat of vaporisation, nor the rate at which the vapour can be removed by the air flow above the pool, will be dominant. This is also the case for substances which boil close to ambient temperature like butane.
Both mechanisms for evaporation, controlled by heat transfer and controlled by diffusion, will in fact always be apparent. The first mechanism is dominant in case of a cryogenic spill just after the release, and the second will be dominant in case of a spill of a volatile liquid after quite some time after the release or in case of non-volatile spills.

### 3.5.6 HACS-R

### 3.5.6.1 Introduction

When a soluble chemical is spilt on water, it may rapidly dissolve. Chemicals may not only be miscible with water, but may also maintain high vapour pressures at ambient temperature. When such liquids are spillt vapour may be generated from the water surface.

The objective of the model HACS-R is to predict the vaporisation rate, the area and the duration over which the vapour evolvement takes place, if a highly water-soluble, high-vapour-pressure liquid is spillt on a water surface in a non-tidal river.

The description of the model has been taken from the NTIS-report 'Assessment M odels in support of the H azard assessment handbook, by Ph.K. Raj, et al., [1974].

It is assumed that the entire liquid spillt goes into solution in water first. After estimating the liquid concentration in the water, the vapour pressure on the water surface of the chemical can be estimated, as well as the vaporisation rate.
The vaporisation of the chemical takes place only at the water surface, and is caused by the difference in the (partial) vapour pressure of the solved chemical at the water surface and in the atmosphere.

The model is based on the following assumptions:

1. The spill will be considered as an instantaneous point source.
2. The entire mass of the liquid spill goes into solution with water.
3. The chemical spillt reaches the temperature of the water immediately after the spill.
4. H eat transfer, chemical reaction, or phase change effects will not be considered, the total mass of the liquid which is mixing with water remains constant.
5. Settling of liquid due to higher density effects will be ignored

The following data are required to calculate the vapour evolvement rate in a non-tidal river:

1. $M$ ass of liquid spillt.
2. Saturated vapour pressure at water temperature.
3. Vapour pressure as a function of the concentration of liquid data, if Raoult's law (equation 3.166) doesn't hold.
4. River characteristics like depth, width, mean stream velocity and roughness factor.

### 3.5.6.2 Model description

## Introduction

First, a more general model for mixing and dilution in a uniform river is described. It must be mentioned that in general the vapour pressures of solved volatile non-boiling chemicals are so low, that in the far field only very low atmospheric concentrations above the water surface can be expected.
$N$ evertheless the so-called far field approximation has been given also in order to supply a full description of water dispersion in a river.
Secondly, the model for vapour evolvement from the water surface is described, related to near field approximation.
$M$ ixing and dilution model in a uniform river
The aim of the dispersion submodel is to provide a method for the estimation of liquid concentrations in water in the initial stages after the spill of a water-miscible liquid. The model cannot be applied to lakes, tidal rivers, estuaries, and open sea.

The phenomenon of mixing is generally described theoretically by the classical diffusion equations with one or more dispersion coefficients. The models described are valid for the dispersion of neutrally buoyant liquids that dissolve in water.
Harleman has correlated from experimental data dispersion coefficients for dispersion of pollutants in rivers. T hese correlations are presented here.

For an instantaneous spill on the surface in the middle of the river at the point $(0, b, 0)$, the concentration is given by

$$
\begin{equation*}
c_{i}(x, y, z, t)=\frac{2 \times Q_{L}}{\left((4 \pi \times t)^{3 / 2} \times \sqrt{\left(D_{x} \times D_{y} \times D_{z}\right)}\right)} \times F_{x} \times F_{y} \times F_{z}\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \tag{3.146a}
\end{equation*}
$$

with

$$
\begin{align*}
F_{x}= & \exp \left(-C_{d 1} \times t-\frac{\left(x-u_{s} \times t\right)^{2}}{\left(4 \times D_{x} \times t\right)}\right)  \tag{-}\\
F_{y}= & \exp \left(-\frac{\left(y-y_{s p}\right)^{2}}{\left(4 \times D_{y} \times t\right)}\right)+\exp \left(-\frac{\left(y-y_{s p}-2 \times b\right)^{2}}{\left(4 \times D_{y} \times t\right)}\right)+ \\
& \exp \left(-\frac{\left(y+y_{s p}-2 \times b\right)^{2}}{\left(4 \times D_{y} \times t\right)}\right)  \tag{3.146c}\\
F_{z}= & \exp \left(-\frac{z^{2}}{\left(4 \times D_{z} \times t\right)}\right)+\exp \left(-\frac{\left(z-2 \times h_{d}\right)^{2}}{\left(4 \times D_{z} \times t\right)}\right) \tag{3.146d}
\end{align*}
$$

where

| b | $=$ half width of the river | $[\mathrm{m}]$ |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{i}}$ | $=$ concentration chemical i in water | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mathrm{C}_{\mathrm{d} 1}=$ first order decay coefficient | $[1 / \mathrm{s}]$ |  |
| $\mathrm{D}_{\mathrm{i}}$ | $=$ dispersion coefficient along the i-coordinate | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| $\mathrm{Q}_{\mathrm{L}}=$ mass spillt chemical | $[\mathrm{kg}]$ |  |
| $\mathrm{u}_{\mathrm{s}}$ | $=$ mean stream velocity | $[\mathrm{m} / \mathrm{s}]$ |
| $\mathrm{y}_{\mathrm{sp}}$ | $=$ distance spill centre to river middle | $[\mathrm{m}]$ |
| t | $=$ time from the instantaneous release | $[\mathrm{s}]$ |
| x | $=$ coordinate along-stream | $[\mathrm{m}]$ |
| y | $=$ coordinate across-stream | $[\mathrm{m}]$ |
| z | $=$ coordinate in depthwise direction | $[\mathrm{m}]$ |

Equation (3.146a) implicitly assumes that there is no loss of solved chemical through the banks of the river.
For the initial stages of dispersion, this so-called near-field approximation, the following holds. H arleman has given the following turbulent dispersion coefficients for narrow and wide rivers.

D ispersion coefficients for very wide rivers ( $2 \times b / h_{d}>100$ )

$$
\begin{array}{ll}
D_{z}=0.067 \times u_{*} \times h_{d} \\
D_{x}=0.1 \times D_{z} & \left(\mathrm{~m}^{2} / \mathrm{s}\right) \\
D_{y}=0.1 \times D_{z} & \left(\mathrm{~m}^{2} / \mathrm{s}\right)  \tag{3.147c}\\
\left(\mathrm{m}^{2} / \mathrm{s}\right)
\end{array}
$$

D ispersion coefficients for narrow rivers ( $2 \times \mathrm{b} / \mathrm{h}_{\mathrm{d}}<100$ )

$$
\begin{array}{ll}
D_{z}=0.067 \times u_{*} \times r_{h} & \left(\mathrm{~m}^{2} / \mathrm{s}\right) \\
D_{x}=0.1 \times D_{z} & \left(\mathrm{~m}^{2} / \mathrm{s}\right) \\
D_{y}=0.23 \times u_{*} \times r_{h} & \left(\mathrm{~m}^{2} / \mathrm{s}\right)
\end{array}
$$

with

$$
r_{h}=h_{d} \times b /\left(h_{d}+2 \times b\right)
$$

(m)
where
$\mathrm{u}_{*} \quad=$ shear velocity $\quad[\mathrm{m} / \mathrm{s}]$
$r_{h} \quad=$ hydraulic radius river [m]
$h_{d}=$ river depth [m]
$N$ ote, that the value $D_{z}$ is the mean of the vertical distribution given by

$$
\begin{equation*}
\mathrm{D}_{\mathrm{z}}=0.4 \mathrm{u}_{*} \times \mathrm{h}_{\mathrm{d}} \times\left(\mathrm{z} / \mathrm{h}_{\mathrm{d}}\right) \times\left(1-\mathrm{z} / \mathrm{h}_{\mathrm{d}}\right) \tag{3.149}
\end{equation*}
$$

The type of river influences the dispersion of a solved chemical. The estimation of dispersion coefficient $D_{y}$ depends on the shear velocity $u_{*}$ which is related to the socalled $M$ anning roughness factor $C_{M R F}$. $T$ he shear velocity is by definition equal to

$$
\begin{equation*}
\mathrm{u}_{*}=\sqrt{ } \tau_{0} / \rho_{\mathrm{L}} \tag{3.150}
\end{equation*}
$$

where
$\tau_{0} \quad=$ wall shear stress $\quad\left[\mathrm{N} / \mathrm{m}^{2}\right]$
$\rho_{\mathrm{L}} \quad=$ density chemical $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
and can be calculated by

$$
\begin{equation*}
\mathrm{u}_{*}=\mathrm{C}_{\mathrm{u}^{*}} \times \mathrm{C}_{\mathrm{MRF}} \times \mathrm{u}_{\mathrm{s}} / \mathrm{r}_{\mathrm{h}}^{1 / 6} \tag{3.151}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{u^{*}}=3.115 \mathrm{~m}^{1 / 6} \tag{3.151a}
\end{equation*}
$$

where
$\mathrm{C}_{\mathrm{MRF}}=\mathrm{M}$ anning roughness factor $\quad[-]$

In the table below some M anning roughness factors are listed.

Table 3.6 Manning roughness factor for several natural stream channels

| Natural stream channels | C $_{\text {MRF }}$ |
| :--- | :---: |
| clean, straight bank, full stage | 0.030 |
| winding, some pools and shoals | 0.040 |
| same, but with stony sections | 0.055 |
| sluggish reaches, very deep pools, very weedy | $0.070-0.125$ |

It is assumed that the spreading model is valid until a noticeable concentration will be apparent near the river banks. T he time $t_{c}$ for this to happen will be approximately

$$
\begin{equation*}
t_{c}=b^{2} / D_{y} \tag{s}
\end{equation*}
$$

The 'initial period' $t_{1}$ is defined as the period up to which equation (3.146a) can be used to predict the concentration

$$
\begin{equation*}
t_{1}=0.3 \times t_{c} \tag{s}
\end{equation*}
$$

Equation (3.146a) might be used for periods larger than the initial period when terms are included related to the influence of image source terms in the equations, to prevent dispersion through the boundaries.
F or periods of time larger than $t_{1}$ the one-dimensional analysis to describe the mean concentration is used; this is the so-called 'far field approximation'. The concentration is then derived from

$$
\begin{equation*}
\partial \mathrm{c}_{\mathrm{i}} / \partial \mathrm{t}+\mathrm{u}_{\mathrm{s}} \times \partial \mathrm{c}_{\mathrm{i}} / \partial \mathrm{x}=1 / \mathrm{A}_{\mathrm{s}} \times \partial\left(\mathrm{D} \times \mathrm{A}_{\mathrm{s}} \times \partial \mathrm{c}_{\mathrm{i}} / \partial \mathrm{x}\right) / \partial \mathrm{x} \quad\left(\mathrm{~kg} /\left(\mathrm{m}^{3} \cdot \mathrm{~s}\right)\right) \tag{3.154}
\end{equation*}
$$

$A_{s}=$ cross-sectional area river $\left[\mathrm{m}^{2}\right]$

F or an instantaneous spill the local concentration at any time is given by

$$
\begin{align*}
c_{i}(x, t)=\frac{Q_{L}}{\left(A_{s} \times \sqrt{(4 \pi \times D \times t)}\right)} \times \exp \left(-C_{d 1} \times t-\frac{\left(x-u_{s} \times t\right)^{2}}{(4 \times D \times t)}\right)  \tag{3.155}\\
\left(\mathrm{kg} / \mathrm{m}^{3}\right)
\end{align*}
$$

$\begin{array}{lll}C_{d 1}=\text { first order decay coefficient } & {[1 / \mathrm{s}]} \\ D & =\text { dispersion coefficient } & {\left[\mathrm{m}^{2} / \mathrm{s}\right]}\end{array}$

For convenience the decay coefficient is introduced in the equation to account for possible unstable or reactive spillt chemicals.
Elder's equation gives the dispersion coefficient $D$ as functions of the river characteristics

$$
\begin{equation*}
D=C_{D E} \times n \times u_{s} \times r_{h}{ }^{5 / 6} \quad \text { for } 2 \times b / h_{d}>100 \quad\left(\mathrm{~m}^{2} / \mathrm{s}\right) \tag{3.156}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{D E}=63 \mathrm{~m}^{1 / 6} \tag{3.156a}
\end{equation*}
$$

and lacking velocity distribution of the river in general, as a first approximation

$$
\begin{equation*}
D /\left(r_{h} \times u_{*}\right) \approx 225 \text { for } 2 \times b / h_{d}<100 \tag{-}
\end{equation*}
$$

V apour evolvement from the water surface
The calculation procedure is illustrated by the scheme below.

1. Input:
a. Properties of chemical
b. Environmental conditions
c. Spill quantity
2. C alculation mass transfer coefficient
3. Calculation of characteristic parameters
4. Calculation of non-dimensional evaporation rates
5. Integration by Simpson rule
6. Result:
a. T otal mass of vapour evolved
b. Vaporisation rate
c. M aximum duration vapour evolvement

N eglecting the contribution from image sources and decay of the spillt chemical, the near field model for dispersion in water can be described by

$$
\begin{align*}
c_{i}(x, y, z, t)= & 2 \times Q_{L} /\left((4 \pi \times t)^{3 / 2} \times \sqrt{ }\left(D_{x} \times D_{y} \times D_{z}\right)\right) \times \\
& \exp \left(-\frac{\left(x-u_{s} \times t\right)^{2}}{\left(4 \times D_{x} \times t\right)}-\frac{y^{2}}{\left(4 \times D_{y} \times t\right)}-\frac{z^{2}}{\left(4 \times D_{z} \times t\right)}\right)_{\left(\mathrm{kg} / \mathrm{m}^{3}\right)} \tag{3.158}
\end{align*}
$$

where

| $\mathrm{c}_{\mathrm{i}}$ | $=$ concentration chemical i in water | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| :--- | :--- | :--- |
| $\mathrm{D}_{\mathrm{i}}$ | $=$ dispersion coefficient along the i -coordinate | $\left[\mathrm{m}^{2} / \mathrm{s}\right]$ |
| $\mathrm{Q}_{\mathrm{L}}$ | $=$ mass spillt chemical | $[\mathrm{kg}]$ |
| $\mathrm{u}_{\mathrm{s}}$ | $=$ steam velocity | $[\mathrm{m} / \mathrm{s}]$ |
| t | $=$ time from the instantaneous release | $[\mathrm{s}]$ |
| x | $=$ coordinate along-stream | $[\mathrm{m}]$ |
| y | $=$ coordinate across-stream | $[\mathrm{m}]$ |
| z | $=$ coordinate in depthwise direction | $[\mathrm{m}]$ |

Remark: the origin of the coordinate system lies in middle of the river at the water surface.


Figure 3.7 Schematic illustration of the evaporation area on water [Raj, 1974]

Equation (3.158) can be used to calculate the concentration of the liquid on the water surface at any position at any time.
The equation above is a solution to the diffusion equation, it predicts finite but exponentially small concentrations at large distances from the point of spill in very shortly after the instantaneous release.
The molar fractional concentration $m_{m}$ of the spilt chemical in water is given by

$$
\begin{equation*}
m_{m}=1 /\left(1+\rho_{\mathrm{w}} / c_{\mathrm{i}} \times\left(\mu_{\mathrm{L}} / \mu_{\mathrm{w}}\right)\right) \tag{-}
\end{equation*}
$$

| $\rho_{\mathrm{w}}$ | $=$ water density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| :--- | :--- | :--- |
| $c_{i}$ | $=$ concentration chemical i in water | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $\mu_{\mathrm{L}}$ | $=$ molecular weight of spillt liquid | $[\mathrm{kg} / \mathrm{mol}]$ |
| $\mu_{\mathrm{w}}$ | $=$ molecular weight of water | $[\mathrm{kg} / \mathrm{mol}]$ |

A molar concentration $m_{m *}$ may be defined such that the evaporation from water surface having a molar concentration of less than $m_{m^{*}}$, is negligibly small. The value of $m_{m *}$ is quite arbitrary and may have to be chosen properly for different chemicals. By choosing a value for $m_{m *}$ the area is actually limited from which evaporation can occur. It is estimated that the effect of evaporation is quite small from areas where the vapour pressure is less than $5 \%$ of the saturated vapour pressure.

The spill will move downstream with the stream velocity. The regions where the concentrations are greater than $m_{m *}$, are ellipsoidal. The equation to these ellipses is obtained from equation (3.158). The semi-axes lengths for these elliptical areas are given by

$$
\begin{equation*}
r_{\mathrm{a}}(\mathrm{t})=\sqrt{ }\left(4 \times \mathrm{D}_{\mathrm{x}} \times \mathrm{t} \times \ln \left(\mathrm{c}_{\max }(\mathrm{t}) / \mathrm{c}_{*}\right)\right) \tag{m}
\end{equation*}
$$

$$
\begin{equation*}
r_{b}(t)=\sqrt{ }\left(4 \times D_{y} \times t \times \ln \left(c_{\max }(t) / c_{*}\right)\right) \tag{m}
\end{equation*}
$$

where $c_{*}$ is the limiting concentration in units of mass/volume, which is a more or less arbitrarily value that may be related to flammability limits or toxicity limits.

At the centre of the elliptical area the concentration is a maximum and is given by

$$
\begin{equation*}
\mathrm{c}_{\mathrm{i}, \max }(\mathrm{t})=\frac{2 \times \mathrm{Q}_{\mathrm{L}}}{(4 \times \pi \times \mathrm{t})^{3 / 2} \times \sqrt{\left(\mathrm{D}_{\mathrm{x}} \times \mathrm{D}_{\mathrm{y}} \times \mathrm{D}_{\mathrm{z}}\right)}} \quad \quad\left(\mathrm{kg} / \mathrm{m}^{3}\right) \tag{3.162}
\end{equation*}
$$

If now $t_{c}$ <lim is set equal to the time beyond which the concentration in water of the liquid spilt is below $m_{m *}$ everywhere in the water, then the so-called characteristic time can be calculated by

$$
\begin{equation*}
\mathrm{t}_{\mathrm{c}<\lim }=1 /(4 \times \pi) \times\left(2 \times \mathrm{Q}_{\mathrm{L}} /\left(\mathrm{c}_{*} \times \sqrt{ }\left(\mathrm{D}_{\mathrm{x}} \times \mathrm{D}_{\mathrm{y}} \times \mathrm{D}_{\mathrm{z}}\right)\right)\right)^{2 / 3} \tag{3.163}
\end{equation*}
$$

The rate of evaporation per unit area $q$ " ${ }_{v}$ may be expressed by

$$
\begin{equation*}
q^{\prime \prime}{ }_{v}=k_{m, p} \times P_{v, i} \tag{3.164}
\end{equation*}
$$

where
$\mathrm{k}_{\mathrm{m}, \mathrm{p}}=$ mass transfer coefficient related to partial pressure $[\mathrm{s} / \mathrm{m}$ ]
note that

$$
q^{\prime \prime}{ }_{v}=\mathrm{k}_{\mathrm{m}} \times \mathrm{c}_{\mathrm{i}} \quad\left(\mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

where
$\mathrm{k}_{\mathrm{m}}=$ mass transfer coefficient related to concentration [m/s]
A pplying ideal gas law, it can easily be derived that

$$
\begin{equation*}
k_{m, P}=k_{m} \times \mu_{i} /(R \times T) \tag{s/m}
\end{equation*}
$$

It is assumed that the vapour pressure of the solved chemical follows R aoult's law by which the (partial) vapour concentration is proportional with the molar fraction of the diluted chemical in the water

$$
\begin{equation*}
P_{i}=m_{m} \times P_{v}^{0}(T) \quad\left(N / \mathrm{m}^{2}\right) \tag{3.166}
\end{equation*}
$$

where $P_{i}$ is the partial pressure of the vapour of the liquid spillt at the water surface, and $P_{v}{ }^{\circ}(T)$ is the saturated vapour pressure at temperature $T$.
Raoult's law is quite close to the actual relationship for most chemicals.
So, that

$$
\begin{equation*}
q_{v}^{\prime \prime}=k_{m, P} \times m_{m} \times P_{v}{ }^{0}(T) \tag{3.167}
\end{equation*}
$$

$$
\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

The mass transfer coefficient for surface evaporation is estimated from forced convection boundary layer theory. T he heat mass transfer analogy yields the following equations for flow over a flat plate

$$
\begin{array}{ll}
\mathrm{k}_{\mathrm{m}} \times \mathrm{L} / \mathrm{D}_{\mathrm{a}}=1.328 \times \mathrm{Sc}^{1 / 3} \times R \mathrm{e}^{1 / 2} & \text { for laminar flow }\left(\operatorname{Re}<5 \times 10^{5}\right) \\
\mathrm{k}_{\mathrm{m}} \times \mathrm{L} / \mathrm{D}_{\mathrm{a}}=0.037 \times \mathrm{Sc}^{1 / 3} \times R \mathrm{e}^{0.8} & \text { for turbulent flow }\left(\operatorname{Re}>5 \times 10^{5}\right) \tag{3.168b}
\end{array}
$$

with

$$
\begin{align*}
\operatorname{Re} & =\rho_{\mathrm{a}} \times \mathrm{U}_{\mathrm{w}, 10} \times \mathrm{L} / \eta_{\mathrm{a}}  \tag{-}\\
\mathrm{Sc} & =v_{\mathrm{V}} / \mathrm{D}_{\mathrm{v}}  \tag{3.25}\\
& \approx 0.8
\end{align*}
$$

where
$c_{i} \quad=$ atmospheric vapour concentration just $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ at the evaporating pool surface
$\mathrm{D}_{\mathrm{a}}=$ diffusion coefficient chemical in air $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$\mathrm{k}_{\mathrm{m}}=$ mass transfer coefficient related to concentration $[\mathrm{m} / \mathrm{s}]$
$\mathrm{L}=$ characteristic length of the spill [m]
Re $=$ Reynold number [-]
Sc $=$ Schmidt number [-]
$v_{V}=$ kinematic vapour viscosity $\quad\left[\mathrm{m}^{2} / \mathrm{s}\right]$

The characteristic length used here is the length of spill which is defined by

$$
\begin{equation*}
L=V_{i}^{1 / 3} \tag{m}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{i}}$ is the initial spill volume. It is assumed that the mass transfer will not change in spite of the fact that the pool is expanding.

Integrating equation (3.167) over the vaporisation area (3.160/161) results in an expression for the total evaporation rate at any instant

$$
\begin{equation*}
q_{v}=k_{m, P} \times P_{v}^{0} \times \int_{0}^{A} m_{m} \times d A \tag{kg/s}
\end{equation*}
$$

The integral should be taken over the elliptical area on whose boundary the concentration is $\mathrm{m}_{\mathrm{m}^{*}}$. It can be shown that

$$
\begin{equation*}
\int_{0}^{A} \mathrm{~m}_{\mathrm{m}} \times \mathrm{dA}=\pi \times \mathrm{r}_{\mathrm{a}} \times \mathrm{r}_{\mathrm{b}} \times \mathrm{m}_{\text {mmean }} \tag{3.171}
\end{equation*}
$$

with

$$
\begin{equation*}
m_{m, \text { mean }}=\left(m_{m, \max }-m_{m}\right) / \ln \left(m_{m, \max } / m_{m *}\right) \tag{-}
\end{equation*}
$$

$N$ ote that $r_{a}$ and $r_{b}$, representing the dimensions of the ellipsoidal evaporation area on the water surface, are given by equations (3.160/161).

Combining equations (3.170) and (3.171) yields

$$
\begin{equation*}
\mathrm{q}_{\mathrm{v}}=\pi \times \mathrm{k}_{\mathrm{m}, \mathrm{p}} \times \mathrm{P}_{\mathrm{v}}^{\circ} \times \mathrm{r}_{\mathrm{a}} \times \mathrm{r}_{\mathrm{b}} \times \mathrm{m}_{\mathrm{m}, \text { mean }} \tag{3.173}
\end{equation*}
$$

Defining the following characteristic values

$$
\left.\left.\begin{array}{rl}
\mathrm{q}_{\mathrm{ch}} & =4 \times \pi \times \mathrm{t}_{\mathrm{c}<\lim } \times \sqrt{ }\left(\mathrm{D}_{\mathrm{x}} \times \mathrm{D}_{\mathrm{y}}\right) \times \mathrm{k}_{\mathrm{m}, \mathrm{P}} \times \mathrm{P}_{\mathrm{v}}^{\circ}(\mathrm{T}) \\
\mathrm{Q}_{\mathrm{ch}} & =\mathrm{q}_{\mathrm{ch}} \times \mathrm{t}_{\mathrm{c}<\lim } \\
\tau & =\mathrm{t} / \mathrm{t}_{\mathrm{c}<\lim } \\
\mathrm{Q}_{\mathrm{R}} & =\mathrm{Q}_{\mathrm{v}} / \mathrm{Q}_{\mathrm{ch}} \\
&  \tag{3.177}\\
\mathrm{Q}_{\mathrm{v}} & =\text { mass of vapour evolved } \\
\mathrm{Q}_{\mathrm{ch}} & =\text { characteristic vapour mass } \\
\mathrm{Q}_{\mathrm{R}} & =\text { dimensionless mass of evolved vapour }
\end{array}\right][-] \mathrm{kg} / \mathrm{s}\right)
$$

and noting that

| $\mathrm{q}_{\mathrm{R}}$ | $=\mathrm{q}_{\mathrm{v}} / \mathrm{q}_{\mathrm{ch}}$ |  |
| ---: | :--- | :--- |
| $\mathrm{q}_{\mathrm{R}}$ | $=$ dimensionless evaporation rate | $[-]$ |
| $\mathrm{q}_{\mathrm{ch}}$ | $=$ characteristic evaporation rate | $[\mathrm{kg} / \mathrm{s}]$ |
| $\mathrm{q}_{\mathrm{v}}$ | $=$ liquid evaporation rate | $[\mathrm{kg} / \mathrm{s}]$ |

U sing equations (3.173), (3.160/161), and (3.163), results in

$$
\begin{equation*}
q_{R}(\tau)=-3 / 2 \times \tau \times \ln (\tau) \times m_{m, \text { mean }}(\tau) \tag{-}
\end{equation*}
$$

The total mass of vapour $Q_{v}$ evolved up to time $t_{c<l i m}$ is given by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{v}}=\mathrm{Q}_{\mathrm{R}} \times \mathrm{Q}_{\mathrm{ch}} \tag{kg}
\end{equation*}
$$

with

$$
\begin{equation*}
Q_{R}=\int_{0}^{1} q_{R} \times d \tau=\int_{0}^{1}-3 / 2 \times \tau \times \ln (\tau) \times m_{\text {m.mean }}(\tau) \times d \tau \tag{3.181}
\end{equation*}
$$

The evaluation of the integral in equation (3.181) has to be done numerically because of the complicated nature of the integral. H owever, certain observations can be made from the equation.

It is evident that $m_{m, \text { mean }} \geq m_{m^{*}}$, so that replacing the value of $m_{m, \text { mean }}$ by $m_{m *}$ results in a minimum value for $m$

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{R}, \min }=3 / 8 \times \mathrm{m}_{\mathrm{m}^{*}} \tag{-}
\end{equation*}
$$

Similarly, by replacing $\mathrm{m}_{\mathrm{m} \text {, mean }}$ by $\mathrm{m}_{\mathrm{m}, \text { max }}$ corresponding to the maximum molar concentration, the maximum value for $\mathrm{Q}_{\mathrm{R}}$ can be shown to be

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{R}, \max }=-3 / 2 \times \int_{0}^{1} \tau \times \ln (\tau) /\left\{1+\rho_{\mathrm{w}} \times \mu_{\mathrm{L}} \times \tau^{3 / 2} /\left(\mathrm{c}_{*} \times \mu_{\mathrm{w}}\right)\right\} \times \mathrm{d} \tau \quad(-) \tag{3.183}
\end{equation*}
$$

If $m_{m \text { mean }}$ is replaced by 1 , which would be the absolute maximum value for concentration, then the maximum evaporation $m$ would be equal to $3 / 8$. Then the maximum possible evaporation is set by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{v}}=3 / 8 \times \mathrm{Q}_{\mathrm{ch}} \tag{kg}
\end{equation*}
$$

The maximum distance where vapour may evolve from the water surface having a concentration larger than the limiting concentration $m_{m^{*}}$, is given by

$$
\begin{equation*}
\mathrm{x}_{\mathrm{c}<\lim }=\mathrm{u} \times \mathrm{t}_{\mathrm{c}<\lim } \tag{m}
\end{equation*}
$$

### 3.5.6.3 Remarks

The model given is based on mixing and dilution in water of a spillt liquid and a relatively small amount of evaporation caused by the difference of vapour concentration at the water surface and the atmosphere. It has been assumed that all of the liquid would go into solution. This assumption is valid because it appears that the total vapour generated is a small fraction of the mass spillt.
This is because even though the evaporation is high, in case of a high partial vapour pressure of the spillt chemical, the duration for which vaporisation can occur is primarily determined by the rapidity of mixing of the liquid in water. The more turbulent a stream is, the better the mixing, and the quicker the time in which the concentration everywhere in the water is less than the critical.
In reality the release of chemical takes place in a finite period. Since even in the case of an instantaneous spill, the mass of vapour evolved appears a small fraction of the mass spillt, the predictions can be regarded safely as the worst case for long duration spills. It should be kept in mind that any vaporisation of the spillt liquid during the release process before water contact, has not been taken into account.

### 3.5.6.4 Releases of ammonia

Ammonia is an industrial commodity soluble in water, but the release of ammonia onto water can not be expected to solve in the water to the full amount of the release.
Ammonia spillt onto water will solve or react to ammonium hydroxide (matter of definition) generating a relatively large amount of heat, by the reaction

$$
\mathrm{NH}_{3_{(\mathrm{l})}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}=\left(\mathrm{NH}_{4}^{+}\right)_{\mathrm{aq}}+\left(\mathrm{OH}^{-}\right)_{\mathrm{aq}}
$$

According to Raj and Reid, for an instantaneous ammonia release, about 30\% of the spill will evolve from the water surface immediately due to vigorous boiling caused by the reaction heat or mixing heat generated [M elhelm, 1993].

However, this was based on small-scale experiments. But according to Raj in his chapter 'Volatile liquids' in the Hazardous Material Spills Handbook, part 4 'A mmonia', in larger spills approximately 50 percent of the spillt liquid vaporised.

This indicates the effects of the dynamics of a spill on vaporisation.
So, it is advisable to assume that on average about $40 \%$ of a spill will evaporate immediately. This fraction has been used in other studies that are not publicly available.
The remaining 60\% of the spill will solve into the water, and will evaporate gradually, and model H ACS-R may be applied for this part of the ammonia spill. N ote that the ammonium hydroxide solution will be warm, and will disperse in the water as a stably stratified fluid. This effect has not been taken into account in the model. Perhaps needless to say, that for short duration releases the flashing of the cryogen ammonia from the water surface has to be taken into account.

Proper estimation of vapour pressures of the components in the solution is critical, since this property has a large and direct effect on the evaporation rate. In multicomponent spills the partial vapour pressure depends on the composition of the mixture.
For multi-component liquid pools the evaporation rate will decrease in time also due to the change in composition, while the most volatile components will evaporate first. So, the vapour pressure is dependent on the composition.
For an ammonia-water mixture the following correlations have been derived [M ikesell, 1993]:

$$
\begin{align*}
\ln \left(P_{\mathrm{v}, \mathrm{NH} 3} / 101325 .\right)= & 17.17-4294 / \mathrm{T}+0.1370 \times \mathrm{m}_{\mathrm{w}, \mathrm{NH} 3}-0.00347 \times \mathrm{m}_{\mathrm{w}, \mathrm{NH} 3^{2}}  \tag{3.186a}\\
& +23.01 \times \mathrm{m}_{\mathrm{w}, \mathrm{NH} 3} / \mathrm{T} \tag{-}
\end{align*}
$$

$$
\begin{align*}
\ln \left(P_{\mathrm{v}, \mathrm{H} 2 \mathrm{O}} / 101325 .\right)= & 18.37-4552 \pi+0.1477 \times \mathrm{m}_{\mathrm{w}, \mathrm{NH} 3}-0.00081 \times \mathrm{w}_{\mathrm{w}, \mathrm{NH} 3^{2}} \\
& -43.53 \times \mathrm{m}_{\mathrm{w}, \mathrm{NH} 3} / \mathrm{T} \tag{3.186b}
\end{align*}
$$

| $\mathrm{m}_{\mathrm{w}, \mathrm{NH}}=$ mass fraction solved ammonia in water | $[\mathrm{kg} / \mathrm{kg}]$ |  |
| :--- | :--- | :--- |
| T | $=$ absolute temperature ammonia-water mixture | $[\mathrm{K}]$ |
| $\mathrm{P}_{\mathrm{v}, \mathrm{NH} 3}=$ partial vapour pressure ammonia | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |  |
| $\mathrm{P}_{\mathrm{v}, \mathrm{H} 2 \mathrm{O}}=$ partial vapour pressure water | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |  |

N ote
1 atm $=101325 \mathrm{~N} / \mathrm{m}^{2}$.

### 3.6 Application of the selected models: calculation examples

### 3.6.1 Introduction to section 3.6

Some models presented in subsection 3.5, HACS-R and especially GASP, are rather complex models. It is practically not possible to perform the calculations by hand or step by step.

Section 3.6 provides examples using the models and methods described in section 3.5. Subsection 3.6.2 provides example calculations with the GASP model for the spreading of liquids on solid subsoil and water, presented in 3.5.2.
Subsection 3.6.3 provides example calculations with the H ACS-R model for spills of volatile liquids that solve in water, as presented in 3.5.6.
Subsection 3.6 .4 provides example calculations for various supplementary models as has been addressed in section 3.5.

### 3.6.2 Calculation example GASP

## Introduction

GASP models an instantaneous spill of liquid chlorine released from a tank railway wagon onto land. The pool spread is unrestricted.
T he initial, cylindrical, pool of chlorine has a radius of 9.16 m (area $263.597 \mathrm{~m}^{2}$ ) and volume $65.95 \mathrm{~m}^{3}$ (implying a depth of 0.250192 m ). The rate at which the pool will evaporate is calculated by GASP from knowledge of the ground properties and the atmospheric conditions. The release temperature ( 239.12 K ) is also important. Heat is being transfered from the ground (conductivity $2.5 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$, diffusivity $11 \mathrm{~m}^{2} / \mathrm{s}$ ) into the pool. Perfect thermal contact is assumed.
The atmospheric temperature is $15{ }^{\circ} \mathrm{C}$ and the windspeed is $1.5 \mathrm{~m} / \mathrm{s}$.
The net solar radiation can be estimated by equations (4.36) and (4.37) presented in chapter 4 'V apour cloud dispersion'.
H owever, for the sake of simplicity a value of $100 \mathrm{~kW} / \mathrm{m}^{2}$ has been chosen.

Initial pool conditions

| Initial volume of pool | $V$ | $=65.95$ | $\mathrm{~m}^{3}$ |
| :--- | :--- | :--- | :--- |
| Initial radius of pool | r | $=9.160$ | m |
| Initial depth of pool | h | $=0.2502$ | m |
| Initial front velocity | u | $=0.0000$ | $\mathrm{~m} / \mathrm{s}$ |
| Initial temperature | $\mathrm{T}_{0}$ | $=238.1$ | K |

A tmospheric conditions
Wind speed at 10 metres
A mbient temperature Atmospheric friction velocity
Roughness length
The pool has roughness length

| $\mathrm{u}_{\mathrm{a}, 10}$ | $=1.500$ | $\mathrm{~m} / \mathrm{s}$ |
| :--- | :--- | :--- |
| $\mathrm{T}_{\mathrm{a}}$ | $=288.2$ | K |
| $\mathrm{u}_{*}$ | $=8.6859 \mathrm{E}-02$ | $\mathrm{~m} / \mathrm{s}$ |
| $\mathrm{z}_{0, \mathrm{a}}$ | $=1.0000 \mathrm{E}-02$ | m |
| $\mathrm{z}_{0, \mathrm{p}}$ | $=2.3000 \mathrm{E}-04$ | m |

H eat transfer from subsoil to the pool

| Thermal conductivity | $\lambda_{\mathrm{s}}$ | $=2.500$ | $\mathrm{~J} /(\mathrm{s} \cdot \mathrm{m} \cdot \mathrm{K})$ |
| :--- | :--- | :--- | :--- |
| Thermal diffusivity | $\mathrm{a}_{\mathrm{s}}$ | $=11.00$ | $\mathrm{~m}^{2} / \mathrm{s}$ |

Physical properties of chlorine
M olecular weight
M elting point
Boiling point
Critical temperature
L atent heat (at boiling)
L atent-heat-index
Antoine coefft. A
Antoine coefft. B
Antoine coefft. C
Specific heat liquid
Specific heat vapour
Liquid density
Surface tension
Liquid viscosity
Vapour viscosity
Thermal conductivity liquid
Thermal conductivity vapour
M olecular diffusivity

| $\mu_{i}$ | $=70.91 \cdot 10^{-3}$ | kg/mol |
| :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{m}}$ | $=172.2$ | K |
| Tb | $=239.1$ | K |
| T ${ }_{\text {c }}$ | $=417.0$ | K |
| $L_{v}\left(T_{b}\right)$ | $=2.8810 \mathrm{E}+05$ | J/kg |
| n | $=0.3800$ |  |
| $\mathrm{C}_{\text {A }}$ | $=15.96$ |  |
| $\mathrm{C}_{\text {B }}$ | $=1978$. | K |
| $\mathrm{C}_{\mathrm{C}}$ | $=-27.01$ | K |
| $\mathrm{C}_{\mathrm{p}, \mathrm{L}}$ | $=951.4$ | J/(kg•K ) |
| $\mathrm{C}_{\mathrm{p}, \mathrm{V}}$ | $=465.5$ | J/(kg•K) |
| $\rho_{\mathrm{L}}$ | $=1559$. | $\mathrm{Kg} / \mathrm{m}^{3}$ |
| $\sigma$ | $=2.6405 \mathrm{E}-02$ | $\mathrm{J} / \mathrm{m}^{2}$ |
| $\eta_{\mathrm{L}}$ | $=4.9024 \mathrm{E}-04$ | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\eta_{V}$ | $=1.0919 \mathrm{E}-05$ | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ |
| $\lambda_{L}$ | $=0.1661$ | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{V}$ | $=7.5856 \mathrm{E}-03$ | $\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| D | $=8.0513 \mathrm{E}-06$ | $\mathrm{m}^{2} / \mathrm{s}$ |

Physical properties of air
D ensity
Viscosity
K inematic viscosity
Prandtl number
M olecular weight

| $\rho_{\mathrm{a}}$ | $=1.225$ | $\mathrm{~kg} / \mathrm{m}^{3}$ |
| :--- | :--- | :--- |
| $\eta_{\mathrm{a}}$ | $=1.7894 \mathrm{E}-05$ | $\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ |
| $v_{\mathrm{a}}$ | $=1.4607 \mathrm{E}-05$ | $\mathrm{~m}^{2} / \mathrm{s}$ |
| $\mathrm{Pr}_{\mathrm{a}}$ | $=0.7104$ |  |
| $\mu_{\mathrm{a}}$ | $=28.96 \mathrm{E}-03$ | $\mathrm{~kg} / \mathrm{mol}$ |

Constants
Turbulent friction parameter Von K arman's constant T urbulent Schmidt number T urbulent Prandtl number L aminar Schmidt number
$C_{f}=1.3 \mathrm{E}-03$
$\kappa \quad=0.4$
$\mathrm{Sc}_{\mathrm{t}}=0.85$
$\mathrm{Pr}_{\mathrm{t}}=0.85$
Sc| $=1.814$
Output
M aximum vaporisation rate
After time
Pool has evaporated at time

| $\mathrm{q}_{\mathrm{s}, \max }$ | $=52.71$ | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- |
| t | $=26.22$ | s |
| t | $=5638$. | s |

## CPR 14E

Chapter 3 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} h \\ (m) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.0000 | 9.160 | 0.0000 | 0.2502 | 65.95 |
| $2.8482 \mathrm{E}-07$ | 9.160 | $1.9688 \mathrm{E}-06$ | 0.2502 | 65.95 |
| 5.6965E-07 | 9.160 | $3.9377 \mathrm{E}-06$ | 0.2502 | 65.95 |
| 8.5447E-07 | 9.160 | 5.9065E-06 | 0.2502 | 65.95 |
| 3.5060E-06 | 9.160 | $2.4235 \mathrm{E}-05$ | 0.2502 | 65.95 |
| 6.1575E-06 | 9.160 | 4.2563E-05 | 0.2502 | 65.95 |
| 8.8090E-06 | 9.160 | $6.0891 \mathrm{E}-05$ | 0.2502 | 65.95 |
| $2.4248 \mathrm{E}-05$ | 9.160 | $1.6761 \mathrm{E}-04$ | 0.2502 | 65.95 |
| 3.9687E-05 | 9.160 | 2.7433E-04 | 0.2502 | 65.95 |
| 5.5125E-05 | 9.160 | 3.8105E-04 | 0.2502 | 65.95 |
| $1.1684 \mathrm{E}-04$ | 9.160 | 8.0767E-04 | 0.2502 | 65.95 |
| $1.7856 \mathrm{E}-04$ | 9.160 | $1.2343 \mathrm{E}-03$ | 0.2502 | 65.95 |
| $2.4028 \mathrm{E}-04$ | 9.160 | $1.6609 \mathrm{E}-03$ | 0.2502 | 65.95 |
| 4.2861E-04 | 9.160 | $2.9627 \mathrm{E}-03$ | 0.2502 | 65.95 |
| 6.1694E-04 | 9.160 | $4.2645 \mathrm{E}-03$ | 0.2502 | 65.95 |
| 8.0527E-04 | 9.160 | $5.5664 \mathrm{E}-03$ | 0.2502 | 65.95 |
| $1.2764 \mathrm{E}-03$ | 9.160 | 8.8229E-03 | 0.2502 | 65.95 |
| $1.7475 \mathrm{E}-03$ | 9.160 | $1.2079 \mathrm{E}-02$ | 0.2502 | 65.95 |
| $2.2186 \mathrm{E}-03$ | 9.160 | $1.5336 \mathrm{E}-02$ | 0.2502 | 65.95 |
| 3.2082E-03 | 9.160 | $2.2177 \mathrm{E}-02$ | 0.2502 | 65.95 |
| 4.1979E-03 | 9.160 | $2.9017 \mathrm{E}-02$ | 0.2502 | 65.95 |
| 5.1875E-03 | 9.160 | 3.5858E-02 | 0.2502 | 65.95 |
| 7.0839E-03 | 9.160 | $4.8966 \mathrm{E}-02$ | 0.2502 | 65.95 |
| 8.9802E-03 | 9.160 | $6.2074 \mathrm{E}-02$ | 0.2502 | 65.95 |
| 1.0877E-02 | 9.160 | 7.5182E-02 | 0.2502 | 65.95 |
| 1.2773E-02 | 9.160 | 8.8290E-02 | 0.2502 | 65.95 |
| 1.7217E-02 | 9.160 | 0.1190 | 0.2502 | 65.95 |
| $2.1662 \mathrm{E}-02$ | 9.160 | 0.1497 | 0.2502 | 65.95 |
| $2.6106 \mathrm{E}-02$ | 9.160 | 0.1804 | 0.2502 | 65.95 |
| 3.0551E-02 | 9.161 | 0.2112 | 0.2502 | 65.95 |
| 3.9682E-02 | 9.161 | 0.2743 | 0.2501 | 65.95 |
| 4.8813E-02 | 9.161 | 0.3374 | 0.2501 | 65.95 |
| $5.7944 \mathrm{E}-02$ | 9.162 | 0.4005 | 0.2501 | 65.95 |
| 6.7076E-02 | 9.162 | 0.4636 | 0.2501 | 65.95 |
| 8.2946E-02 | 9.164 | 0.5734 | 0.2500 | 65.95 |
| 9.8816E-02 | 9.165 | 0.6831 | 0.2499 | 65.95 |
| 0.1147 | 9.167 | 0.7929 | 0.2498 | 65.95 |
| 0.1306 | 9.169 | 0.9027 | 0.2497 | 65.95 |
| 0.1594 | 9.174 | 1.102 | 0.2494 | 65.95 |
| 0.1882 | 9.179 | 1.302 | 0.2492 | 65.95 |
| 0.2170 | 9.185 | 1.502 | 0.2488 | 65.95 |
| 0.2458 | 9.192 | 1.702 | 0.2484 | 65.95 |
| 0.2746 | 9.200 | 1.902 | 0.2480 | 65.95 |
| 0.3227 | 9.216 | 2.237 | 0.2472 | 65.95 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\underset{(\mathrm{m})}{\mathbf{r}}$ | $\underset{(k a)}{Q_{v}}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.3708 | 9.233 | 2.574 | 0.2462 | 65.95 |
| 0.4189 | 9.253 | 2.911 | 0.2452 | 65.95 |
| 0.4670 | 9.276 | 3.250 | 0.2440 | 65.95 |
| 0.5150 | 9.301 | 3.591 | 0.2427 | 65.95 |
| 0.5868 | 9.342 | 4.103 | 0.2405 | 65.95 |
| 0.6585 | 9.389 | 4.619 | 0.2381 | 65.95 |
| 0.7302 | 9.441 | 5.140 | 0.2355 | 65.95 |
| 0.8019 | 9.497 | 5.667 | 0.2327 | 65.95 |
| 0.8736 | 9.559 | 6.200 | 0.2297 | 65.95 |
| 0.9453 | 9.625 | 6.740 | 0.2266 | 65.95 |
| 1.047 | 9.727 | 7.522 | 0.2218 | 65.95 |
| 1.150 | 9.839 | 8.322 | 0.2168 | 65.95 |
| 1.252 | 9.959 | 9.139 | 0.2117 | 65.95 |
| 1.354 | 10.09 | 9.977 | 0.2063 | 65.95 |
| 1.456 | 10.22 | 10.84 | 0.2008 | 65.95 |
| 1.558 | 10.37 | 11.72 | 0.1953 | 65.95 |
| 1.676 | 10.54 | 12.76 | 0.1889 | 65.95 |
| 1.794 | 10.72 | 13.85 | 0.1825 | 65.95 |
| 1.911 | 10.92 | 14.97 | 0.1762 | 65.95 |
| 2.029 | 11.11 | 16.13 | 0.1699 | 65.95 |
| 2.147 | 11.32 | 17.33 | 0.1638 | 65.95 |
| 2.265 | 11.53 | 18.57 | 0.1578 | 65.95 |
| 2.382 | 11.75 | 19.86 | 0.1520 | 65.95 |
| 2.559 | 12.08 | 21.88 | 0.1437 | 65.95 |
| 2.735 | 12.43 | 24.01 | 0.1359 | 65.95 |
| 2.881 | 12.72 | 25.86 | 0.1297 | 65.95 |
| 3.027 | 13.02 | 27.80 | 0.1238 | 65.95 |
| 3.173 | 13.32 | 29.83 | 0.1183 | 65.95 |
| 3.319 | 13.62 | 31.95 | 0.1131 | 65.95 |
| 3.465 | 13.93 | 34.16 | 0.1082 | 65.95 |
| 3.612 | 14.24 | 36.47 | 0.1035 | 65.95 |
| 3.758 | 14.54 | 38.87 | $9.9198 \mathrm{E}-02$ | 65.95 |
| 3.976 | 15.00 | 42.64 | $9.3204 \mathrm{E}-02$ | 65.95 |
| 4.194 | 15.46 | 46.63 | $8.7755 \mathrm{E}-02$ | 65.95 |
| 4.412 | 15.92 | 50.85 | 8.2804E-02 | 65.95 |
| 4.631 | 16.37 | 55.30 | 7.8305E-02 | 65.95 |
| 4.849 | 16.81 | 59.98 | $7.4216 \mathrm{E}-02$ | 65.95 |
| 5.067 | 17.25 | 64.89 | 7.0496E-02 | 65.95 |
| 5.285 | 17.68 | 70.03 | $6.7108 \mathrm{E}-02$ | 65.95 |
| 5.543 | 18.18 | 76.38 | $6.3495 \mathrm{E}-02$ | 65.95 |
| 5.800 | 18.66 | 83.06 | $6.0249 \mathrm{E}-02$ | 65.95 |
| 6.058 | 19.13 | 90.04 | $5.7326 \mathrm{E}-02$ | 65.95 |
| 6.315 | 19.58 | 97.32 | $5.4689 \mathrm{E}-02$ | 65.95 |
| 6.572 | 20.02 | 104.9 | $5.2302 \mathrm{E}-02$ | 65.95 |
| 6.830 | 20.45 | 112.8 | $5.0138 \mathrm{E}-02$ | 65.95 |

## CPR 14E

C hapter 3 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\underset{(\mathrm{m})}{\mathbf{r}}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathbf{h} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 7.087 | 20.86 | 120.9 | 4.8170E-02 | 65.95 |
| 7.344 | 21.26 | 129.3 | 4.6377E-02 | 65.95 |
| 7.602 | 21.65 | 138.0 | $4.4737 \mathrm{E}-02$ | 65.95 |
| 7.859 | 22.02 | 146.9 | $4.3236 \mathrm{E}-02$ | 65.95 |
| 8.117 | 22.38 | 156.1 | $4.1856 \mathrm{E}-02$ | 65.95 |
| 8.374 | 22.72 | 165.5 | $4.0586 \mathrm{E}-02$ | 65.95 |
| 8.631 | 23.06 | 175.1 | 3.9413E-02 | 65.95 |
| 8.889 | 23.38 | 184.9 | 3.8328E-02 | 65.95 |
| 9.146 | 23.69 | 194.9 | $3.7323 \mathrm{E}-02$ | 65.95 |
| 9.403 | 24.00 | 205.1 | 3.6388E-02 | 65.95 |
| 9.661 | 24.29 | 215.5 | 3.5517E-02 | 65.95 |
| 9.965 | 24.62 | 228.0 | 3.4563E-02 | 65.95 |
| 10.27 | 24.94 | 240.7 | 3.3682E-02 | 65.95 |
| 10.57 | 25.24 | 253.7 | 3.2865E-02 | 65.95 |
| 10.88 | 25.54 | 266.8 | $3.2106 \mathrm{E}-02$ | 65.95 |
| 11.18 | 25.82 | 280.1 | $3.1398 \mathrm{E}-02$ | 65.95 |
| 11.48 | 26.10 | 293.6 | $3.0738 \mathrm{E}-02$ | 65.95 |
| 11.79 | 26.36 | 307.3 | 3.0119E-02 | 65.95 |
| 12.16 | 26.67 | 324.4 | $2.9411 \mathrm{E}-02$ | 65.95 |
| 12.53 | 26.98 | 341.6 | $2.8754 \mathrm{E}-02$ | 65.95 |
| 12.91 | 27.26 | 359.1 | 2.8143E-02 | 65.95 |
| 13.28 | 27.54 | 376.8 | 2.7573E-02 | 65.95 |
| 13.65 | 27.81 | 394.6 | $2.7039 \mathrm{E}-02$ | 65.95 |
| 14.03 | 28.07 | 412.6 | $2.6540 \mathrm{E}-02$ | 65.95 |
| 14.40 | 28.32 | 430.7 | $2.6070 \mathrm{E}-02$ | 65.95 |
| 14.91 | 28.64 | 455.6 | $2.5477 \mathrm{E}-02$ | 65.95 |
| 15.41 | 28.95 | 480.6 | $2.4927 \mathrm{E}-02$ | 65.95 |
| 15.92 | 29.25 | 505.9 | 2.4417E-02 | 65.95 |
| 16.43 | 29.53 | 531.3 | $2.3941 \mathrm{E}-02$ | 65.95 |
| 16.93 | 29.81 | 556.9 | $2.3496 \mathrm{E}-02$ | 65.95 |
| 17.44 | 30.07 | 582.7 | 2.3079E-02 | 65.95 |
| 17.95 | 30.33 | 608.6 | $2.2686 \mathrm{E}-02$ | 65.95 |
| 18.57 | 30.63 | 640.8 | $2.2231 \mathrm{E}-02$ | 65.95 |
| 19.20 | 30.93 | 673.3 | $2.1805 \mathrm{E}-02$ | 65.95 |
| 19.83 | 31.21 | 705.8 | $2.1407 \mathrm{E}-02$ | 65.95 |
| 20.46 | 31.48 | 738.5 | $2.1033 \mathrm{E}-02$ | 65.95 |
| 21.09 | 31.74 | 771.3 | $2.0681 \mathrm{E}-02$ | 65.95 |
| 21.71 | 31.99 | 804.1 | $2.0349 \mathrm{E}-02$ | 65.95 |
| 22.34 | 32.24 | 837.0 | $2.0034 \mathrm{E}-02$ | 65.95 |
| 23.12 | 32.53 | 877.7 | $1.9667 \mathrm{E}-02$ | 65.95 |
| 23.89 | 32.81 | 918.5 | $1.9323 \mathrm{E}-02$ | 65.95 |
| 24.67 | 33.09 | 959.3 | $1.8998 \mathrm{E}-02$ | 65.95 |
| 25.44 | 33.35 | 1000. | 1.8690E-02 | 65.95 |
| 26.22 | 33.61 | 1041. | $1.8399 \mathrm{E}-02$ | 65.95 |
| 26.99 | 33.86 | 1082. | 1.8122E-02 | 65.95 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 27.77 | 34.10 | 1123. | $1.7858 \mathrm{E}-02$ | 65.95 |
| 28.73 | 34.39 | 1174. | $1.7546 \mathrm{E}-02$ | 65.95 |
| 29.70 | 34.68 | 1224. | $1.7251 \mathrm{E}-02$ | 65.95 |
| 30.66 | 34.95 | 1275. | 1.6972E-02 | 65.95 |
| 31.63 | 35.22 | 1326. | $1.6706 \mathrm{E}-02$ | 65.95 |
| 32.59 | 35.48 | 1376. | 1.6453E-02 | 65.95 |
| 33.56 | 35.73 | 1427. | $1.6211 \mathrm{E}-02$ | 65.95 |
| 34.53 | 35.98 | 1477. | 1.5980E-02 | 65.95 |
| 35.68 | 36.27 | 1537. | $1.5716 \mathrm{E}-02$ | 65.95 |
| 36.84 | 36.56 | 1598. | 1.5465E-02 | 65.95 |
| 38.00 | 36.83 | 1657. | 1.5225E-02 | 65.95 |
| 39.16 | 37.10 | 1717. | $1.4997 \mathrm{E}-02$ | 65.95 |
| 40.32 | 37.36 | 1777. | $1.4778 \mathrm{E}-02$ | 65.95 |
| 41.48 | 37.62 | 1836. | $1.4568 \mathrm{E}-02$ | 65.95 |
| 42.63 | 37.87 | 1895. | 1.4367E-02 | 65.95 |
| 44.24 | 38.21 | 1977. | 1.4101E-02 | 65.95 |
| 45.84 | 38.54 | 2058. | $1.3849 \mathrm{E}-02$ | 65.95 |
| 47.45 | 38.86 | 2138. | 1.3610E-02 | 65.95 |
| 49.05 | 39.18 | 2219. | $1.3382 \mathrm{E}-02$ | 65.95 |
| 50.66 | 39.48 | 2299. | $1.3164 \mathrm{E}-02$ | 65.95 |
| 52.26 | 39.78 | 2378. | $1.2956 \mathrm{E}-02$ | 65.95 |
| 53.86 | 40.08 | 2457. | 1.2758E-02 | 65.95 |
| 55.94 | 40.45 | 2558. | 1.2513E-02 | 65.95 |
| 58.01 | 40.81 | 2659. | 1.2281E-02 | 65.95 |
| 60.08 | 41.16 | 2759. | 1.2061E-02 | 65.95 |
| 62.15 | 41.50 | 2858. | 1.1851E-02 | 65.95 |
| 64.23 | 41.83 | 2956. | $1.1651 \mathrm{E}-02$ | 65.95 |
| 66.30 | 42.16 | 3054. | 1.1461E-02 | 65.95 |
| 68.37 | 42.48 | 3151. | $1.1278 \mathrm{E}-02$ | 65.95 |
| 71.12 | 42.89 | 3278. | $1.1048 \mathrm{E}-02$ | 65.95 |
| 73.87 | 43.29 | 3405. | 1.0830E-02 | 65.95 |
| 76.61 | 43.68 | 3530. | $1.0624 \mathrm{E}-02$ | 65.95 |
| 79.36 | 44.06 | 3653. | $1.0428 \mathrm{E}-02$ | 65.95 |
| 82.11 | 44.44 | 3776. | $1.0241 \mathrm{E}-02$ | 65.95 |
| 84.86 | 44.80 | 3897. | $1.0064 \mathrm{E}-02$ | 65.95 |
| 87.60 | 45.15 | 4017. | $9.8940 \mathrm{E}-03$ | 65.95 |
| 91.17 | 45.60 | 4171. | $9.6850 \mathrm{E}-03$ | 65.95 |
| 94.73 | 46.04 | 4324. | $9.4875 \mathrm{E}-03$ | 65.95 |
| 98.29 | 46.46 | 4474. | $9.3004 \mathrm{E}-03$ | 65.95 |
| 101.9 | 46.88 | 4622. | $9.1228 \mathrm{E}-03$ | 65.95 |
| 105.4 | 47.28 | 4769. | 8.9541E-03 | 65.95 |
| 109.0 | 47.68 | 4914. | $8.7934 \mathrm{E}-03$ | 65.95 |
| 112.6 | 48.06 | 5057. | 8.6402E-03 | 65.95 |
| 117.2 | 48.55 | 5241. | 8.4506E-03 | 65.95 |
| 121.9 | 49.03 | 5423. | 8.2715E-03 | 65.95 |

## CPR 14E

Chapter 3 of the 'Y ellow B ook'

| $\begin{gathered} t \\ \text { (s) } \end{gathered}$ | $\underset{(\mathrm{m})}{\mathbf{r}}$ | $\underset{(k a)}{Q_{v}}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 126.5 | 49.50 | 5601. | 8.1023E-03 | 65.95 |
| 131.2 | 49.95 | 5777. | 7.9418E-03 | 65.95 |
| 135.8 | 50.39 | 5950. | 7.7896E-03 | 65.95 |
| 140.5 | 50.82 | 6121. | 7.6448E-03 | 65.95 |
| 145.1 | 51.24 | 6290. | 7.5069E-03 | 65.95 |
| 151.2 | 51.77 | 6505. | $7.3369 \mathrm{E}-03$ | 65.95 |
| 157.2 | 52.29 | 6716. | $7.1768 \mathrm{E}-03$ | 65.95 |
| 163.3 | 52.79 | 6924. | 7.0254E-03 | 65.95 |
| 169.3 | 53.28 | 7128. | 6.8822E-03 | 65.95 |
| 175.4 | 53.76 | 7329. | $6.7464 \mathrm{E}-03$ | 65.95 |
| 181.4 | 54.22 | 7526. | 6.6174E-03 | 65.95 |
| 187.5 | 54.68 | 7720. | 6.4946E-03 | 65.95 |
| 195.4 | 55.26 | 7968. | $6.3430 \mathrm{E}-03$ | 65.95 |
| 203.3 | 55.82 | 8211. | $6.2002 \mathrm{E}-03$ | 65.95 |
| 211.2 | 56.36 | 8450. | $6.0655 \mathrm{E}-03$ | 65.95 |
| 211.2 | 56.36 | 8451. | $6.0648 \mathrm{E}-03$ | 65.95 |
| 211.3 | 56.37 | 8452. | $6.0641 \mathrm{E}-03$ | 65.95 |
| 211.3 | 56.37 | 8454. | 6.0633E-03 | 65.95 |
| 211.4 | 56.37 | 8455. | 6.0626E-03 | 65.95 |
| 211.4 | 56.38 | 8456. | $6.0619 \mathrm{E}-03$ | 65.95 |
| 211.4 | 56.38 | 8458. | 6.0612E-03 | 65.95 |
| 211.5 | 56.38 | 8459. | 6.0605E-03 | 65.95 |
| 211.5 | 56.38 | 8460. | 6.0597E-03 | 65.95 |
| 211.6 | 56.39 | 8462. | $6.0590 \mathrm{E}-03$ | 65.95 |
| 211.6 | 56.39 | 8463. | $6.0583 \mathrm{E}-03$ | 65.95 |
| 212.4 | 56.45 | 8487. | $6.0448 \mathrm{E}-03$ | 65.95 |
| 212.9 | 56.48 | 8502. | $6.0366 \mathrm{E}-03$ | 65.95 |
| 213.4 | 56.51 | 8517. | 6.0284E-03 | 65.95 |
| 213.9 | 56.55 | 8532. | $6.0202 \mathrm{E}-03$ | 65.95 |
| 214.4 | 56.58 | 8547. | 6.0120E-03 | 65.95 |
| 215.5 | 56.65 | 8577. | 5.9955E-03 | 65.95 |
| 216.5 | 56.72 | 8608. | 5.9790E-03 | 65.95 |
| 217.5 | 56.79 | 8638. | 5.9628E-03 | 65.95 |
| 218.6 | 56.86 | 8668. | 5.9466E-03 | 65.95 |
| 220.5 | 56.99 | 8726. | $5.9158 \mathrm{E}-03$ | 65.95 |
| 222.5 | 57.11 | 8784. | 5.8855E-03 | 65.95 |
| 224.5 | 57.24 | 8842. | 5.8558E-03 | 65.95 |
| 226.5 | 57.37 | 8899. | 5.8266E-03 | 65.95 |
| 228.5 | 57.49 | 8956. | $5.7980 \mathrm{E}-03$ | 65.95 |
| 230.5 | 57.61 | 9013. | $5.7700 \mathrm{E}-03$ | 65.95 |
| 232.5 | 57.73 | 9069. | $5.7425 \mathrm{E}-03$ | 65.95 |
| 234.4 | 57.85 | 9126. | 5.7155E-03 | 65.95 |
| 236.4 | 57.97 | 9182. | 5.6891E-03 | 65.95 |
| 238.4 | 58.08 | 9237. | 5.6632E-03 | 65.95 |
| 240.4 | 58.20 | 9293. | 5.6379E-03 | 65.95 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 242.4 | 58.31 | 9348. | 5.6130E-03 | 65.95 |
| 244.4 | 58.42 | 9403. | 5.5887E-03 | 65.95 |
| 246.4 | 58.53 | 9458. | 5.5648E-03 | 65.95 |
| 248.3 | 58.63 | 9512. | $5.5415 \mathrm{E}-03$ | 65.95 |
| 251.7 | 58.81 | 9604. | 5.5028E-03 | 65.95 |
| 255.1 | 58.98 | 9695. | 5.4654E-03 | 65.95 |
| 258.5 | 59.15 | 9785. | 5.4292E-03 | 65.95 |
| 261.8 | 59.31 | 9875. | 5.3941E-03 | 65.95 |
| 265.2 | 59.47 | 9963. | 5.3601E-03 | 65.95 |
| 268.6 | 59.63 | $1.0052 \mathrm{E}+04$ | 5.3272E-03 | 65.95 |
| 274.0 | 59.87 | $1.0191 \mathrm{E}+04$ | 5.2764E-03 | 65.95 |
| 279.4 | 60.10 | $1.0329 \mathrm{E}+04$ | 5.2279E-03 | 65.95 |
| 284.8 | 60.33 | $1.0465 \mathrm{E}+04$ | 5.1815E-03 | 65.95 |
| 290.2 | 60.54 | $1.0600 \mathrm{E}+04$ | $5.1371 \mathrm{E}-03$ | 65.95 |
| 295.6 | 60.75 | $1.0732 \mathrm{E}+04$ | 5.0943E-03 | 65.95 |
| 300.9 | 60.95 | $1.0864 \mathrm{E}+04$ | 5.0533E-03 | 65.95 |
| 308.7 | 61.23 | $1.1050 \mathrm{E}+04$ | $4.9969 \mathrm{E}-03$ | 65.95 |
| 316.4 | 61.50 | $1.1233 \mathrm{E}+04$ | 4.9434E-03 | 65.95 |
| 324.2 | 61.76 | $1.1413 \mathrm{E}+04$ | 4.8924E-03 | 65.95 |
| 331.9 | 62.01 | $1.1590 \mathrm{E}+04$ | 4.8438E-03 | 65.95 |
| 339.7 | 62.25 | $1.1764 \mathrm{E}+04$ | 4.7973E-03 | 65.95 |
| 347.4 | 62.48 | $1.1936 \mathrm{E}+04$ | $4.7528 \mathrm{E}-03$ | 65.95 |
| 356.6 | 62.75 | $1.2137 \mathrm{E}+04$ | $4.7023 \mathrm{E}-03$ | 65.95 |
| 365.8 | 63.00 | $1.2334 \mathrm{E}+04$ | $4.6542 \mathrm{E}-03$ | 65.95 |
| 374.9 | 63.25 | $1.2528 \mathrm{E}+04$ | 4.6082E-03 | 65.95 |
| 384.1 | 63.49 | $1.2720 \mathrm{E}+04$ | 4.5642E-03 | 65.95 |
| 393.3 | 63.72 | $1.2908 \mathrm{E}+04$ | $4.5219 \mathrm{E}-03$ | 65.95 |
| 402.5 | 63.94 | $1.3094 \mathrm{E}+04$ | 4.4813E-03 | 65.95 |
| 411.6 | 64.15 | $1.3277 \mathrm{E}+04$ | 4.4422E-03 | 65.95 |
| 426.4 | 64.49 | $1.3568 \mathrm{E}+04$ | 4.3822E-03 | 65.95 |
| 441.2 | 64.80 | $1.3852 \mathrm{E}+04$ | $4.3255 \mathrm{E}-03$ | 65.95 |
| 455.9 | 65.11 | $1.4132 \mathrm{E}+04$ | $4.2718 \mathrm{E}-03$ | 65.95 |
| 470.7 | 65.40 | $1.4406 \mathrm{E}+04$ | $4.2208 \mathrm{E}-03$ | 65.95 |
| 485.5 | 65.68 | $1.4677 \mathrm{E}+04$ | 4.1722E-03 | 65.95 |
| 500.2 | 65.95 | $1.4943 \mathrm{E}+04$ | $4.1258 \mathrm{E}-03$ | 65.95 |
| 515.0 | 66.20 | $1.5205 \mathrm{E}+04$ | $4.0814 \mathrm{E}-03$ | 65.95 |
| 532.7 | 66.50 | $1.5515 \mathrm{E}+04$ | $4.0306 \mathrm{E}-03$ | 65.95 |
| 550.5 | 66.79 | $1.5821 \mathrm{E}+04$ | 3.9822E-03 | 65.95 |
| 568.2 | 67.06 | $1.6123 \mathrm{E}+04$ | 3.9361E-03 | 65.95 |
| 585.9 | 67.32 | $1.6421 \mathrm{E}+04$ | 3.8919E-03 | 65.95 |
| 603.6 | 67.58 | $1.6715 \mathrm{E}+04$ | 3.8496E-03 | 65.95 |
| 621.4 | 67.82 | $1.7007 \mathrm{E}+04$ | $3.8089 \mathrm{E}-03$ | 65.95 |
| 639.1 | 68.06 | $1.7296 \mathrm{E}+04$ | $3.7698 \mathrm{E}-03$ | 65.95 |
| 653.6 | 68.25 | $1.7531 \mathrm{E}+04$ | $3.7388 \mathrm{E}-03$ | 65.95 |
| 668.2 | 68.43 | $1.7765 \mathrm{E}+04$ | $3.7086 \mathrm{E}-03$ | 65.95 |

## CPR 14E

Chapter 3 of the 'Y ellow B ook'

| $\begin{gathered} t \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 682.7 | 68.61 | 1.7997E+04 | 3.6794E-03 | 65.95 |
| 697.3 | 68.78 | 1.8229E+04 | 3.6509E-03 | 65.95 |
| 711.8 | 68.95 | 1.8459E+04 | 3.6232E-03 | 65.95 |
| 726.4 | 69.11 | 1.8688E+04 | 3.5962E-03 | 65.95 |
| 743.7 | 69.30 | 1.8959E+04 | 3.5650E-03 | 65.95 |
| 760.9 | 69.49 | $1.9228 \mathrm{E}+04$ | 3.5347E-03 | 65.95 |
| 778.2 | 69.67 | 1.9497E+04 | 3.5052E-03 | 65.95 |
| 795.5 | 69.84 | $1.9764 \mathrm{E}+04$ | 3.4765E-03 | 65.95 |
| 812.7 | 70.01 | $2.0031 \mathrm{E}+04$ | $3.4486 \mathrm{E}-03$ | 65.95 |
| 830.0 | 70.18 | 2.0297E+04 | 3.4213E-03 | 65.95 |
| 859.2 | 70.45 | $2.0746 \mathrm{E}+04$ | 3.3767E-03 | 65.95 |
| 888.4 | 70.70 | 2.1193E+04 | 3.3338E-03 | 65.95 |
| 917.5 | 70.95 | 2.1640E+04 | 3.2925E-03 | 65.95 |
| 946.7 | 71.19 | 2.2086E+04 | 3.2525E-03 | 65.95 |
| 975.9 | 71.42 | $2.2532 \mathrm{E}+04$ | 3.2139E-03 | 65.95 |
| 1005. | 71.64 | $2.2979 \mathrm{E}+04$ | 3.1764E-03 | 65.95 |
| 1034. | 71.85 | $2.3425 \mathrm{E}+04$ | $3.1401 \mathrm{E}-03$ | 65.95 |
| 1081. | 72.18 | $2.4148 \mathrm{E}+04$ | 3.0835E-03 | 65.95 |
| 1128. | 72.48 | $2.4872 \mathrm{E}+04$ | 3.0293E-03 | 65.95 |
| 1176. | 72.77 | $2.5599 \mathrm{E}+04$ | 2.9772E-03 | 65.95 |
| 1223. | 73.05 | 2.6329E+04 | 2.9269E-03 | 65.95 |
| 1270. | 73.31 | 2.7062E+04 | 2.8784E-03 | 65.95 |
| 1317. | 73.55 | 2.7798E+04 | $2.8314 \mathrm{E}-03$ | 65.95 |
| 1364. | 73.79 | 2.8537E+04 | $2.7858 \mathrm{E}-03$ | 65.95 |
| 1420. | 74.05 | $2.9422 \mathrm{E}+04$ | $2.7330 \mathrm{E}-03$ | 65.95 |
| 1476. | 74.30 | $3.0313 \mathrm{E}+04$ | 2.6819E-03 | 65.95 |
| 1533. | 74.53 | $3.1208 \mathrm{E}+04$ | 2.6322E-03 | 65.95 |
| 1589. | 74.75 | $3.2108 \mathrm{E}+04$ | 2.5839E-03 | 65.95 |
| 1645. | 74.96 | $3.3012 \mathrm{E}+04$ | $2.5368 \mathrm{E}-03$ | 65.95 |
| 1701. | 75.15 | $3.3921 \mathrm{E}+04$ | $2.4907 \mathrm{E}-03$ | 65.95 |
| 1757. | 75.34 | $3.4834 \mathrm{E}+04$ | $2.4457 \mathrm{E}-03$ | 65.95 |
| 1813. | 75.51 | 3.5751E+04 | 2.4015E-03 | 65.95 |
| 1870. | 75.68 | 3.6672E+04 | $2.3583 \mathrm{E}-03$ | 65.95 |
| 1926. | 75.83 | 3.7597E+04 | $2.3157 \mathrm{E}-03$ | 65.95 |
| 1982. | 75.98 | 3.8525E+04 | 2.2740E-03 | 65.95 |
| 2038. | 76.12 | 3.9456E+04 | $2.2328 \mathrm{E}-03$ | 65.95 |
| 2094. | 76.25 | 4.0391E+04 | 2.1923E-03 | 65.95 |
| 2150. | 76.38 | $4.1329 \mathrm{E}+04$ | $2.1524 \mathrm{E}-03$ | 65.95 |
| 2207. | 76.49 | $4.2270 \mathrm{E}+04$ | $2.1130 \mathrm{E}-03$ | 65.95 |
| 2263. | 76.60 | 4.3213E+04 | $2.0740 \mathrm{E}-03$ | 65.95 |
| 2319. | 76.71 | $4.4159 \mathrm{E}+04$ | $2.0356 \mathrm{E}-03$ | 65.95 |
| 2386. | 76.83 | $4.5288 \mathrm{E}+04$ | 1.9903E-03 | 65.95 |
| 2452. | 76.93 | 4.6419E+04 | $1.9457 \mathrm{E}-03$ | 65.95 |
| 2519. | 77.04 | $4.7554 \mathrm{E}+04$ | $1.9015 \mathrm{E}-03$ | 65.95 |
| 2586. | 77.13 | 4.8692E+04 | 1.8578E-03 | 65.95 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} h \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2653. | 77.22 | $4.9832 \mathrm{E}+04$ | $1.8145 \mathrm{E}-03$ | 65.95 |
| 2720. | 77.30 | 5.0975E+04 | $1.7716 \mathrm{E}-03$ | 65.95 |
| 2804. | 77.40 | $5.2426 \mathrm{E}+04$ | $1.7178 \mathrm{E}-03$ | 65.95 |
| 2889. | 77.48 | $5.3880 \mathrm{E}+04$ | $1.6645 \mathrm{E}-03$ | 65.95 |
| 2974. | 77.56 | 5.5337E+04 | 1.6117E-03 | 65.95 |
| 3058. | 77.63 | 5.6796E+04 | 1.5593E-03 | 65.95 |
| 3143. | 77.70 | $5.8259 \mathrm{E}+04$ | 1.5072E-03 | 65.95 |
| 3228. | 77.76 | 5.9723E+04 | $1.4555 \mathrm{E}-03$ | 65.95 |
| 3349. | 77.83 | $6.1836 \mathrm{E}+04$ | $1.3816 \mathrm{E}-03$ | 65.95 |
| 3471. | 77.89 | 6.3953E+04 | 1.3081E-03 | 65.95 |
| 3593. | 77.95 | 6.6073E+04 | $1.2351 \mathrm{E}-03$ | 65.95 |
| 3715. | 77.99 | 6.8195E+04 | $1.1625 \mathrm{E}-03$ | 65.95 |
| 3837. | 78.03 | 7.0319E+04 | $1.0902 \mathrm{E}-03$ | 65.95 |
| 3959. | 78.06 | 7.2445E+04 | $1.0181 \mathrm{E}-03$ | 65.95 |
| 4115. | 78.09 | 7.5172E+04 | 9.2603E-04 | 65.95 |
| 4271. | 78.11 | 7.7900E+04 | 8.3422E-04 | 65.95 |
| 4428. | 78.13 | 8.0629E+04 | 7.4259E-04 | 65.95 |
| 4584. | 78.14 | 8.3359E+04 | 6.5109E-04 | 65.95 |
| 4740. | 78.15 | 8.6090E+04 | 5.5968E-04 | 65.95 |
| 4896. | 78.15 | 8.8821E+04 | 4.6832E-04 | 65.95 |
| 5092. | 78.15 | $9.2247 \mathrm{E}+04$ | 3.5379E-04 | 65.95 |
| 5288. | 78.15 | 9.5673E+04 | $2.3928 \mathrm{E}-04$ | 65.95 |
| 5289. | 78.15 | $9.5690 \mathrm{E}+04$ | $2.3871 \mathrm{E}-04$ | 65.95 |
| 5290. | 78.15 | $9.5707 \mathrm{E}+04$ | $2.3814 \mathrm{E}-04$ | 65.95 |
| 5291. | 78.15 | $9.5724 \mathrm{E}+04$ | $2.3757 \mathrm{E}-04$ | 65.95 |
| 5292. | 78.15 | $9.5741 \mathrm{E}+04$ | $2.3699 \mathrm{E}-04$ | 65.95 |
| 5293. | 78.15 | $9.5758 \mathrm{E}+04$ | 2.3642E-04 | 65.95 |
| 5294. | 78.15 | $9.5775 \mathrm{E}+04$ | $2.3585 \mathrm{E}-04$ | 65.95 |
| 5305. | 78.15 | $9.5969 \mathrm{E}+04$ | 2.2939E-04 | 65.95 |
| 5316. | 78.15 | 9.6162E+04 | 2.2293E-04 | 65.95 |
| 5327. | 78.15 | $9.6355 \mathrm{E}+04$ | $2.1646 \mathrm{E}-04$ | 65.95 |
| 5338. | 78.15 | $9.6549 \mathrm{E}+04$ | $2.1000 \mathrm{E}-04$ | 65.95 |
| 5349. | 78.15 | $9.6742 \mathrm{E}+04$ | $2.0354 \mathrm{E}-04$ | 65.95 |
| 5380. | 78.15 | $9.7276 \mathrm{E}+04$ | 1.8569E-04 | 65.95 |
| 5410. | 78.15 | $9.7810 \mathrm{E}+04$ | 1.6785E-04 | 65.95 |
| 5441. | 78.15 | $9.8344 \mathrm{E}+04$ | $1.5000 \mathrm{E}-04$ | 65.95 |
| 5471. | 78.15 | $9.8878 \mathrm{E}+04$ | $1.3215 \mathrm{E}-04$ | 65.95 |
| 5524. | 78.15 | $9.9810 \mathrm{E}+04$ | $1.0100 \mathrm{E}-04$ | 65.95 |
| 5578. | 78.15 | $1.0074 \mathrm{E}+05$ | 6.9853E-05 | 65.95 |
| 5631. | 78.15 | $1.0167 \mathrm{E}+05$ | 3.8704E-05 | 65.95 |
| 5638. | 78.15 | 1.0180E+05 | 3.4369E-05 | 65.95 |

CPR 14E
Chapter 3 of the 'Y ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 0.0000 | $2.9226 \mathrm{E}+05$ | 24.20 | 238.1 |
| 2.8482E-07 | 3.9515E+04 | 24.20 | 238.1 |
| 5.6965E-07 | $2.8070 \mathrm{E}+04$ | 24.20 | 238.1 |
| 8.5447E-07 | $2.2955 \mathrm{E}+04$ | 24.20 | 238.1 |
| $3.5060 \mathrm{E}-06$ | 1.1359E+04 | 24.20 | 238.1 |
| $6.1575 \mathrm{E}-06$ | 8574. | 24.20 | 238.1 |
| 8.8090E-06 | 7169. | 24.20 | 238.1 |
| $2.4248 \mathrm{E}-05$ | 4322. | 24.20 | 238.1 |
| 3.9687E-05 | 3378. | 24.20 | 238.1 |
| 5.5125E-05 | 2867. | 24.20 | 238.1 |
| $1.1684 \mathrm{E}-04$ | 1969. | 24.20 | 238.1 |
| $1.7856 \mathrm{E}-04$ | 1593. | 24.20 | 238.1 |
| $2.4028 \mathrm{E}-04$ | 1373. | 24.20 | 238.1 |
| 4.2861E-04 | 1028. | 24.20 | 238.1 |
| $6.1694 \mathrm{E}-04$ | 856.9 | 24.20 | 238.1 |
| 8.0527E-04 | 750.1 | 24.20 | 238.1 |
| $1.2764 \mathrm{E}-03$ | 595.8 | 24.20 | 238.1 |
| $1.7475 \mathrm{E}-03$ | 509.2 | 24.20 | 238.1 |
| 2.2186E-03 | 451.9 | 24.20 | 238.1 |
| $3.2082 \mathrm{E}-03$ | 375.8 | 24.20 | 238.1 |
| 4.1979E-03 | 328.5 | 24.20 | 238.1 |
| 5.1875E-03 | 295.5 | 24.20 | 238.1 |
| 7.0839E-03 | 252.9 | 24.20 | 238.1 |
| 8.9802E-03 | 224.6 | 24.20 | 238.1 |
| $1.0877 \mathrm{E}-02$ | 204.1 | 24.20 | 238.1 |
| 1.2773E-02 | 188.4 | 24.20 | 238.1 |
| $1.7217 \mathrm{E}-02$ | 162.3 | 24.21 | 238.1 |
| 2.1662E-02 | 144.7 | 24.21 | 238.1 |
| $2.6106 \mathrm{E}-02$ | 131.9 | 24.21 | 238.1 |
| 3.0551E-02 | 121.9 | 24.21 | 238.1 |
| 3.9682E-02 | 107.0 | 24.21 | 238.1 |
| 4.8813E-02 | 96.57 | 24.22 | 238.1 |
| $5.7944 \mathrm{E}-02$ | 88.71 | 24.22 | 238.1 |
| $6.7076 \mathrm{E}-02$ | 82.52 | 24.22 | 238.1 |
| 8.2946E-02 | 74.33 | 24.23 | 238.1 |
| $9.8816 \mathrm{E}-02$ | 68.22 | 24.23 | 238.1 |
| 0.1147 | 63.45 | 24.24 | 238.1 |
| 0.1306 | 59.60 | 24.25 | 238.1 |
| 0.1594 | 54.19 | 24.26 | 238.1 |
| 0.1882 | 50.11 | 24.27 | 238.1 |
| 0.2170 | 46.92 | 24.28 | 238.1 |
| 0.2458 | 44.34 | 24.29 | 238.1 |
| 0.2746 | 42.21 | 24.30 | 238.1 |
| 0.3227 | 39.37 | 24.31 | 238.1 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 0.3708 | 37.17 | 24.33 | 238.1 |
| 0.4189 | 35.41 | 24.35 | 238.1 |
| 0.4670 | 33.98 | 24.36 | 238.1 |
| 0.5150 | 32.79 | 24.38 | 238.1 |
| 0.5868 | 31.37 | 24.40 | 238.1 |
| 0.6585 | 30.25 | 24.43 | 238.1 |
| 0.7302 | 29.35 | 24.45 | 238.1 |
| 0.8019 | 28.61 | 24.47 | 238.1 |
| 0.8736 | 28.01 | 24.50 | 238.1 |
| 0.9453 | 27.51 | 24.52 | 238.1 |
| 1.047 | 26.93 | 24.56 | 238.1 |
| 1.150 | 26.47 | 24.59 | 238.1 |
| 1.252 | 26.09 | 24.63 | 238.1 |
| 1.354 | 25.79 | 24.66 | 238.1 |
| 1.456 | 25.53 | 24.70 | 238.1 |
| 1.558 | 25.32 | 24.74 | 238.1 |
| 1.676 | 25.11 | 24.78 | 238.1 |
| 1.794 | 24.92 | 24.82 | 238.1 |
| 1.911 | 24.76 | 24.87 | 238.1 |
| 2.029 | 24.61 | 24.92 | 238.1 |
| 2.147 | 24.47 | 24.97 | 238.1 |
| 2.265 | 24.33 | 25.02 | 238.0 |
| 2.382 | 24.19 | 25.07 | 238.0 |
| 2.559 | 23.99 | 25.16 | 238.0 |
| 2.735 | 23.78 | 25.25 | 238.0 |
| 2.881 | 23.60 | 25.33 | 238.0 |
| 3.027 | 23.42 | 25.41 | 238.0 |
| 3.173 | 23.22 | 25.50 | 238.0 |
| 3.319 | 23.02 | 25.59 | 238.0 |
| 3.465 | 22.82 | 25.68 | 238.0 |
| 3.612 | 22.61 | 25.78 | 238.0 |
| 3.758 | 22.39 | 25.89 | 238.0 |
| 3.976 | 22.05 | 26.05 | 238.0 |
| 4.194 | 21.71 | 26.23 | 238.0 |
| 4.412 | 21.35 | 26.41 | 238.0 |
| 4.631 | 21.00 | 26.61 | 237.9 |
| 4.849 | 20.64 | 26.82 | 237.9 |
| 5.067 | 20.28 | 27.04 | 237.9 |
| 5.285 | 19.92 | 27.26 | 237.9 |
| 5.543 | 19.50 | 27.55 | 237.9 |
| 5.800 | 19.09 | 27.84 | 237.9 |
| 6.058 | 18.69 | 28.15 | 237.8 |
| 6.315 | 18.29 | 28.48 | 237.8 |
| 6.572 | 17.91 | 28.81 | 237.8 |
| 6.830 | 17.53 | 29.16 | 237.8 |

CPR 14E
Chapter 3 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{T} \\ (\mathrm{~K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 7.087 | 17.17 | 29.52 | 237.7 |
| 7.344 | 16.82 | 29.89 | 237.7 |
| 7.602 | 16.48 | 30.27 | 237.7 |
| 7.859 | 16.15 | 30.66 | 237.7 |
| 8.117 | 15.84 | 31.05 | 237.6 |
| 8.374 | 15.54 | 31.46 | 237.6 |
| 8.631 | 15.25 | 31.87 | 237.6 |
| 8.889 | 14.97 | 32.29 | 237.6 |
| 9.146 | 14.70 | 32.71 | 237.5 |
| 9.403 | 14.44 | 33.15 | 237.5 |
| 9.661 | 14.20 | 33.58 | 237.5 |
| 9.965 | 13.92 | 34.10 | 237.4 |
| 10.27 | 13.66 | 34.63 | 237.4 |
| 10.57 | 13.40 | 35.16 | 237.4 |
| 10.88 | 13.16 | 35.70 | 237.3 |
| 11.18 | 12.93 | 36.24 | 237.3 |
| 11.48 | 12.72 | 36.78 | 237.2 |
| 11.79 | 12.51 | 37.33 | 237.2 |
| 12.16 | 12.26 | 38.00 | 237.1 |
| 12.53 | 12.04 | 38.68 | 237.1 |
| 12.91 | 11.82 | 39.36 | 237.0 |
| 13.28 | 11.61 | 40.04 | 237.0 |
| 13.65 | 11.42 | 40.73 | 236.9 |
| 14.03 | 11.23 | 41.41 | 236.9 |
| 14.40 | 11.06 | 42.09 | 236.8 |
| 14.91 | 10.84 | 43.02 | 236.8 |
| 15.41 | 10.63 | 43.94 | 236.7 |
| 15.92 | 10.43 | 44.86 | 236.6 |
| 16.43 | 10.25 | 45.78 | 236.5 |
| 16.93 | 10.08 | 46.69 | 236.5 |
| 17.44 | 9.918 | 47.60 | 236.4 |
| 17.95 | 9.766 | 48.50 | 236.3 |
| 18.57 | 9.590 | 49.61 | 236.2 |
| 19.20 | 9.427 | 50.72 | 236.1 |
| 19.83 | 9.274 | 51.82 | 236.0 |
| 20.46 | 9.131 | 52.91 | 235.9 |
| 21.09 | 8.996 | 53.98 | 235.8 |
| 21.71 | 8.871 | 55.05 | 235.7 |
| 22.34 | 8.752 | 56.11 | 235.6 |
| 23.12 | 8.616 | 57.41 | 235.5 |
| 23.89 | 8.489 | 58.69 | 235.4 |
| 24.67 | 8.370 | 59.96 | 235.3 |
| 25.44 | 8.259 | 61.21 | 235.2 |
| 26.22 | 8.155 | 62.45 | 235.0 |
| 26.99 | 8.057 | 63.67 | 234.9 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 27.77 | 7.965 | 64.88 | 234.8 |
| 28.73 | 7.858 | 66.36 | 234.6 |
| 29.70 | 7.758 | 67.83 | 234.5 |
| 30.66 | 7.665 | 69.28 | 234.3 |
| 31.63 | 7.578 | 70.70 | 234.2 |
| 32.59 | 7.496 | 72.11 | 234.0 |
| 33.56 | 7.419 | 73.50 | 233.9 |
| 34.53 | 7.346 | 74.88 | 233.7 |
| 35.68 | 7.264 | 76.50 | 233.6 |
| 36.84 | 7.188 | 78.10 | 233.4 |
| 38.00 | 7.116 | 79.67 | 233.2 |
| 39.16 | 7.049 | 81.22 | 233.0 |
| 40.32 | 6.986 | 82.75 | 232.9 |
| 41.48 | 6.926 | 84.26 | 232.7 |
| 42.63 | 6.870 | 85.74 | 232.5 |
| 44.24 | 6.796 | 87.77 | 232.3 |
| 45.84 | 6.728 | 89.75 | 232.0 |
| 47.45 | 6.664 | 91.70 | 231.8 |
| 49.05 | 6.604 | 93.62 | 231.6 |
| 50.66 | 6.548 | 95.50 | 231.3 |
| 52.26 | 6.496 | 97.35 | 231.1 |
| 53.86 | 6.446 | 99.16 | 230.9 |
| 55.94 | 6.386 | 101.5 | 230.6 |
| 58.01 | 6.330 | 103.7 | 230.3 |
| 60.08 | 6.278 | 105.9 | 230.0 |
| 62.15 | 6.229 | 108.1 | 229.7 |
| 64.23 | 6.183 | 110.2 | 229.4 |
| 66.30 | 6.140 | 112.3 | 229.1 |
| 68.37 | 6.099 | 114.3 | 228.8 |
| 71.12 | 6.048 | 117.0 | 228.4 |
| 73.87 | 6.001 | 119.6 | 228.1 |
| 76.61 | 5.957 | 122.1 | 227.7 |
| 79.36 | 5.916 | 124.6 | 227.3 |
| 82.11 | 5.877 | 127.0 | 227.0 |
| 84.86 | 5.840 | 129.4 | 226.6 |
| 87.60 | 5.806 | 131.7 | 226.3 |
| 91.17 | 5.764 | 134.6 | 225.8 |
| 94.73 | 5.725 | 137.4 | 225.4 |
| 98.29 | 5.688 | 140.2 | 224.9 |
| 101.9 | 5.654 | 142.9 | 224.5 |
| 105.4 | 5.621 | 145.6 | 224.1 |
| 109.0 | 5.591 | 148.1 | 223.6 |
| 112.6 | 5.562 | 150.6 | 223.2 |
| 117.2 | 5.526 | 153.8 | 222.7 |
| 121.9 | 5.493 | 156.9 | 222.2 |

CPR 14E
Chapter 3 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 126.5 | 5.462 | 159.9 | 221.7 |
| 131.2 | 5.432 | 162.8 | 221.2 |
| 135.8 | 5.404 | 165.6 | 220.7 |
| 140.5 | 5.378 | 168.3 | 220.2 |
| 145.1 | 5.353 | 171.0 | 219.7 |
| 151.2 | 5.322 | 174.3 | 219.1 |
| 157.2 | 5.292 | 177.6 | 218.5 |
| 163.3 | 5.265 | 180.7 | 217.9 |
| 169.3 | 5.238 | 183.7 | 217.4 |
| 175.4 | 5.213 | 186.6 | 216.8 |
| 181.4 | 5.189 | 189.4 | 216.3 |
| 187.5 | 5.166 | 192.1 | 215.8 |
| 195.4 | 5.137 | 195.5 | 215.1 |
| 203.3 | 5.110 | 198.8 | 214.4 |
| 211.2 | 5.083 | 201.9 | 213.8 |
| 211.2 | 5.083 | 201.9 | 213.8 |
| 211.3 | 5.083 | 202.0 | 213.8 |
| 211.3 | 5.083 | 202.0 | 213.8 |
| 211.4 | 5.083 | 202.0 | 213.8 |
| 211.4 | 5.083 | 202.0 | 213.8 |
| 211.4 | 5.082 | 202.0 | 213.8 |
| 211.5 | 5.082 | 202.0 | 213.8 |
| 211.5 | 5.082 | 202.1 | 213.8 |
| 211.6 | 5.082 | 202.1 | 213.8 |
| 211.6 | 5.082 | 202.1 | 213.8 |
| 212.4 | 5.079 | 202.4 | 213.7 |
| 212.9 | 5.078 | 202.6 | 213.7 |
| 213.4 | 5.076 | 202.8 | 213.6 |
| 213.9 | 5.074 | 203.0 | 213.6 |
| 214.4 | 5.073 | 203.2 | 213.6 |
| 215.5 | 5.069 | 203.6 | 213.5 |
| 216.5 | 5.066 | 204.0 | 213.4 |
| 217.5 | 5.063 | 204.3 | 213.3 |
| 218.6 | 5.059 | 204.7 | 213.3 |
| 220.5 | 5.052 | 205.5 | 213.1 |
| 222.5 | 5.045 | 206.2 | 213.0 |
| 224.5 | 5.038 | 206.9 | 212.8 |
| 226.5 | 5.031 | 207.6 | 212.7 |
| 228.5 | 5.024 | 208.3 | 212.5 |
| 230.5 | 5.017 | 209.0 | 212.4 |
| 232.5 | 5.009 | 209.7 | 212.2 |
| 234.4 | 5.002 | 210.4 | 212.1 |
| 236.4 | 4.995 | 211.1 | 211.9 |
| 238.4 | 4.987 | 211.8 | 211.8 |
| 240.4 | 4.980 | 212.4 | 211.7 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 242.4 | 4.973 | 213.1 | 211.5 |
| 244.4 | 4.965 | 213.8 | 211.4 |
| 246.4 | 4.958 | 214.4 | 211.3 |
| 248.3 | 4.951 | 215.0 | 211.1 |
| 251.7 | 4.939 | 216.1 | 210.9 |
| 255.1 | 4.927 | 217.2 | 210.7 |
| 258.5 | 4.916 | 218.2 | 210.5 |
| 261.8 | 4.904 | 219.2 | 210.3 |
| 265.2 | 4.893 | 220.2 | 210.0 |
| 268.6 | 4.882 | 221.2 | 209.8 |
| 274.0 | 4.866 | 222.7 | 209.5 |
| 279.4 | 4.850 | 224.2 | 209.2 |
| 284.8 | 4.834 | 225.7 | 208.9 |
| 290.2 | 4.820 | 227.1 | 208.6 |
| 295.6 | 4.806 | 228.5 | 208.3 |
| 300.9 | 4.793 | 229.8 | 208.0 |
| 308.7 | 4.775 | 231.7 | 207.6 |
| 316.4 | 4.757 | 233.5 | 207.2 |
| 324.2 | 4.741 | 235.2 | 206.8 |
| 331.9 | 4.726 | 236.8 | 206.4 |
| 339.7 | 4.712 | 238.4 | 206.1 |
| 347.4 | 4.698 | 240.0 | 205.7 |
| 356.6 | 4.683 | 241.7 | 205.3 |
| 365.8 | 4.668 | 243.4 | 205.0 |
| 374.9 | 4.654 | 245.0 | 204.6 |
| 384.1 | 4.641 | 246.5 | 204.2 |
| 393.3 | 4.628 | 248.0 | 203.9 |
| 402.5 | 4.616 | 249.4 | 203.6 |
| 411.6 | 4.605 | 250.7 | 203.3 |
| 426.4 | 4.587 | 252.7 | 202.8 |
| 441.2 | 4.570 | 254.6 | 202.3 |
| 455.9 | 4.554 | 256.4 | 201.9 |
| 470.7 | 4.539 | 258.1 | 201.5 |
| 485.5 | 4.525 | 259.7 | 201.2 |
| 500.2 | 4.511 | 261.1 | 200.8 |
| 515.0 | 4.498 | 262.5 | 200.5 |
| 532.7 | 4.482 | 264.0 | 200.1 |
| 550.5 | 4.467 | 265.4 | 199.8 |
| 568.2 | 4.453 | 266.7 | 199.5 |
| 585.9 | 4.439 | 267.9 | 199.2 |
| 603.6 | 4.426 | 269.0 | 198.9 |
| 621.4 | 4.412 | 270.1 | 198.6 |
| 639.1 | 4.400 | 271.0 | 198.4 |
| 653.6 | 4.389 | 271.7 | 198.2 |
| 668.2 | 4.379 | 272.4 | 198.0 |

CPR 14E
Chapter 3 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{T} \\ (\mathrm{~K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 682.7 | 4.370 | 273.1 | 197.9 |
| 697.3 | 4.360 | 273.7 | 197.7 |
| 711.8 | 4.350 | 274.2 | 197.6 |
| 726.4 | 4.341 | 274.8 | 197.4 |
| 743.7 | 4.330 | 275.3 | 197.3 |
| 760.9 | 4.320 | 275.9 | 197.2 |
| 778.2 | 4.309 | 276.4 | 197.0 |
| 795.5 | 4.299 | 276.8 | 196.9 |
| 812.7 | 4.289 | 277.3 | 196.8 |
| 830.0 | 4.279 | 277.7 | 196.7 |
| 859.2 | 4.263 | 278.3 | 196.5 |
| 888.4 | 4.247 | 278.8 | 196.4 |
| 917.5 | 4.232 | 279.2 | 196.3 |
| 946.7 | 4.217 | 279.6 | 196.2 |
| 975.9 | 4.203 | 280.0 | 196.1 |
| 1005. | 4.189 | 280.3 | 196.0 |
| 1034. | 4.176 | 280.6 | 195.9 |
| 1081. | 4.155 | 280.9 | 195.8 |
| 1128. | 4.135 | 281.2 | 195.7 |
| 1176. | 4.117 | 281.4 | 195.7 |
| 1223. | 4.099 | 281.5 | 195.6 |
| 1270. | 4.082 | 281.7 | 195.6 |
| 1317. | 4.066 | 281.8 | 195.6 |
| 1364. | 4.051 | 281.8 | 195.5 |
| 1420. | 4.034 | 281.9 | 195.5 |
| 1476. | 4.018 | 281.9 | 195.5 |
| 1533. | 4.003 | 281.9 | 195.5 |
| 1589. | 3.989 | 282.0 | 195.5 |
| 1645. | 3.976 | 282.0 | 195.5 |
| 1701. | 3.964 | 281.9 | 195.5 |
| 1757. | 3.952 | 281.9 | 195.5 |
| 1813. | 3.942 | 281.9 | 195.5 |
| 1870. | 3.931 | 281.9 | 195.5 |
| 1926. | 3.922 | 281.9 | 195.5 |
| 1982. | 3.913 | 281.9 | 195.4 |
| 2038. | 3.904 | 281.9 | 195.4 |
| 2094. | 3.896 | 281.9 | 195.4 |
| 2150. | 3.889 | 281.8 | 195.4 |
| 2207. | 3.882 | 281.8 | 195.4 |
| 2263. | 3.875 | 281.8 | 195.4 |
| 2319. | 3.869 | 281.8 | 195.4 |
| 2386. | 3.862 | 281.8 | 195.4 |
| 2452. | 3.856 | 281.8 | 195.4 |
| 2519. | 3.850 | 281.8 | 195.4 |
| 2586. | 3.844 | 281.8 | 195.4 |


| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (K) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 2653. | 3.839 | 281.8 | 195.4 |
| 2720. | 3.834 | 281.7 | 195.4 |
| 2804. | 3.828 | 281.7 | 195.4 |
| 2889. | 3.823 | 281.7 | 195.4 |
| 2974. | 3.819 | 281.7 | 195.4 |
| 3058. | 3.814 | 281.7 | 195.4 |
| 3143. | 3.811 | 281.7 | 195.4 |
| 3228. | 3.807 | 281.7 | 195.4 |
| 3349. | 3.803 | 281.7 | 195.4 |
| 3471. | 3.799 | 281.7 | 195.4 |
| 3593. | 3.796 | 281.7 | 195.4 |
| 3715. | 3.793 | 281.7 | 195.4 |
| 3837. | 3.791 | 281.7 | 195.4 |
| 3959. | 3.789 | 281.7 | 195.4 |
| 4115. | 3.787 | 281.7 | 195.4 |
| 4271. | 3.785 | 281.6 | 195.4 |
| 4428. | 3.784 | 281.6 | 195.4 |
| 4584. | 3.783 | 281.6 | 195.4 |
| 4740. | 3.782 | 281.6 | 195.4 |
| 4896. | 3.782 | 281.6 | 195.4 |
| 5092. | 3.781 | 281.6 | 195.4 |
| 5288. | 3.781 | 281.6 | 195.4 |
| 5289. | 3.781 | 281.6 | 195.4 |
| 5290. | 3.781 | 281.6 | 195.4 |
| 5291. | 3.781 | 281.6 | 195.4 |
| 5292. | 3.781 | 281.6 | 195.4 |
| 5293. | 3.781 | 281.6 | 195.4 |
| 5294. | 3.781 | 281.6 | 195.4 |
| 5305. | 3.781 | 281.6 | 195.4 |
| 5316. | 3.781 | 281.6 | 195.4 |
| 5327. | 3.781 | 281.6 | 195.4 |
| 5338. | 3.781 | 281.6 | 195.4 |
| 5349. | 3.781 | 281.6 | 195.4 |
| 5380. | 3.781 | 281.6 | 195.4 |
| 5410. | 3.781 | 281.6 | 195.4 |
| 5441. | 3.780 | 281.6 | 195.4 |
| 5471. | 3.780 | 281.6 | 195.4 |
| 5524. | 3.780 | 281.6 | 195.4 |
| 5578. | 3.780 | 281.6 | 195.4 |
| 5631. | 3.780 | 281.6 | 195.4 |
| 5638. | 3.780 | 281.6 | 195.4 |

### 3.6.3 Calculation example HACS-R

Properties of the chemical spillt

Chemical spillt
M olecular weight
N ormal boiling point
Liquid mass spillt

## Environmental Conditions

Width of river
Depth of river
$M$ ean stream velocity
$M$ anning roughness factor
W ater density
Limiting concentration
W ater temperature

Calculation of T urbulent Dispersion C oefficients
M ass transfer coefficient
H ydraulic radius river
Shear velocity
Width-to-depth ratio
Classification water body
L ongitudinal dispersion coefficient (3.147a)
C ross-stream dispersion coefficient (3.147b)
Vertical dispersion coefficient (3.147c)
Limiting concentration (3.159)
C haracteristic time (3.163)
Saturated vapour pressure at $20^{\circ} \mathrm{C}$

Results

C haracteristic evaporation rate (3.174)
C haracteristic evaporated vapour mass (3.175)
The maximum possible evaporation (3.184)
Vaporised mass fraction of total spill
$M$ aximum distance where $m_{m *}$ (3.185)
diethylamine $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) 2 \mathrm{~N} \mathrm{H}$
$\mu_{\mathrm{L}} \quad=73.14 \cdot 10^{-3} \mathrm{~kg} / \mathrm{mol}$
$\mathrm{T}_{\mathrm{b}}=56.3$
$Q_{\mathrm{L}} \quad=10^{6}$
kg

| $2 \times \mathrm{b}$ | $=31$ | m |
| :--- | :--- | :--- |
| $\mathrm{~h}_{\mathrm{d}}$ | $=10$ | m |
| $\mathrm{u}_{\mathrm{s}}$ | $=1.5$ | $\mathrm{~m} / \mathrm{s}$ |
| $\mathrm{C}_{\mathrm{MRF}}$ | $=0.03$ |  |
| $\rho_{\mathrm{w}}$ | $=1000$ | $\mathrm{~kg} / \mathrm{m}^{3}$ |
| $\mathrm{~m}_{\mathrm{m}^{*}}$ | $=5$ | $\mathrm{wt} / \mathrm{c}$ |
| $\mathrm{T}_{\mathrm{w}}$ | $=20$ | ${ }^{\circ} \mathrm{C}$ |

$\mathrm{T}_{\mathrm{w}}=20$
${ }^{\circ} \mathrm{C}$

### 3.6.4 Supplementary models

### 3.6.4.1 Evaporation of ammonia on a dry sandy subsoil

The model has been explained in paragraph 3.5.3.1.

Input

Chemical spilt
T otal liquid mass released in the bund Bund area
Initial temperature subsoil

Physical properties
N ormal boiling point
Heat of vaporisation at boiling point table 3.5:
Thermal diffusivity (dry) sandy subsoil
Thermal conductivity (dry) sandy subsoil

O utput

Heat flux conducting into the pool after 20 s Vaporisation rate after 20 s
T otal amount of vapour evolved after 20 s

$$
\text { ammonia }\left(\mathrm{NH}_{3}\right)
$$

$$
\mathrm{Q}_{\mathrm{L}}=1000 \quad \mathrm{~kg}
$$

$$
\mathrm{A} \quad=100 \quad \mathrm{~m}^{2}
$$

$\mathrm{T}_{\mathrm{s}, 0}=288.15 \mathrm{~K}$

| $\mathrm{T}_{\mathrm{b}}$ | $=239.72$ | K |  |
| ---: | :--- | ---: | :--- |
| $\mathrm{~L}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{b}}\right)$ | $=1.209 \cdot 10^{6}$ | $\mathrm{~J} / \mathrm{kg}$ |  |
|  |  |  |  |
| $\mathrm{a}_{\mathrm{s}, \mathrm{s}}$ | $=2 \cdot 10^{-7}$ |  | $\mathrm{~m}^{2} / \mathrm{s}$ |
| $\lambda_{\mathrm{s}, \mathrm{s}}$ | $=0.3$ |  | $\mathrm{~J} /(\mathrm{s} \cdot \mathrm{m} \cdot \mathrm{K})$ |

$H_{c} \quad=3.28 \cdot 10^{3} \quad \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$q_{v}=2.71 \quad \mathrm{~kg} / \mathrm{s}$
$Q_{v}=108 \quad \mathrm{~kg}$

## Procedure

The heat flux at time $t=20 \mathrm{~s}$, from sandy subsoil can be estimated by equation (3.120). The momentaneous vaporisation rate can be estimated by equation (3.122a).

The total amount of vapour evolved after 20 seconds can be estimated by equation (3.122b), which can not be more than the total mass of liquid ammonia mass released in the bund.

### 3.6.4.2 Evaporation of a cryogene on a moist sandy subsoil with clay

T he model has been explained in paragraph 3.5.3.2.
The only difference with the calculation example presented in paragraph 3.6.4.1 is the estimation of the correction factor $C_{R}$ in stead of a factor 8 . Here only the estimation of the thermal conductivity and thermal diffusivity of moist porous subsoil will be presented.

Input

| M oist fraction | $\mathrm{m}_{\mathrm{w}, \mathrm{ms}}$ | $=0.08$ | $\mathrm{~kg} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- |
| C lay fraction | $\mathrm{j}_{\mathrm{k}}$ | $=0.5$ | $\mathrm{~kg} / \mathrm{kg}$ |

Physical properties
Thermal diffusivity (dry) sandy subsoil
H eat capacity of (dry) sand (and clay)
H eat capacity of ice
Thermal conductivity (dry) sandy subsoil
D ensity of dry sand

| $\mathrm{a}_{\mathrm{s}}$ | $=2 \cdot 10^{-7}$ | $\mathrm{~m}^{2} / \mathrm{s}$ |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{p}, \mathrm{s}, \mathrm{dry}}$ | $=799$ | $\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ |
| $\mathrm{C}_{\text {ice }}$ | $=1930$ | $\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ |
| $\lambda_{\mathrm{s}, \mathrm{s}}$ | $=0.3$ | $\mathrm{~J} /(\mathrm{s} \cdot \mathrm{m} \cdot \mathrm{K})$ |
| $\rho_{\mathrm{s}, \mathrm{s}}$ | $=1600$ | $\mathrm{~kg} / \mathrm{s}$ |

O utput
Density of subsoil

| $\rho_{\mathrm{s}}$ | $=1728$ | $\mathrm{~kg} / \mathrm{m}^{3}$ |
| :--- | :--- | :--- |
| $\mathrm{C}_{\mathrm{p}, \mathrm{s}}$ | $=882.3$ | $\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ |
|  |  |  |
| $\mathrm{C}_{\mathrm{R}}$ | $=1.093$ |  |
| $\lambda_{\mathrm{s}}$ | $=1.312$ | $\mathrm{~J} /(\mathrm{s} \cdot \mathrm{m} \cdot \mathrm{K})$ |
| $\mathrm{a}_{\mathrm{s}}$ | $=8.60 \cdot 10^{-7}$ | $\mathrm{~m}^{2} / \mathrm{s}$ |

Procedure

The heat flux at time $t$, from moist sandy subsoil with clay can be estimated by equation (3.123). $T$ he correction factor $C_{R}$ can be estimated by the equations (3.123) until (3.127).

The thermal conductivity of the sand-clay mixture can be calculated by equations (3.125) and ( $3.126 \mathrm{a}-\mathrm{c}$ ). The thermal diffusivity of the sand-clay mixture can be estimated by equations ( $3.127 \mathrm{a}-\mathrm{c}$ ), based on averaging the physical properties.

### 3.6.4.3 Evaporation of propane in a gravel bed

The model has been explained in paragraph 3.5.3.3.

Input

Chemical spilt
Bund area
H eight gravel layer
A verage radius gravel stones
Initial temperature subsoil
propane ( $\mathrm{C}_{3} \mathrm{H}_{8}$ )

| A | $=1500$ | $\mathrm{~m}^{2}$ |
| :--- | :--- | :--- |
| $\mathrm{~h}_{\text {gr }}$ | $=0.1$ | m |
| $\mathrm{r}_{\mathrm{gr}}$ | $=0.05$ | m |
| $\mathrm{~T}_{\mathrm{s}, 0}$ | $=288.15$ | K |

Physical properties
N ormal boiling point
Heat of vaporisation at boiling point
table 3.5 :

$$
L_{v}\left(T_{b}\right)=4.259 \cdot 10^{5} \quad \mathrm{~J} / \mathrm{kg}
$$

Thermal diffusivity gravel
Thermal conductivity gravel

$$
\lambda_{\mathrm{s}}=2.5 \quad \mathrm{~J} /(\mathrm{s} \cdot \mathrm{~m} \cdot \mathrm{~K})
$$

Output
Heat flux conducting into the pool after 10 s
Equation valid until
Check height gravel layer
Vaporisation rate after 10 s
T otal amount of vapour evolved after 10 s

| $\mathrm{H}_{\mathrm{c}}$ | $=153.6 \cdot 10^{3}$ | $\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| :--- | :--- | :--- |
| t | $=48.3$ | s |
| $\mathrm{~h}_{\mathrm{g} /} / \mathrm{rgr}_{\mathrm{gr}}$ | $=2$ |  |
| $\mathrm{q}_{\mathrm{v}}$ | $=541.1$ | $\mathrm{~kg} / \mathrm{s}$ |
| $\mathrm{Q}_{\mathrm{v}}$ | $=10.8 \cdot 10^{3}$ | kg |

$\mathrm{T}_{\mathrm{b}} \quad=230.9 \quad \mathrm{~K}$

$$
a_{s} \quad=1.1 \cdot 10^{-6} \quad \mathrm{~m}^{2} / \mathrm{s}
$$

## Procedure

The heat flux at time $t=10 \mathrm{~s}$, from sandy subsoil can be estimated by equation (3.128).

However this equation can only be applied for a limited period of time given by equation (3.129). T he gravel layer may not be heigher than 3 gravel stones (3.129b). The momentaneous vaporisation rate can be estimated by equation (3.122a).
The total amount of vapour evolved after 10 seconds can be estimated by equation (3.122b), which can not be more than the total mass of liquid propane released in the bund.

### 3.6.4.4 Film and nucleate boiling on water surfaces

The models has been explained in paragraph 3.5.4.

Liquids with boiling points ( much) lower than water

Input

Chemical spilt
Surface temperature waterbody

Physical properties
N ormal boiling point propane

Thermal diffusivity vapour at $\mathrm{T}_{\mathrm{b}}$

Specific heat liquid at $T_{b}$
Specific heat water at $\mathrm{T}_{\mathrm{w}}$
Specific heat of vapour

Heat of evaporation at $T_{b}$
N ormal boiling point
Critical temperature spilled chemical
Thermal conductivity of liquid at $T_{b}$
Thermal conductivity of water at $T_{w}$
$T$ hermal conductivity vapour at $\mathrm{T}_{\mathrm{b}}$

Vapour density at $T_{b}$
Vapour density at $\mathrm{T}_{\mathrm{av}}$ (259.5 K )
Liquid density at $\mathrm{T}_{\mathrm{b}}$
W ater density at $\mathrm{T}_{\mathrm{w}}$
Liquid surface tension at $T_{b}$
$K$ inematic viscosity liquid at $T_{b}$
$K$ inematic viscosity vapour at $T_{b}$

Physical constant
Acceleration due to gravity
propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$
$\mathrm{T}_{\mathrm{w}}=288.15 \quad \mathrm{~K}$
$\mathrm{T}_{\mathrm{b}}=230.9 \mathrm{~K}$
$a_{v} \quad=6.2445 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$C_{p, L}=2217.15 \quad \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
$C_{p, w}=4188.67 \quad \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
$C_{p, V}=1037.13 \quad \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
$\mathrm{L}_{\mathrm{v}} \quad=4.259 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}$
$\mathrm{T}_{\mathrm{b}}=230.9$
$\mathrm{T}_{\mathrm{c}}=369.7$
K
K
$\lambda_{L} \quad=0.13365 \quad \mathrm{~J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$
$\lambda_{\mathrm{w}} \quad=0.601 \quad \mathrm{~J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$
$\lambda_{v} \quad=1.509 \cdot 10^{-2} \mathrm{~J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$
$\rho_{V} \quad=2.33 \quad \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\mathrm{V}, \mathrm{av}}=2.07 \quad \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\mathrm{L}} \quad=584.30 \quad \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\mathrm{w}} \quad=997.66 \quad \mathrm{~kg} / \mathrm{m}^{3}$
$\sigma \quad=1.588 \cdot 10^{-2} \quad \mathrm{~N} / \mathrm{m}$
$v_{\mathrm{L}} \quad=3.361 \cdot 10^{-7} \quad \mathrm{~m}^{2} / \mathrm{s}$
$v_{v} \quad=2.811 \cdot 10^{-6} \quad \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{g} \quad=9.80665$
$\mathrm{m} / \mathrm{s}^{2}$

Output
$M$ aximum heat flux for nucleate boiling ( $\mathrm{T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{w}}$ ) corresponding with $\mathrm{H}_{\mathrm{c}, \mathrm{n}, \max }$ $M$ inimum heat flux for film boiling
( $\mathrm{T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{w}}$ ) corresponding with $\mathrm{H}_{\mathrm{c}, \mathrm{f}, \mathrm{min}}$ Actual heat flux

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{c}, \mathrm{n}, \max }=3.21 \cdot 10^{6} & \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \\
\Delta \mathrm{T}_{n, \max }=12.9 & \mathrm{~K} \\
\mathrm{H}_{\mathrm{c}, \mathrm{f}, \min }=8.21 \cdot 10^{3} & \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \\
\Delta \mathrm{T}_{\mathrm{f}, \min }=56.0 & \mathrm{~K} \\
\mathrm{H}_{\mathrm{c}}=2.86 \cdot 10^{4} & \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)
\end{array}
$$

## Procedure

The heat flux for nucleate boiling can be estimated by equation (3.130), and can be expressed as

$$
\begin{equation*}
\mathrm{H}_{\mathrm{c}, \mathrm{n}}=1510 \times \Delta \mathrm{T}^{3} \quad\left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.130b}
\end{equation*}
$$

The maximum heat flux for nucleate boiling $\mathrm{H}_{c, n, \max }$ can be estimated by equation (3.131).

From this two equations the temperature difference $\Delta \mathrm{T}_{\mathrm{n}, \text { max }}$ between the evaporating liquid and the water surface for nucleate boiling, at which the heat flux is at maximum, can be estimated.
The minimum heat flux for film boiling $\mathrm{H}_{\mathrm{c}, \mathrm{f}, \text { min }}$ can be estimated by equations (3.132) and (3.133).
The temperature difference $\Delta \mathrm{T}_{\mathrm{f}, \min }$ between the evaporating liquid and the water surface at which film boiling occurs can be estimated by equation (3.134).
The heat flux during metastable boiling $\mathrm{H}_{\mathrm{c}, \mathrm{m}}$ could be calculated by means of equation (3.130a), (3.135) and (3.136) in principle. However, the present temperature difference between water and propane $\Delta \mathrm{T}=57.3 \mathrm{~K}$ is larger than $\Delta T_{c, f, \min }$. This means that the propane is fully film boiling. The actual heat flux $\mathrm{H}_{c}$ have been calculated by equation (3.107). The vaporisation mass rate could be calculated by equation (3.122).

Liquids with boiling points close to water

Input

Chemical spilt
Surface temperature waterbody

Physical properties

N ormal boiling point butane
$H$ eat capacity of water at $T_{w}$ Thermal conductivity of water at $\mathrm{T}_{\mathrm{w}}$
$K$ inematic viscosity of water at $\mathrm{T}_{\mathrm{w}}$ Thermal diffusivity of water at $\mathrm{T}_{\mathrm{w}}$
Thermal expansivity of water at $\mathrm{T}_{\mathrm{w}}$

$$
\mathrm{n} \text {-butane }\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)
$$

$$
\mathrm{T}_{\mathrm{w}}=288.15 \quad \mathrm{~K}
$$

O utput
Heat flux

$$
\mathrm{H}_{\mathrm{c}} \quad=4.53 \cdot 10^{3} \quad \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)
$$

## Procedure

The thermal diffusivity of water $a_{w}$ can be calculated by equation (3.6a).
The (constant) heat flux can be estimated by equation (3.137).
The vaporisation mass rate could be calculated by equation (3.122a).

### 3.6.4.5 Simple model non-boiling liquid in bund

The model has been explained in paragraph 3.5.5.2.

Input

Chemical spillt
T otal mass released
Initial liquid temperature
Fixed pool surface
Initial temperature subsoil
Wind velocity

Isolation concrete:
Thermal conductivity
Thermal diffusity

A mbient temperature
Thermal conductivity air
Prandtl number air
Viscosity air

O utput

Evaporation rate at 600 sec
T emperature of liquid at 600 sec

Gasoline
$\mathrm{Q}_{\mathrm{L}} \quad=100000 \quad \mathrm{~kg}$
$\mathrm{T}_{\mathrm{L}, 0}=288.15 \mathrm{~K}$
A $=1500 \quad \mathrm{~m}^{2}$
$\mathrm{T}_{\mathrm{s}, 0}=288.15 \mathrm{~K}$
$\mathrm{u}_{\mathrm{w}}=2 \quad \mathrm{~m} / \mathrm{s}$
$\lambda_{\mathrm{s}} \quad=0.207 \quad \mathrm{~J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$
$a_{s} \quad=2.5 \cdot 10^{-7} \quad \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{T}_{\mathrm{a}}=288.15 \mathrm{~K}$
$\lambda_{\mathrm{a}} \quad=0.0257 \quad \mathrm{~J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$
$\mathrm{Pr}_{\mathrm{a}}=0.786$
$\eta_{a} \quad=1.65 \cdot 10^{-5} \quad \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$

Procedure

1. The heat flux from the atmosphere: by convection $\mathrm{H}_{\mathrm{a}}$ and solar radiated heat flux $\mathrm{H}_{\mathrm{rs}}, \mathrm{H}_{\mathrm{rl}}$ can be estimated by the methods addressed in paragraph 3.2.2.
2. The unstationary heat flux from the ground $H_{c}$ can be estimated by equations (3.145a) and (3.145b).
3. The vaporisation rate $q_{v}$ can be estimated by equations (3.141), (3.13), (3.21) and (3.22) on the basis of the conditions of the pool at time $t$.
4. The changing liquid pool temperature $T_{p}$ can be determined by the equations (3.142a) to (3.142d) and equation (3.143).
5. The decreasing liquid height $h$ can be determined by the equations (3.143a) and (3.143b).
$N$ ote that $t$ is the specified time from the start of the rel ease for which the vaporisation mass rate and pool conditions are required.

The 5 steps have to be repeated for small time-steps $\delta t=\mathrm{t} / \mathrm{N}$ steps (for instance $\mathrm{N}_{\text {steps }}=50$ ), until one of the following conditions is fulfilled:

1. until specified time t has been reached;
2. all released liquid has vaporised;
3. the pool temperature $T_{p}$ has decreased below melting point of the spillt chemical
$N$ ote that the nett radiation from the surroundings, neglecting direct sun radiation, has been estimated by applying the Stephan-Boltzman law, taking into account the correct emission and absorption factors, by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{s}}=4.09 \times 10^{-8} \times\left(\mathrm{T}_{\mathrm{a}}+\mathrm{d} \mathrm{~T}_{\mathrm{p}}\right)^{3} \times\left(\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{p}}\right) \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{3.187}
\end{equation*}
$$

Some particular intermediate results:

| Initial pool radius r | $: 21.85 \mathrm{~m}$ |
| :--- | :--- | :---: |
| Reynolds' number Re | $: 6.49 \times 10^{6}$ |
| M ass transfer coefficient $\mathrm{k}_{\mathrm{H}, \mathrm{a}}$ | $: \quad 5.66 \mathrm{~m} / \mathrm{s}$ |

The calculations were carried out with small time-steps $\Delta t=10 \mathrm{~s}$. In the following table intermediate results are presented.

Intermediate results

| $\mathbf{t}$ <br> $\mathbf{( s )}$ | $\mathbf{T}_{\mathbf{p}}$ <br> $\mathbf{( K )}$ | $\mathbf{q}_{\mathbf{v}}$ <br> $\mathbf{( k g} / \mathbf{s})$ | $\mathbf{h}_{\mathbf{p}}$ <br> $\mathbf{( m )}$ | $\delta \mathbf{T}_{\mathbf{p}}$ <br> $\mathbf{( K )}$ | $\mathbf{H}_{\mathbf{a}}$ <br> $\mathbf{( \mathbf { W } / \mathbf { m } ^ { \mathbf { 2 } } )}$ | $\mathbf{H}_{\mathbf{c}}$ <br> $\mathbf{( \mathbf { W } / \mathbf { m } ^ { \mathbf { 2 } } )}$ | $\mathbf{H}_{\mathbf{s}}$ <br> $\mathbf{( \mathbf { W } / \mathbf { m } ^ { \mathbf { 2 } } )}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 288.15 | 19.28 | 0.106 | -0.351 | 0.00 | 0.00 | 0.00 |
| 10.0 | 287.80 | 19.02 | 0.106 | -0.345 | 1.99 | 25.95 | 1.37 |
| 20.0 | 287.45 | 18.77 | 0.106 | -0.340 | 3.94 | 36.37 | 2.72 |
| 30.0 | 287.11 | 18.52 | 0.106 | -0.335 | 5.87 | 44.20 | 4.04 |
| 40.0 | 286.78 | 18.28 | 0.106 | -0.331 | 7.76 | 50.66 | 5.33 |
| 50.0 | 286.45 | 18.05 | 0.105 | -0.326 | 9.64 | 56.24 | 6.61 |
| 60.0 | 286.12 | 17.82 | 0.105 | -0.322 | 11.48 | 61.18 | 7.86 |
| 70.0 | 285.80 | 17.59 | 0.105 | -0.318 | 13.31 | 65.63 | 9.09 |
| 80.0 | 285.48 | 17.37 | 0.105 | -0.314 | 15.11 | 69.69 | 10.30 |
| 90.0 | 285.17 | 17.16 | 0.105 | -0.310 | 16.88 | 73.44 | 11.50 |
| 100.0 | 284.86 | 16.95 | 0.104 | -0.306 | 18.64 | 76.91 | 12.67 |
| 110.0 | 284.55 | 16.74 | 0.104 | -0.302 | 20.37 | 80.14 | 13.83 |
| 120.0 | 284.25 | 16.54 | 0.104 | -0.299 | 22.08 | 83.18 | 14.96 |
| 130.0 | 283.95 | 16.34 | 0.104 | -0.295 | 23.77 | 86.03 | 16.08 |
| 140.0 | 283.66 | 16.15 | 0.104 | -0.291 | 25.44 | 88.72 | 17.19 |
| 150.0 | 283.36 | 15.96 | 0.103 | -0.288 | 27.09 | 91.27 | 18.27 |
| 160.0 | 283.08 | 15.78 | 0.103 | -0.284 | 28.72 | 93.69 | 19.34 |
| 170.0 | 282.79 | 15.59 | 0.103 | -0.281 | 30.33 | 95.99 | 20.40 |
| 180.0 | 282.51 | 15.42 | 0.103 | -0.278 | 31.92 | 98.18 | 21.44 |
| 190.0 | 282.23 | 15.24 | 0.103 | -0.275 | 33.49 | 100.27 | 22.46 |

## CPR 14E

Chapter 3 of the ' $Y$ ellow B ook'

Intermediate results (continuation)

| $\begin{gathered} \mathbf{t} \\ (\mathbf{s}) \end{gathered}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{p}} \\ & (\mathrm{~K}) \end{aligned}$ | $\begin{gathered} q_{v} \\ (\mathrm{~kg} / \mathrm{s}) \end{gathered}$ | $\begin{aligned} & h_{p} \\ & (\mathrm{~m}) \end{aligned}$ | $\begin{array}{r} \delta \mathbf{T}_{\mathbf{p}} \\ (\mathrm{K}) \end{array}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \left(\mathrm{~W} / \mathrm{m}^{2}\right) \end{gathered}$ | $\begin{gathered} H_{c} \\ \left(\mathrm{~W} / \mathrm{m}^{2}\right) \end{gathered}$ | $\begin{gathered} \mathbf{H}_{\mathbf{s}} \\ \left(\mathrm{W} / \mathrm{m}^{2}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200.0 | 281.96 | 15.07 | 0.103 | -0.272 | 35.05 | 102.27 | 23.47 |
| 210.0 | 281.69 | 14.90 | 0.102 | -0.268 | 36.58 | 104.18 | 24.46 |
| 220.0 | 281.42 | 14.74 | 0.102 | -0.265 | 38.10 | 106.01 | 25.44 |
| 230.0 | 281.15 | 14.58 | 0.102 | -0.262 | 39.60 | 107.77 | 26.41 |
| 240.0 | 280.89 | 14.42 | 0.102 | -0.259 | 41.09 | 109.45 | 27.36 |
| 250.0 | 280.63 | 14.26 | 0.102 | -0.257 | 42.56 | 111.07 | 28.30 |
| 260.0 | 280.37 | 14.11 | 0.102 | -0.254 | 44.01 | 112.63 | 29.23 |
| 270.0 | 280.12 | 13.96 | 0.101 | -0.251 | 45.45 | 114.14 | 30.14 |
| 280.0 | 279.87 | 13.81 | 0.101 | -0.248 | 46.87 | 115.58 | 31.04 |
| 290.0 | 279.62 | 13.67 | 0.101 | -0.246 | 48.27 | 116.98 | 31.93 |
| 300.0 | 279.38 | 13.53 | 0.101 | -0.243 | 49.66 | 118.32 | 32.81 |
| 310.0 | 279.13 | 13.39 | 0.101 | -0.240 | 51.04 | 119.62 | 33.67 |
| 320.0 | 278.89 | 13.25 | 0.101 | -0.238 | 52.40 | 120.88 | 34.52 |
| 330.0 | 278.65 | 13.12 | 0.101 | -0.235 | 53.75 | 122.09 | 35.37 |
| 340.0 | 278.42 | 12.99 | 0.100 | -0.233 | 55.08 | 123.26 | 36.20 |
| 350.0 | 278.19 | 12.86 | 0.100 | -0.230 | 56.40 | 124.40 | 37.02 |
| 360.0 | 277.96 | 12.73 | 0.100 | -0.228 | 57.70 | 125.50 | 37.83 |
| 370.0 | 277.73 | 12.61 | 0.100 | -0.226 | 58.99 | 126.56 | 38.63 |
| 380.0 | 277.50 | 12.48 | 0.100 | -0.223 | 60.27 | 127.59 | 39.42 |
| 390.0 | 277.28 | 12.36 | 0.100 | -0.221 | 61.53 | 128.58 | 40.20 |
| 400.0 | 277.06 | 12.24 | 0.100 | -0.219 | 62.79 | 129.55 | 40.97 |
| 410.0 | 276.84 | 12.13 | 0.099 | -0.217 | 64.03 | 130.48 | 41.73 |
| 420.0 | 276.62 | 12.01 | 0.099 | -0.215 | 65.25 | 131.39 | 42.48 |
| 430.0 | 276.41 | 11.90 | 0.099 | -0.213 | 66.47 | 132.27 | 43.22 |
| 440.0 | 276.19 | 11.79 | 0.099 | -0.210 | 67.67 | 133.13 | 43.95 |
| 450.0 | 275.98 | 11.68 | 0.099 | -0.208 | 68.86 | 133.96 | 44.68 |
| 460.0 | 275.78 | 11.58 | 0.099 | -0.206 | 70.04 | 134.76 | 45.39 |
| 470.0 | 275.57 | 11.47 | 0.099 | -0.204 | 71.21 | 135.54 | 46.10 |
| 480.0 | 275.36 | 11.37 | 0.099 | -0.202 | 72.37 | 136.30 | 46.79 |
| 490.0 | 275.16 | 11.27 | 0.098 | -0.200 | 73.51 | 137.04 | 47.48 |
| 500.0 | 274.96 | 11.17 | 0.098 | -0.199 | 74.65 | 137.76 | 48.17 |
| 510.0 | 274.76 | 11.07 | 0.098 | -0.197 | 75.77 | 138.45 | 48.84 |
| 520.0 | 274.57 | 10.97 | 0.098 | -0.195 | 76.88 | 139.13 | 49.50 |
| 530.0 | 274.37 | 10.88 | 0.098 | -0.193 | 77.99 | 139.79 | 50.16 |
| 540.0 | 274.18 | 10.78 | 0.098 | -0.191 | 79.08 | 140.43 | 50.81 |
| 550.0 | 273.99 | 10.69 | 0.098 | -0.189 | 80.16 | 141.05 | 51.46 |
| 560.0 | 273.80 | 10.60 | 0.098 | -0.188 | 81.23 | 141.65 | 52.09 |
| 570.0 | 273.61 | 10.51 | 0.098 | -0.186 | 82.29 | 142.24 | 52.72 |
| 580.0 | 273.42 | 10.42 | 0.097 | -0.184 | 83.35 | 142.81 | 53.34 |
| 590.0 | 273.24 | 10.34 | 0.097 | -0.183 | 84.39 | 143.37 | 53.96 |
| 600.0 | 273.06 | 10.25 | 0.097 | -0.181 | 85.42 | 143.91 | 54.56 |

### 3.7 Interfacing to other models

### 3.7.1 Introduction to section 3.7

The results from model predictions in this chapter 'Pool Evaporation' may be used for further calculations as input for subsequent physical effect models, described in:
chapter 4 'Vapour C loud Dispersion', and chapter 6 'H eat flux from fires'.

The models in this chapter 'Pool Evaporation' may act as a source term model to provide (quantitative) information about:

- the amount of material entering the atmosphere by evaporation;
- the dimensions of liquid pool;
- the thermodynamic state of the evaporating liquids, such as concentrations, temperature, and pressure.

Vapour cloud dispersion will occur when vapours are entering the atmosphere. The pool evaporation models are able to determine the amount of vapour entering the atmosphere and the dimensions of the source.

On the other hand, the results from model predictions in chapter 'O utflow and Spray Release' may provide the required input for pool evaporation models.

Interfacing to the relevant models in chapter 2 'Outflow and Spray Release' and chapter 4 'Vapour Cloud Dispersion' will be addressed in the following paragraphs.

Pool fires may occur after the ignition of a (spreading or shrinking) liquid pool. M odels in this chapter 'Pool evaporation' can be addressed to estimate the initial dimensions of the pool before ignition. Interfacing to the relevant models in chapter 6 'H eat flux from fires' will be treated there.

Vapour cloud explosion can only occur after dispersion of flammable material in the atmosphere. After having estimated the characteristics of the evaporating liquid pool, models in chapter 4 'Vapour Cloud Dispersion' have to be addressed first.

### 3.7.2 Outflow and Spray Release

### 3.7.2.1 Introduction

There are two ways by which liquid released from its containment can fall onto the ground or onto the water surface:

1. rain out from airborne droplets may occur in case of a two-phase release;
2. the liquid jet flows or falls directly onto the ground in case of a release of a 'nonboiling' liquid.

### 3.7.2.2 Spray Release

### 3.7.2.2. Interfacing of spray release model for finite duration release of pressurised liquified gases

The mass flow rate of droplets falling onto the ground or onto the water surface can be obtained from equation (2.161) in section 2.5.3.7

$$
\begin{equation*}
q_{d}=q_{s}-q_{\text {nett, air }} \tag{kg/s}
\end{equation*}
$$

| $q_{d}$ | $=$ mass rate of spray deposition | $[\mathrm{kg} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| $q_{\text {nett,air }}$ | $=$ mass flow rate remaining airborne | $[\mathrm{kg} / \mathrm{s}]$ |
| $q_{s}$ | $=$ liquid source discharge rate | $[\mathrm{kg} / \mathrm{s}]$ |

T he distance from the source where the droplets will fall onto the ground or onto the water surface will be less

$$
\begin{equation*}
x\left(t_{0}\right)=u_{f} \times t_{0} \tag{3.188b}
\end{equation*}
$$

where $t_{0}$, the time needed by a droplet to fall onto the ground or onto the water surface, following from equation (2.160), and $u_{f}$ is the jet velocity after flashing, following from equation (2.149) This method provides an upper limit of $x\left(t_{0}\right)$ as in practice the horizontal velocity will decrease due to resistance of the ambient air when the droplets fall.

### 3.7.2.2.2 Interfacing of spray release model for instantaneous release of pressurised liquified gases

The fraction of the release that will be deposited onto the ground or onto the water surface follows from equation (2.183) in section 2.5.3.8.

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{d}}=\mathrm{Q}-\mathrm{Q}_{\text {nett,air }} \tag{kg}
\end{equation*}
$$

$\mathrm{Q}_{\mathrm{d}} \quad=$ mass deposited spray $\quad[\mathrm{kg}]$
$Q_{\text {nett,air }}=$ mass remaining airborne spray $[\mathrm{kg}]$

Thechemical will be deposited onto the ground or onto the water surface in the direct vicinity of the two-phase release.

### 3.7.2.3 Liquid release

The interfacing of models predicting the (finite) mass flow rate is straightforward. The (time-dependent) mass flow rate predicted by the models in paragraph 2.5.4 can be used without modification.

For instantaneous liquid releases the total mass released provides sufficient information for the pool evaporation models.

### 3.7.3 Vapour cloud dispersion

### 3.7.3.1 Introduction

The predicted liquid pool evaporation rate $q_{v}$ will vary in time. For the atmospheric dispersion models requiring a (semi-)continuous source strength, the same averaging method as described in paragraph 2.7.2.1 can be applied.

Both SLAB and GPM require dimensions of the source. By an integration over time GPM can cope with varying source dimensions in principle. H owever, for SLAB these dimensions have to be constant.
$N$ ote that in general the dimensions of the evaporating pool become less important at a greater distance from the pool, but are important at smaller distances.

F or liquid releases within bunds, the dimensions of the bund can be used as source diameter, as the time for the pool to reach its maximum diameter is relatively short.

F or durations after the initially spreading pool has reached its maximum diameter, the maximum pool diameter can be used as vapour source diameter for estimating the maximum concentration.

F or spreading pools the matter is more complicated.
$U$ sing the maximum dimensions of the spreading pool for the predictions of the atmospheric concentration at any time, would lead to underpredictions for neutral gases. Also the average pool diameter would underestimate the concentrations for short durations after the start of the liquid release.
N eglecting the pool dimensions as such, but not the (increasing) evaporation rate, would lead to overpredictions regarding the wind axis.
Physically the concentration at the source can never be higher than the maximum concentration based on the partial vapour pressure at the pool surface

$$
\begin{equation*}
c_{i, \max }<\mathrm{P}^{\circ}\left(\mathrm{T}_{s}\right) \times \mu_{i} /\left(R \times T_{s}\right) \quad\left(\mathrm{kg} / \mathrm{m}^{3}\right) \tag{3.190}
\end{equation*}
$$

where

| $\mathrm{c}_{\mathrm{i}, \text { max }}=$ maximum concentration vapour | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |  |
| :--- | :--- | :--- |
| $\mathrm{P}^{\circ}$ | $=$ vapour pressure as function temperature | $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ |
| R | $=$ gas constant | $[\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})]$ |
| $\mathrm{T}_{\mathrm{s}}$ | $=$ surface tempe rature pool | $[\mathrm{K}]$ |
| $\mu_{\mathrm{i}}$ | $=$ mol mass vapour | $[\mathrm{kg} / \mathrm{mol}]$ |

The diameter of the source might have an effect on the way heavy gas dispersion models predict the dispersion in the initial stage, where gravity slumping plays a role. Therefore, a smaller source diameter might lead to underpredictions under specific circumstances.

Altogether we suggest to use the time-averaged pool diameter for the prediction of the maximum atmospheric concentrations at the wind axis during the spreading of the pool.

When estimating the concentration as a function of time, the travelling time $t=x / u_{a}$ of the vapour must be taken into account when switching the diameter of the liquid pool from the time-averaged pool diameter to the maximum (final) pool diameter.

### 3.7.3.2 Gaussian Plume Model

The Gaussian plume model (GPM, see section 4.5.3) can be applied if the evaporation results in neutrally or positively buoyant cloud.
The input for the G aussian Plume $M$ odel can be limited to the evaporation rate $q$ in (4.51) and the dimensions of the pool $b_{y}$ and $b_{x}$.

### 3.7.3.3 The dense gas model of Britter and McQuaid

If the density after evaporation $\rho_{\mathrm{j}}>\rho_{\mathrm{a}}$, a dense gas dispersion model is needed. T he simplest model is the continuous release model by Britter and M CQ uaid, see section 4.5.5.1. Input of this model is volume flow rate $\mathrm{v}_{0}$. The volume flow rate $v_{0}$ can be calculated by

$$
\begin{equation*}
\mathrm{v}_{0}=\mathrm{q}_{\mathrm{s}} / \rho_{0} \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right) \tag{3.191}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{\mathrm{V}, 0}=\mathrm{P}_{\mathrm{a}} \times \mu_{\mathrm{i}} /\left(\mathrm{R} \times \mathrm{T}_{\mathrm{s}}\right) \tag{3.192}
\end{equation*}
$$

where
$\mathrm{P}_{\mathrm{a}}=$ ambient atmospheric pressure $\left[\mathrm{N} / \mathrm{m}^{2}\right]$
$\mathrm{q}_{\mathrm{s}}=$ evaporation rate $[\mathrm{kg} / \mathrm{s}]$
$\mathrm{v}_{0}=$ volume flow rate $\quad[\mathrm{m} / \mathrm{s}]$
$\rho_{\mathrm{V}, 0}=$ vapour density at the source $\quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$

### 3.7.3.4 SLAB model

A nother dense gas dispersion model, SLAB, is described in section 4.5.5.2.
The source conditions are using the SLAB notations (see e.g. T able 4.21):

- Temperature of the source material TS: surface temperature liquid pool $\mathrm{T}_{\mathrm{s}}$.
- Vaporisation flow rate of the source QS: qs.
- Area of the source AS: appropriate pool area.

For this case the pool evaporation option should be applied, i.e. ID SPL =1

### 3.8 Discussion

### 3.8.1 Introduction to section 3.8

In this section some general considerations on the models related to pool evaporation presented in this chapter are given and gaps in the description of pool evaporation are indicated.

### 3.8.2 General remarks

This chapter presents supplementary models for the evaporation in permeable subsoil and different boiling regimes.
A weakness of this chapter is that the supplementary models were not integrated into the more general GASP model.
To avoid inconsistencies and unforeseen numerical problems, the GASP model has been copied unchanged, and it follows the original publications, although in our opinion some sub-models are not optimal.

M odels for pool evaporation from porous media are not well developed or based on limited experimental data.
N o sufficient data are available in literature to enable a proper description of moist porous subsoil for the range ( $0<\mathrm{m}_{\mathrm{w}, \mathrm{ms}}<0.08$ ).

The evidence that no substantial ice crust will be formed in case of a spill of cryogen on water, is not too strong.
Limited information could be presented about chemicals that react with water, like ammonia and phosgene. The fraction of instantaneously spilt liquid ammonia on water that is supposed to evolve from the water surface directly, is a rough estimate based on limited evidence.
N o model for boiling liquids heavier than water, like chlorine, has been incorporated into this chapter.

### 3.8.3 Gasp

The GASP model describes pool evaporation of spreading boiling or volatile liquids on land or floating on water.
It is based on improved understanding of spreading phenomena, described by the socalled 'shallow layer equations', and of vaporisation, and the model forces the transition of boiling to non-boiling to be smooth.
The model turned out to be unavoidably complex as the simultaneous spreading, evaporating and (time-dependent) heat transfer, taking all heat sources into account, is a complex problem to solve.

In the model the mass transfer model is based on the theoretical work of Brighton [Brighton,1987]. For practical situations it is advisable to use the correlation K awamura \& M acK ay, based on experiments carried out in the open.

The description of the boiling process in GASP has been simplified by neglecting the metastable boiling regime, and by applying a somewhat simplified approach by assuming film boiling or a constant heat transfer coefficient.
In literature a lot of attention is given to nucleate boiling and film boiling. $M$ any common industrial liquefied gases will boil in the metastable boiling regime. So, the evaporation should be based on the model for metastable boiling.

The GASP model can still be approved regarding the following topics: dens gas behaviour of the vapour, effects of pool surface waves, the effects of sloping and porous subsoil and multi-component liquid pools [W ebber,1990].

The GASP-model has to be computerised before any prediction can be made. In case the spreading of the liquid pool can be ignored, as may be the case for instantaneous liquid releases in bunds, it is possible to use simple models to guess the order of magnitude of the evaporation rate, at least with some accuracy. These models should be used with care. Some rules of the thumb for their applicability and validity have been given.

### 3.8.4 HACS-R

The HACS-R model is able to predict the evaporation of soluble volatile chemicals caused by an instantaneous release.
It has been assumed that all of the liquid goes into solution. T his assumption is valid because it appears that the total vapour generated is a small fraction of the mass spilt. In reality the release of chemicals takes place over a finite period. Since even in the case of an instantaneous spill, the mass of vapour evolved appears a small fraction of the mass spilt, the predictions can be safely regarded as the worst case for long duration spills.

### 3.8.5 Epilogue

The gaps in the modelling of pool evaporation indicated here, leave plenty of room for further scientific research.

### 3.9 References

AlChE (1989)
C hemical Process Quantitative Risk A nalysis - guidelines for - , C enter for Chemical Process Safety of the American Institute of Chemical Engineers, 1989.

Aloha (1988)
Aloha - Areal L ocations of H azardous Atmospheres Version 4.0-T echnical Appendix, N at. O ceanic \& Atmospheric Administration, U SA, 1988.

Beek (1975)
W.J. Beek and K.M .K. M uttzall, T ransport Phenomena, J. Wiley and Sons Ltd, 1975.

Blanken (1980)
J.M . Blanken, Behavior of Ammonia in the Event of a Spillage, A merican Institute of Chemical Engineers, 1980.

Bolz (1972)
R.E. Bolz and G.L.T. T uve, CRC H andbook of tables for Applied Engineering Science, $2^{\text {nd }}$ Edition, 1972.

Brighton (1987)
P.W.M . Brighton, Evaporation from a Plane Liquid Surface into a T urbulent Boundary L ayer, SRD/H SE-report R 375, January 1987.

Brighton (1990)
P.W .M . Brighton, F urther verification of a theory for mass and heat transfer from evaporating pools, J. of H azardous M aterials, 23 ,1990) 215-234.

C avanaugh (1994)
T.A. C avanaugh, J.H. Siegell, K.W. Steinberg, Simulation of vapor emissions from liquid spills, J. of H azardous M aterials, 38 ,1994) 41-63.

Chang (1982)
H.R. Chang and R.C. Reid, Spreading-boiling model for instantaneous spiulls of liquefied petroleum gas (LPG ) on water, J. of H azardous M aterials, 25 ,1982) 19-35.

D harmavaram (1994)
S. D harmavaram, J.N. Tilton, R.J. G ardner, F ate and transport of ammonia spilt from a barge, J. of H azardous M aterials, 37 ,1994) 475-487.

Frie (1992)
J.L. Frie, G.A. Page, V. Diaz, J.J. K ives, Evaporation of containes and uncontained spills of multicomponent nonideal solutions, $7^{\text {th }} \operatorname{Int}$. Symp. on Loss Prevention and Safety Promotion in the Process Industries, T aormina Italy 4-8 M ay 1992.

Jones (1992)
D. Jones, N omenclature for hazard and risk assessment in the process industries, second edition 1992, Institution of chemical Engineeers U .K .

K awamura and M acK ay (1987)
P.I. K awamura and D. M acK ay, T he Evaporation of volatile liquids, J. of H azardous M aterials, 15 ,1987) 365-376.

M elhelm (1993)
G.A. M elhelm, and P.A. Croce, Advanced C onsequence M odelling Emission, Dispersion, Fires, and Explosions, second draft July, 1993, A.D. Little.

M ikesell (1991)
J.L. M ikesell, A.C. Buckland, V. Diaz and J.J. K ives, Evaporation of C ontained Spills of M ulticomponent $N$ on-ideal Solutions, presented at Int. Conf. and W orkshop on M odelling and M ittigating the C onsequences of Accidental Releases of hazardous materials, M ay 20-24 1991, N ew Orleans, U SA.

N ievergeld (1978)
P. N ievergeld, W.F.Salitatu, Reduction of gasoline evaporation by a partially coverage of the surface of the liquid pool, TN O-CTI-report 78-01601,1978).

Phelps (1992)
P.J. Phelps, R. Jureidine, T he computer modelling of tank spills and containment overflows, $7^{\text {th }}$ Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, T aormina I taly 4-8 M ay 1992.

Prince (1981)
A.J. Prince, A users manual to spill, SRD/H SE-report R210, July 1981.

Prince (1985)
A.J. Prince, D etails and results of spill experiments of cryogenic liquids onto land and water, SRD-report R324, A pril 1985.

Raj (1974)
Ph. K. Raj et al, Assessment models in support of the hazard assessment handbook, NTIS, January 1974.

Raj (1981)
Ph. K. Raj, M odels for cryogenic liquid spill behavior on land and water, J. of H azardous M aterials, 5 ,1981) 111-130.

Raj (1987)
Ph. K. Raj and A.J. M orris, Source $C$ haracterisation and $H$ eavy $G$ as $D$ ispersion M odels for Reactive Chemicals, Report AFGL-TR-88-0003(I) for the U SA Air F orce Geophysics L aboratory, Dec. 1987.

Raj (1991)
Ph. K. Raj, C hemical Release/Spill Source M odels - A review, presented at Int. C onf. and Workshop on $M$ odelling and $M$ ittigating the $C$ onsequences of Accidental Releases of hazardous materials, M ay 20-24 1991, N ew Orleans, U SA.

Shaw (1978)
P. Shaw and F. Briscoe, Evaporation from spills of hazardous liquids on land and water, SRD/H SE-report R 100, M ay 1978.

Stramigioli (1992)
C. Stramigioli, G. Spadoni, V aporisation from multicomponent liquid spills, $7^{\text {th }}$ Int. Symp. on L oss Prevention and Safety Promotion in the Process Industries, T aormina Italy 4-8 M ay 1992.

Studer (1988)
D.W. Studer, B.A. C ooper and L.C. D oelp, Vaporisation and Dispersion M odelling of C ontained Refrigerated Liquid Spills, Plant/Operations Progress, Vol. 7, No. 2, A pril, 1988.

## SuperC hems 4.0

Superchems - A detailed C onsequence M odelling Package -, A.D. Little, Inc, C ambridge, M assachusetts, U SA.

T akeno (1994)
K. T akeno, T. Ichinose, Y. H yodo, H. N akamura, Evaporation rates of liquid hydrogen and liquid oxygen spilt onto the ground, J. Loss Prev. Process Ind, 1994, Vol 7., N umber 5.

T echnica (1994)
Personal communications with D N V T echnica L ondon.

W ebber (1986)
D.M . W ebber and P.W.M . Brighton, Similarity solutions for the spreading liquid pools, SRD /H SE-report R 371, July 1986.

Webber and Brighton (1987)
D.M . W ebber and P.W.M . Brighton, An integral model of spreading vaporising pools, SRD/H SE-report R 390, August 1987.

W ebber (1987)
D .M . W ebber, H eat conduction under a spreading pool, SRD/H SE-report R 421, October 1987.

W ebber (1988)
D.M . W ebber, A model for the evaporation and boiling of liquid pools, SRD/H SEreport R 404, F ebruary 1988.

Webber and Jones (1988)
D.M. W ebber and S.J. Jones, A model of spreading vaporising pools, paper presented at the Int. C onference C loud M odelling 1988.

W ebber (1990)
D.M. Webber, M odel for Pool Spreading and Vaporisation and its Implementation in the C omputer C ode GASP, SRD /H SE-report R507, September 1990.

Webber (Jan. 1991)
D.M. W ebber, Source terms, J. Loss Prev. Process Ind, 1991, Vol 4., January.

Webber (A pr. 1991)
D.M . W ebber, A model of steady discharge into a vaporising pools, SRD/H SE-report R 493, A pril 1991.

W ebster (1981)
Websters' T hird N ew International D ictionary, 1981.
Wilkinson (1991)
A. Wilkinson, Bund overtopping - the consequences following catastrophic failure of large volume liquid storage vessels, SRD /H SE-report R530, October 1991.

Woodward (1990)
J.L. W oodward, A integrated model for discharge rate, pool spread, and dispersion from punctured vessels, J. Loss Prev. Process Ind., 1990, V ol 3, January.

W orldBank (1988)
Technica, Ltd., Techniques for Assessing Industrial H azards, W orld Bank technical paper number 55 .

Y ellowB ook (1988)
M ethods for the calculation of physical effects of the release of dangerous materials (liquids and gases) $2^{\text {nd }}$ ed., 1988), publ. by (D utch) D irectorate G eneral of L abour; English version ,1992).

Zumsteg (1991)
F. Zumsteg anf T.K. F annalöp, Experiments on the Evaporation of Liquefied Gas over W ater, presented at Int. C onf. and W orkshop on M odelling and M ittigating the C onsequences of Accidental Releases of hazardous materials, M ay 20-24 1991, N ew Orleans, USA.

Chapter 4
Vapour cloud dispersion
E.A. Bakkum, N.J. D uijm

## Modifications to Chapter 4 (Vapour Cloud Dispersion) with respect to the first print (1997)

N umerous modifications were made concerning typographical errors. A list is given below for the pages on which errors have been corrected.

Some figures in this chapter were poorly printed; viz. figures 4.5, 4.16 and 4.18 as well as the scheme in section 4.5.1. These prints have been improved.

Equation (4.51) on page 4.70 is a general expression for a continuous release.
In section 4.5.3.3 the equations (4.60) and (4.61) describe short duration releases instead of semi-continuous releases.
In equation (4.60b) $\sigma_{x}(x)$ has been replaced by $\sigma_{x}\left(u_{a} t\right)$.
Below equation (4.61c) a sentence has been added concerning linear interpolation on $\sigma_{x}$ for values of $x$ less than 50 m .
In section 4.5.3.6 it has been added that the proposed simplifications will introduce considerable continuity problems in calculating the concentration.

In section 4.5.4.1 describing the free turbulent jet model, equation (4.71) has been replaced and (4.73) has been removed. H ence all subsequent equations in chapter 4 have been renumbered.

The constant in equation (4.79) has been adjusted, as well as the empirical constants $C_{u}$ and $C_{c}$ in table 4.10.

The dispersion parameters were changed into the values of the $2^{\text {nd }}$ edition of CPR14E.

In section 4.5.4.2 the equations (4.83) and (4.84) have been adjusted, as well as the constants in equations (4.87) and (4.92).
In equation (4.149) an ending bracket just before the division line has been added.
In section 4.6.3 concerning application of the G aussian plume model, the examples have been updated.
N ow subsection 4.6.3.1 describes the calculation of a plume and subsection 4.6.3.2 shows the calculation of explosive mass of an instantaneous puff.
H ence table 4.14 and figures 4.19 up to and including 4.21 have been replaced.
In subsection 4.6.4.1 the example on the free jet model has been corrected and figure 4.22 has been replaced.

Section 4.6.5 describes example calculations for four source term submodels in the SLAB model. Some errors in the SLAB model have been corrected. All calculations are updated and figures 4.23 up till and including 4.25 are replaced, whereas figure 4.27 has been added. F urthermore the values for the C oncentration averaging time and Stability class in table 4.23 have been adjusted.

## List of symbols Chapter 4

A cross-flow area of cloud or plume (4.26) m²
b half-width radius of jet or plume (4.16) m
$b_{0}$ source radius (section 4.3.5.1.) m
$b_{0 x}, b_{o y}, b_{0 z}$ source half dimensions in down-wind, cross-wind and vertical direction, respectively (4.62) m
$b_{x}, b_{y} \quad$ half-width of cloud in down-wind and cross-wind direction, respectively (4.114) m
$b_{y, m} \quad$ effective plume half-width including meandering (4.145)
m
$\mathrm{b}_{\mathrm{z}} \quad$ cloud height (4.23) m

C general constants, to be defined in the text
c(...) concentration as a function of the parts per unit volume terms between brackets (4.5) or $\mathrm{kg} \mathrm{m}^{-3}$
$c_{0} \quad$ concentration at source (4.25)
p. p. u. v. or $\mathrm{kg} \mathrm{m}^{-3}$
$\mathrm{c}_{\mathrm{c}} \quad$ concentration at jet, plume or cloud centre-line (4.28)
p. p. u. v. or $\mathrm{kg} \mathrm{m}^{-3}$
$\mathrm{C}_{\mathrm{r}}, \mathrm{C}_{\mathrm{g}} \quad$ peak concentration at maximum plume height and plume touch-down, respectively (4.85) p. p. u. v. or $\mathrm{kg} \mathrm{m}^{-3}$
$\mathrm{C}_{\max } \quad$ maximum concentration (Section 4.3.5.1)
p. p. u. v. or $\mathrm{kg} \mathrm{m}^{-3}$
$\mathrm{C}_{\text {mean }} \quad$ time-averaged concentration (Section 4.3.5.1)
$c_{p} \quad$ specific heat at constant pressure (4.1)
$C_{p, a}$
ambient specific heat at constant pressure (4.115)
$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
$C_{\text {lff }}, C_{\text {ufl }}$ lower and upper flammability concentration, respectively (4.66)
p. p. u. v. or kg m-3
d
particle diameter (4.4)
m
e albedo (4.37)
$\mathrm{E}_{\mathrm{gh}}$
ground heat (4.115)
phase change energy (4.115)
$\mathrm{Jm}^{-1} \mathrm{~s}^{-1}$
$\mathrm{Jm}^{-1} \mathrm{~s}^{-1}$
f( ) general function, to be defined in the text, of the terms between brackets
f Coriolis parameter (4.8) $\mathrm{s}^{-1}$
$f_{x}, f_{y}, f_{z} \quad$ drag term in down-wind, cross-wind and vertical direction, respectively
$\mathrm{kg} \mathrm{s}^{-2}$
F buoyancy flux factor (4.20)
$F_{0} \quad$ buoyancy flux factor at source (4.21)
$F_{d} \quad$ dry deposition flux (4.5)
$F_{n} \quad$ wet deposition flux (4.6)
$\mathrm{m}^{4} \mathrm{~s}^{-3}$
$\mathrm{~m}^{4} \mathrm{~s}^{-3}$
$\mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
$\mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$

| $\mathrm{F}_{\mathrm{x}}(.),. \mathrm{F}_{\mathrm{y}}(.),. \mathrm{F}_{\mathrm{z}}(.$. |  |  |
| :---: | :---: | :---: |
|  | expressions which account for along-wind, lateral, |  |
|  | and vertical dispersion, respectively (4.28) | $\mathrm{m}^{-1}$ |
| Fr | Froude number (4.17) | - |
| g | acceleration of gravity (4.1) | $\mathrm{m} \mathrm{s}^{-2}$ |
| $\mathrm{g}^{\prime}$ | effective gravity g. $\left(\rho-\rho_{\mathrm{a}}\right) / \rho_{\mathrm{a}}(4.20)$ | $\mathrm{ms}^{-2}$ |
| $\mathrm{g}_{0}{ }^{\prime}$ | effective gravity at source g. $\left(\rho_{o}-\rho_{\mathrm{a}}\right) / \rho_{\mathrm{a}}$ (section 4.3.5.1.) | $\mathrm{m} \mathrm{s}^{-2}$ |
| h | height of plume or cloud centre-line (4.11) | m |
| $\mathrm{h}_{\mathrm{i}}$ | mixing height (4.9) | m |
| $\mathrm{h}_{\mathrm{s}}$ | source height (4.86) | m |
| $\Delta h_{r}$ | final plume rise (4.84) | m |
| $\Delta h_{B}$ | plume rise due to buoyancy (4.88) | m |
| $\Delta h_{M}$ | plume rise due to momentum (4.92) | m |
| $\mathrm{H}_{0}$ | sensible heat flux (4.1) | $\mathrm{Jm}^{-2} \mathrm{~s}^{-1}$ |
| $\mathrm{H}_{\mathrm{r}}$ | net radiation heat flux (4.37) | $\mathrm{Jm}^{-2} \mathrm{~s}^{-1}$ |
| $\mathrm{H}_{\text {rs }}$ | incoming solar radiation (4.36) | $\int \mathrm{m}^{-2} \mathrm{~s}^{-1}$ |
| $\mathrm{H}_{\text {ri }}$ | isothermal net radiation heat flux (4.41) | $\mathrm{Jm}^{-2} \mathrm{~s}^{-1}$ |
| $\mathrm{H}_{\mathrm{g}}$ | ground heat flux (4.39) | $\mathrm{Jm}^{-2} \mathrm{~s}^{-1}$ |
| $\mathrm{H}_{\text {, }}$ | latent heat flux (4.39) | $\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ |
| $\Delta \mathrm{H}$ | heat of condensation (4.144b) | $\mathrm{J}^{\mathrm{kg}}{ }^{-1}$ |
| I | rain intensity (4.6) | mm per hour |
| K | reaction coefficient (4.3) | - |
| $\mathrm{k}_{\text {s }}$ | transfer coefficient (4.45) | - |
| L | M onin-O bukhov length (stability parameter) (4.1) | m |
| $L_{s}$ | constant | m |
| $L_{\text {b }}$ | buoyancy length-scale (4.101) | m |
| m | mass fraction of concentration (4.107) | $\mathrm{kg} \mathrm{kg}^{-1}$ |
| $M_{0}$ | momentum from source (4.17) | $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ |
| N | cloud cover (4.36) | - |
| p | (partial) pressure (4.142) | $\mathrm{Nm}^{-2}$ |
| $\mathrm{p}_{\mathrm{a}}$ | atmospheric pressure (4.143) | $\mathrm{N} \mathrm{m}^{-2}$ |
| $\mathrm{p}_{\mathrm{s}}$ | saturation pressure (4.143) | $\mathrm{Nm}^{-2}$ |
| q | mass flow rate (4.11) | $\mathrm{kg} \mathrm{s}^{-1}$ |
| Q | released mass (4.52) | kg |
| $r$ | radial distance (4.23) | m |


| R | gas constant (4.142) | $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ |
| :---: | :---: | :---: |
| S | coordinate along jet or plume |  |
|  | centre-line (4.16) | m |
| $\mathrm{S}_{1}$ | length-scale parameter (4.71) | m |
| $\mathrm{S}_{\text {fl }}$ | distance to LFL (4.80) | m |
| $S_{\text {h }}$ | maximum jet height (4.79) | m |
| $\mathrm{S}_{\mathrm{s}}$ | length of potential core (T able 4.10) | m |
| $\mathrm{S}_{0}$ | distance between real source and |  |
|  | virtual source (T able 4.10) | m |
| t | time (4.12) | S |
| $\mathrm{t}_{\mathrm{av}}$ | averaging-time (4.15) | S |
| $\mathrm{t}_{\text {min }}$ | minimum averaging-time (4.131) | S |
| $t_{L}$ | integral time-scale of atmospheric |  |
|  | turbulence (4.13) | S |
| $t_{i}$ | integral time-scale of dispersion (4.54) | S |
| $\mathrm{t}_{\mathrm{r}}$ | release duration (4.60) | S |
| $\mathrm{t}_{\mathrm{pk}}$ | time to peak concentration (4.155) | S |
| T | temperature (4.138) | K |
| $\mathrm{T}_{\mathrm{a}}$ | ambient temperature |  |
|  | (at screen height, about 2 m ) (4.1) | K |
| Tr | upper level ambient |  |
|  | temperature ( 50 m ) (4.41) | K |
| To | ambient temperature at |  |
|  | roughness height (4.40) | K |
| Ts | surface or sea temperature (4.40) | K |
| T w | wet bulb temperature |  |
|  | (at screen height) (4.45) | K |
| T* | turbulent temperature scale (4.34) | K |
| u | (down-wind) velocity of |  |
|  | dispersing material (4.18) | $\mathrm{m} \mathrm{~s}^{-1}$ |
| $u_{\text {a }}$ | ambient wind velocity (4.11) | $\mathrm{ms}^{-1}$ |
| $\mathrm{u}_{\mathrm{c}}$ | velocity at jet or plume centre-line (4.73) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $u_{0}$ | velocity at source (4.17) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $u_{y}, u_{z}$ | lateral and vertical velocity of dispersing material, respectively (4.18) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $\mathrm{u}_{*}$ | surface friction velocity (4.1) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $\mathrm{V}_{0}$ | initial volume flow rate (4.100) | $\mathrm{m}^{3} \mathrm{~s}^{-1}$ |
| $\mathrm{v}_{\mathrm{e}}$ | entrainment term (4.159) | $\mathrm{m}^{3} \mathrm{~s}^{-1}$ |
| V | cloud volume (4.25) | $\mathrm{m}^{3}$ |
| $\mathrm{V}_{0}$ | initial volume (4.25) | $\mathrm{m}^{3}$ |
| $\mathrm{W}_{\text {s }}$ | sedimentation velocity (4.4) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $w_{\text {d }}$ | deposition velocity (4.5) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $\mathrm{w}_{\mathrm{e}}$ | entrainment velocity (4.16) | $\mathrm{m} \mathrm{s}^{-1}$ |


| $\mathrm{w}_{\mathrm{e}, \mathrm{t}}$ | top entrainment velocity (4.23) | $\mathrm{m} \mathrm{s}^{-1}$ |
| :---: | :---: | :---: |
| $\mathrm{w}_{\mathrm{e}, \mathrm{e}}$ | edge entrainment velocity (4.23) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $\mathrm{w}_{\mathrm{e}, \mathrm{x}}$ | down-wind entrainment velocity (4.161) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $\mathrm{w}_{\mathrm{e}, \mathrm{y}}$ | cross-wind entrainment velocity (4.161) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $\mathrm{w}_{\mathrm{H}}$ | effective heat transfer velocity (4.136) | $\mathrm{m} \mathrm{s}^{-1}$ |
| x | down-wind horizontal coordinate | m |
| $x_{\text {b }}$ | shape parameter (4.168) | m |
| $\mathrm{X}_{\mathrm{c}}$ | down-wind distance to centre of mass of cloud (4.156) | m |
| $\mathrm{X}_{\text {If }}, \mathrm{X}_{\text {ufl }}$ | down-wind distance to lower and upper flammability level, respectively (4.66) | m |
| $\mathrm{x}_{\mathrm{u}}$ | upwind extension of a dense plume (4.101) | m |
| $\mathrm{x}_{\mathrm{r}}$ | distance to maximum plume rise (4.83) | m |
| $\mathrm{x}_{\mathrm{g}}$ | distance to plume touch-down (4.86) | m |
| $x_{v}, x_{v y}, x_{v z}$ | virtual distances to account for finite source dimensions during evaluation of plume size (4.68) | m |
| y | cross-wind horizontal coordinate (4.2) | m |
| $\mathrm{y}_{\text {If }}, \mathrm{y}_{\text {ufl }}$ | cross-wind distance to lower and upper flammability limit, respectively (4.65) | m |
| $y_{b}$ | shape parameter (4.147) | m |
| Z | vertical (upward) coordinate (4.2) | m |
| $\mathrm{z}_{\mathrm{b}}$ | shape parameter (4.147) | m |
| $\mathrm{Z}_{0}$ | surface roughness length (4.7) | m |
| $\mathrm{z}_{\text {S }}$ | constant (4.47) | m |
| $\mathrm{z}_{\text {If }}$ | height to lower flammability limit (4.65) | m |
| G reek symbols |  |  |
| $\alpha$ | moisture availability constant (4.38) | - |
| $\alpha_{1}$ | vapour mass fraction coefficient (4.138) | - |
| $\gamma$ | ratio of specific heat of air to latent heat of water divided by rate of change (derivative) of saturation specific humidity with temperature (4.38) | - |
| $\gamma_{1}$ | liquid mass fraction coefficient (4.138) | - |
| $\Gamma_{d}$ | dry adiabatic lapse rate (4.33) | $0.011 \mathrm{~K} \mathrm{~m}^{-1}$ |
| $\kappa$ | von K arman constant (4.1) | 0.4 |
| $\Lambda$ | wash-out coefficient (4.6) | $\mathrm{s}^{-1}$ per (mm per hour) |
| $\mu_{\mathrm{a}}$ | molar weight of dry air (4.108) | $\mathrm{kg} \mathrm{mol}^{-1}$ |
| $\mu_{\text {s }}$ | molar weight of dispersing material (4.108) | $\mathrm{kg} \mathrm{mol}^{-1}$ |


| $\mu_{\text {moist }}$ | molar weight of moist air (4.139) | $\mathrm{kg} \mathrm{mol}^{-1}$ |
| :---: | :---: | :---: |
| $v$ | kinematic viscosity (4.4) | $\mathrm{m}^{2} \mathrm{~s}^{-1}$ |
| $\rho$ | density (4.2) | $\mathrm{kg} \mathrm{m}^{-3}$ |
| $\rho_{\text {a }}$ | ambient density (4.1) | $\mathrm{kg} \mathrm{m}^{-3}$ |
| $\rho_{\mathrm{p}}$ | density of particle (4.4) | $\mathrm{kg} \mathrm{m}^{-3}$ |
| $\rho_{s}$ | density of dispersing material (4.141) | $\mathrm{kg} \mathrm{m}^{-3}$ |
| $\sigma$ | Stefan Boltzmann constant (4.37) | $5.67 .10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$ |
| $\sigma_{x}, \sigma_{y}, \sigma_{z}$ | down-wind, cross-wind and vertical dispersion parameters of cloud (4.11) | m |
| $\sigma_{y i}$ | dispersion parameter of instantaneous plume width (4.56) | m |
| $\sigma_{v}, \sigma_{w}$ | standard deviation of turbulent velocities in cross-wind and vertical direction, respectively (4.13) | $\mathrm{m} \mathrm{s}^{-1}$ |
| $\phi$ | conserved quantity (4.18) | arbitrary |
| $\varphi$ | earth's latitude (4.8) | ${ }^{\circ} \mathrm{N}$ |
| $\chi$ | solar elevation (4.36) | - |
| $\psi$ | earth's longitude (appendix 1) | ${ }^{\circ} \mathrm{W}$ |
| $\Psi$ | stability function (4.32) | - |
| $\Omega$ | earth's rotational speed (4.8) | $7.27 \cdot 10^{-5} \mathrm{~s}^{-1}$ |

$N$ ote: the numbers between brackets refer to equations.

## Glossary of terms

| adiabatic lapse rate | vertical temperature gradient in an atmosphere where the potential temperature gradient is zero |
| :---: | :---: |
| aerodynamic diameter | diameter of a spherical particle that has the same free-fall velocity as the arbitrarily shaped particle |
| aerosol | airborne particle |
| albedo | fraction of solar radiation that is reflected into space |
| ambient | surrounding atmosphere |
| atmospheric stability | the extent to which vertical temperature (= density) gradients promote or suppress turbulence in the atmosphere |
| Boussinesq approximation | approximation in the $N$ avier Stokes equation which considers density differences to be relevant for buoyancy only and not for momentum terms |
| buoyancy | the upward force (Archimedes force) that is caused by a cloud or plume in which the density is lower than the surrounding atmosphere |
| continuous release | release during a long time with a constant contaminant mass flow rate |
| dense gas | gas which has a higher specific weight than the surrounding ambient air |
| density | specific weight |
| deposition | absorption of gas or particles by the ground or vegetation |
| dispersion | mixing and spreading of gases in air, which causes clouds to grow |
| dispersion coefficient | standard deviation of the concentration profile in a cloud in one direction (lateral, i.e. cross-wind, vertical along-wind) |
| eddy | random vortex motion in turbulence |


| eddy diffusivity | apparent diffusivity due to turbulence, which acts like a molecular diffusivity in diffusing mass or momentum |
| :---: | :---: |
| ensemble | set of dispersion situations which are described by nominally the same initial and boundary conditions. Differences which occur within an ensemble are due to (turbulent) randomness |
| entrainment | mixing of (clean) air into a cloud or plume |
| flammable limits | concentration which is either the LFL or UFL |
| friction velocity | by definition the cube root from (minus) the shear stress at the surface |
| gravity spreading | the horizontal spreading of a dense gas cloud on the ground due to the hydrostatic force which is a result of the density difference |
| integral time-scale | time-scale which can be calculated by integrating (over time lag) the autocorrelation function of a turbulent quantity (i.e. velocity) |
| instantaneous release | release during which in a (very) short time a (large) amount of gas is released |
| K arman constant | proportionality constant appearing in the relation between velocity gradient and shear stress for turbulent flow near a rough surface |
| kinematic viscosity | viscosity divided by fluid density |
| LFL | lower flammability limit, below this concentration too little flammable gas is present in the air to maintain combustion |
| mixed layer | layer below the mixing height |
| mixing height | height of the turbulent boundary layer over the ground |
| M onin-O bukhov length | length-scale which characterises the atmospheric stability |
| $N$ avier Stokes equations | momentum balance equations for movements in fluids |
| neutral atmosphere | atmosphere where potential temperature is constant with height |


| partial pressure | fraction of total pressure due to the presence of a <br> gas; total pressure is the sum of all partial <br> pressures of the gases present in a mixture |
| :--- | :--- |
| passive dispersion | dispersion solely caused by atmospheric <br> turbulence |
| phenomenological models | models which present an empirical relation <br> between initial and boundary conditions and <br> observed phenomena, without tempting to <br> describe the physical relationships |
| precipitation | rain, snow, etc. |
| pure jet | jet which is only driven by momentum |
| plume which is only driven by buoyancy |  |


| semi-continuous | release with a constant contaminant mass flow <br> rate during a finite time |
| :--- | :--- |
| shear | vertical velocity gradient |
| shear stress | stress exerted by the wind on the ground surface <br> due to friction |
| specific humidity | humidity expressed as mass fraction of water <br> vapour in air |
| stable | atmosphere where potential temperature <br> increases with height |
| still air without detectable wind speed or direction |  |
| turbulence | random motions in a fluid due to instabilities of <br> a large-scale flow |
| two-phase flow | flow in which two phases are present, e.g. gas and <br> liquid droplets or liquid with gas bubbles |
| UFL flammability limit, above this |  |

## Table of contents Chapter 4

Modifications to Chapter 4, Vapour Cloud Dispersion ..... 3
List of symbols Chapter 4 ..... 5
Glossary of terms ..... 11
4 Vapour cloud dispersion ..... 17
4.1 Introduction ..... 17
4.2 The phenomenon of dispersion ..... 19
4.2.1 Introduction to Section 4.2 ..... 19
4.2.2 Atmospheric turbulence and dispersion ..... 19
4.2.3 Atmospheric stability ..... 21
4.2.4 Passive dispersion ..... 23
4.2.5 Jets and plume rise ..... 24
4.2.6 Dense gas dispersion ..... 24
4.2.7 Some other aspects of dispersion ..... 25
4.3 G eneral overview of existing models. ..... 29
4.3.1 Introduction to Section 4.3 ..... 29
4.3.2 M odels to describe atmospheric stability and atmospheric parameters ..... 29
4.3.3 M odels to describe passive dispersion ..... 32
4.3.4 The modelling of turbulent jets and plumes ..... 35
4.3.5 The modelling of dense gas dispersion ..... 42
4.4 Selection of models ..... 52
4.4.1 Introduction to Section 4.4 ..... 52
4.4.2 Schemes for atmospheric stability categories and meteorological data. ..... 52
4.4.3 Selection of models for passive dispersion ..... 53
4.4.4 Selection of models for jets and plumes ..... 54
4.4.5 Selection of dense gas dispersion models ..... 55
4.5 D escription of models ..... 57
4.5.1 Introduction to Section 4.5 ..... 57
4.5.2 M odels to determine atmospheric stability and vertical variation of wind speed ..... 59
4.5.3 Passive dispersion ..... 69
4.5.4 M odels for jets, plumes and plume rise ..... 79
4.5.5 Dense gas dispersion models ..... 86
4.6 Application of selected models: calculation examples ..... 111
4.6.1 Introduction to Section 4.6 ..... 111
4.6.2 Examples of stability calculations ..... 111
4.6.3 Application of the Gaussian plume model ..... 113
4.6.4 The application of models for jets and plumes ..... 118
4.6.5 The application of dense gas dispersion models ..... 121
4.7 D iscussion ..... 130
4.7.1 Introduction to Section 4.7 ..... 130
4.7.2 Changes in atmospheric conditions. ..... 130
4.7.3 Still air ..... 130
4.7.4 Accuracy of the $G$ aussian plume model ..... 130
4.7.5 Dispersion over obstacles ..... 131
4.7.6 C oncentration fluctuations ..... 131
4.7.7 Removal processes ..... 132
4.8 Literature ..... 133

A ppendix 4.1 A method for estimating the solar elevation

## 4 Vapour cloud dispersion

## $4.1 \quad$ Introduction

H azardous material that is released in the atmosphere will be transported and diluted by the wind. This chapter will provide models that enable the prediction of this transportation and dilution process for various release scenarios and conditions. The output of these models are concentrations (as a function of time) at any location surrounding the release (up to several kilometres). M oreover, the total amount of hazardous material in a flammable vapour cloud between the upper and lower flammability limits will be predicted.

Dispersion will be restricted to dispersion within the atmospheric mixed layer in a stationary state. This means that down-wind distances are restricted to typically 10 km.

The input of the models described herein will be the results of the source term model, described in chapters 2 (Outflow and spray release) and 3 (Evaporation). Once the cloud, plume or jet interacts with the ambient air the dispersion processes described in this chapter are to be applied.

The Sections 4.2 through 4.5 in this chapter will each address all of the four main themes of this chapter viz. atmospheric stability; passive dispersion; jets, plumes, and plume rise; and dense gas dispersion. H owever, each section will treat the topics with a different aim:

Section 4.2 provides the essential and basic understanding of the phenomena of interest. It provides information on atmospheric turbulence in general, and addresses shortly some topics beyond the main themes, viz. deposition, chemical reactions and obstacle effects.

Section 4.3 provides a general overview of the currently available methods and models for the main themes, which enable quantified analysis. It includes some physical/mathematical background to models. The aim of the section is also to position the models selected for detailed description among other existing models.

Section 4.4 presents the considerations which led to the selection of models which are found to be acceptable for use and which are selected for detailed description.

Section 4.5 provides the detailed and complete description of the selected models. Whenever calculations or analyses have to be made, all necessary information can be found in this chapter. It is recommended to read the considerations presented in section 4.7 concerning validity and applicability of the models, before stating the calculations.

Section 4.6 gives examples of the use of the models presented in section 4.5.

Finally, section 4.7 provides some information on general restrictions on the use of models. It includes in some cases suggestions regarding methods to overcome these restrictions or it recommends alternative approaches.

### 4.2 The phenomenon of dispersion

### 4.2.1 Introduction to Section 4.2

This section provides the essential and basic understanding of the phenomenon of dispersion.

- Section 4.2.2 introduces atmospheric turbulence and dispersion.
- Section 4.2.3 explains atmospheric stability and the important parameters that describe stability.
- Section 4.2.4 describes the origin and effects of jets and plume rise.
- Section 4.2.6 describes the basic phenomenon of dense gas dispersion.
- Section 4.2.7 discusses some topics related to dispersion, viz. heat transfer, chemical reaction, deposition and effects of obstacles.


### 4.2.2 Atmospheric turbulence and dispersion

T he lower part of the atmosphere in which the releases take place is called the mixed layer. The height of the mixed layer (the mixing height) varies mostly between 200 and 2000 m . The wind flow in this mixed layer is almost always turbulent, i.e. the movement of the air fluctuates continuously in velocity and direction due to the presence of eddies. T hese turbulent eddies are very effective in dispersing material through the air, a factor of at least 1000 more effective than molecular diffusion.

T urbulent flows are generally described in statistical terms, i.e. by a time-averaged mean velocity and a time-averaged standard deviation of velocity fluctuations around this mean value.

Even for still-air, stable conditions turbulence is present due to temperature differences in the atmosphere which cause movements of air.
According to H anna [1990], the standard deviations of horizontal turbulent velocities are not lower than $0.5 \mathrm{~m} / \mathrm{s}$ ( with a scatter of $\pm 0.3 \mathrm{~m} / \mathrm{s}$ ).

T urbulence is generated in two ways viz.:

1. M echanically through the resistance of the earth's surface on the wind. This causes a decrease of wind speed to the surface (velocity gradient or shear). This shear causes turbulence due to flow instabilities, and a downward turbulent flux of momentum to compensate the resistance force. T he wind shear depends mainly on the upper wind speed and the surface roughness.
2. Thermally due to heating of the surface (mainly by the sun). H ot patches of air near the surface start to rise. T his causes an upward turbulent flux of heat.

Without any generation of turbulence, turbulence will die due to viscous dissipation. M uch more important in the atmosphere is the suppression of turbulence in steadily
stratified layers of air, i.e. in layers in which temperature increases upwards. Vertical movements of air are suppressed.

An important aspect of atmospheric turbulence is the large range of sizes of the turbulent eddies, from several hundreds of metres diameter down to millimetres. T he different sizes of eddies act differently in diffusing a puff of gas, see F igure 4.1.
T urbulent eddies smaller than the size of the puff will uniformly disperse material and increase the size of the puff (Figure 4.1a). Turbulent eddies much larger than the size of the puff will only displace the puff without changing its size or geometry (Figure 4.1b). Eddies comparable to the size of the puff will change its geometry and increase its contour (Figure 4.1c). These aspects are also relevant to the understanding of concentration fluctuations. At a certain position one will observe fluctuations of concentrations due to meandering of the whole puff, and due to deformation of the puff. The concentration fluctuations are suppressed by small eddies within the puff.
As the puff grows, it is apparent that the number of eddies contributing to meandering will decrease, whereas 'sub-puff' eddies will contribute more and more to dispersion. The nature of turbulent dispersion changes during the life-time of the puff.




Figure 4.1 Dispersion of a puff of material under three turbulence conditions:
(a) Puff embedded in a field in which the turbulent eddies are smaller than the puff.
(b) Puff embedded in a field in which the turbulent eddies are larger than the puff.
(c) Puff embedded in a field in which the turbulent eddies are comparable in size to the puff [Seinfeld, 1986]

The concepts are also applicable to continuous releases of gas (or aerosol). For continuous releases there is a problem of defining an appropriate averaging-time for determining concentration and plume size. An instantaneous picture of a continuous release will show the effect of individual large eddies displacing the plume centre-line, see Figure 4.2, the instantaneous concentration distribution. If one observes the subsequent action of a number of eddies, the time-averaged concentration distribution will show a Gaussian distribution (Figure 4.2, the 10-min or 1-hour averaged concentration distribution). If there is a maximum size of turbulent eddies, one will be able to define an averaging-time beyond which no change of the averaged concentration distribution can be observed. This is the case for eddies in the vertical plane, as the eddies need to be smaller than the mixing height. H owever, in the horizontal direction no such limit exists: the wind direction will change continuously. T his means that the horizontal cross-wind size of a plume will be ever increasing with increasing averaging-time. This implicates that for any model for prediction of concentration an indication of averaging-time is necessary. The specification of an averaging-time is also relevant from a point of view of consequences: some consequences occur at very small-time-scales, almost instantaneously, (e.g. vapour cloud combustion) at time-scales of human inhalation (toxicity) up to tens of minutes (deposition at ground).


Figure 4.2 Plume boundaries (left) and concentration distributions (right) of a plume at different averaging-times [Seinfeld, 1986]

The inherent variability of turbulence and turbulent diffusion should be kept in mind when assessing model predictions of atmospheric dispersion. In fact, models (try to) predict an ensemble-average puff or plume, i.e. the averaged puff or plume from a large number of releases under nominally similar conditions.

### 4.2.3 Atmospheric stability

When an airpatch moves from the surface upwards it will expand as pressure decreases. Due to expansion the temperature of the airpatch will decrease. T he temperature of a parcel which has been brought adiabatically to ground level is called potential temperature. When the airpatch has the same temperature as its surroundings during its travel upwards, the atmospheric stability is referred to as neutral: no forces due to density differences (originating from temperature
differences) are exerted on the patch. If the temperature of the airpatch becomes lower than its surroundings, the atmosphere is stable; the airpatch is forced downward. If on the contrary the temperature becomes higher than its surroundings, the atmosphere is unstable: the airpatch will accellerate upwards.

The vertical gradients of temperature are illustrated in Figure 4.3. From thermodynamics one calculates the dry adiabatic lapse rate to be $-0.01 \mathrm{~K} / \mathrm{m}$. F or saturated air, the condensation of water vapour reduces the cooling of the air and the decrease of temperature with height is less. T his is the wet adiabatic lapse rate. For surface temperatures of about 290 K , the wet adiabatic lapse rate is about $-0.005 \mathrm{~K} / \mathrm{m}$. (D ue to the change of saturation pressure, the difference between the dry and wet adiabatic lapse rate is larger at higher temperatures.) F or temperature gradients between the two, the atmosphere is stable for dry air and unstable for saturated air. This regime is called conditionally unstable.


Figure 4.3 Temperature gradients and stability regimes in the atmosphere

D uring unstable conditions there is a heat flux from the surface upwards (this occurs as the surface is heated by the sun). During stable condition the heat flux is downwards (the surface is cooled at night by heat radiation to the sky). T he stability of the mixed layer is determined by the ratio of turbulence generated by the temperature gradient and the turbulence generated mechanically by wind shear at the surface. This ratio can be expressed by a characteristic length-scale, the M oninObukhov length, which is defined as:

$$
\begin{equation*}
L=-\frac{\rho_{\mathrm{a}} \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{\mathrm{a}} \mathrm{u}_{*}^{3}}{\kappa g \mathrm{H}_{\mathrm{o}}} \tag{m}
\end{equation*}
$$

The friction velocity $u_{*}$ is by definition the square root of the shear stress divided by the density of air at the surface. $\mathrm{H}_{0}$ is the sensible heat flux (see Section 4.5.2). In (4.1) $\rho_{\mathrm{a}}, \mathrm{C}_{\mathrm{p}}$, and $T$ are the density, specific heat, and near surface temperature of the air, respectively. $\kappa$ is the so-called Von $K$ arman constant ( $\kappa \approx 0.4$ ) and $g$ the gravitational acceleration.
The M onin-Obukhov length provides a measure of stability of the mixed layer. L can be interpreted as the height above the ground where turbulence generated by wind shear equals the turbulence dissipated by the heat flux. In unstable conditions there is not such an equilibrium, and this length is negative:
$L>0$ stable $\left(H_{0}<0\right)$
$\mathrm{L}<0$ unstable ( $\mathrm{H}_{0}>0$ )
$L=\infty$ neutral $\quad\left(H_{0}=0\right)$

Table 4.1 Interpretation of the Monin-Obukhov length $L$ with respect to atmospheric stability

| L |  | Stability condition |
| :--- | :---: | :--- |
| Small negative | $-100 \mathrm{~m}<\mathrm{L}<0$ | Very unstable |
| Large negative | $-10^{5} \mathrm{~m} \leq \mathrm{L} \leq-100 \mathrm{~m}$ | Unstable |
| Very large (positive or negative) | $\|\mathrm{L}\|>10^{5} \mathrm{~m}$ | Neutral |
| Large positive | $10 \mathrm{~m} \leq \mathrm{L} \leq 10^{5} \mathrm{~m}$ | Stable |
| Small positive | $0<\mathrm{L}<10 \mathrm{~m}$ | Very stable |

Qualitative schemes to characterise stability are often used, e.g. the Pasquill scheme, which rates from class A (unstable) through D (neutral) to F (stable). M ethods to determine atmospheric stability and the relation with the Pasquill scheme are described in Section 4.3.2.

### 4.2.4 Passive dispersion

Situations where the dispersion of a puff or cloud of material is governed solely by the atmospheric turbulence are called passive dispersion. The state of the atmosphere is not changed by the presence of the material in the air.
Assuming homogeneous turbulence and wind speed (i.e. the turbulence and wind speed are the same at all locations in the air) one can derive that the concentration distribution of an initially small puff of material becomes Gaussian in shape. In practice it appears that one observes a $G$ aussian distribution of concentration in very many occasions. M any dispersion models are based on this Gaussian distribution; these will be discussed in more detail in Section 4.3.3.

### 4.2.5 Jets and plume rise

### 4.2.5.1 Jets

Gases which are released with high velocity will cause jets. As long as the velocity inside the jet is high compared to velocities in the ambient air, the extent and mixing in the jet is only affected by the properties of the jet itself.
The velocity difference between the jet and the (assumed quiescent) surrounding air generates fine scale turbulence which causes the jet to spread sideways. The velocity in the jet reduces (about inversely proportional to the distance to the point of release). Finally the velocity will be reduced to such extent that passive dispersion takes over.

M odels for free jets in still air and jets in cross-flow (wind) are discussed in Sections 4.3.4.1 and 4.3.4.2 respectively.

### 4.2.5.2 Plume rise

$M$ aterial released in the atmosphere may rise because:

1. the material is less dense (buoyant) compared to the surrounding air and/or
2. the material contains upward momentum.

Theoretically, in a neutrally or unstably stratified atmosphere, the material will rise indefinitely. However, due to mixing, the volume over which buoyancy and/or momentum is distributed increases, and this causes the rate of plume rise to decrease rapidly. When vertical motion of the plume is of the same magnitude as the turbulent motion of the plume one assumes the plume or puff to be at its final height.

In case the atmosphere is steadily stratified, there is a height at which the released material, taking into account mixing during plume rise, will be in equilibrium with the density of the air at that height, which then is assumed to present the final plume rise.

After the plume has reached final plume rise, dispersion may be assumed to be passive.
For continuous releases from small source areas (stacks, vent pipes) a large number of models for plume rise exist. T hese will be discussed in Section 4.3.4.2 to 4.3.4.3.

### 4.2.6 Dense gas dispersion

Releases of material denser than the ambient air introduce some special effects which affect the dispersion.
The released material will descent to the surface and, once on the ground, spread radially under influence of the gravitational forces. T his self-induced flow produces a shallow cloud with increased horizontal extent. At the front of the so-called 'gravitycurrent' a head will develop with a strong vorticity (see Figure 4.4). This velocity field is deterministic in nature and will replace, for the duration of the gravity spreading,
the random atmospheric turbulence. The self-induced flow will increase mixing, especially just behind the gravity head.

After gravity spreading has finished, the vertical variation of density in the cloud will cause a stable stratification in the cloud which reduces dispersion in vertical direction. Finally the effects of density will be dispersed and negligible and dispersion will become passive.

Dense gas dispersion models will be discussed in Section 4.3.5.


Figure 4.4 Gravity spreading of a dense gas cloud

### 4.2.7 Some other aspects of dispersion

In this section some aspects of dispersion are discussed that will not be discussed separately or in detail in the remainder of this chapter. T hese are: heat transfer, chemical reactions, deposition, and obstacle effects.

### 4.2.7.1 Heat transfer and change of buoyancy

Often the total buoyancy in a cloud, either negative (dense cloud) or positive, remains constant during the dispersion process. T his is referred to by saying buoyancy is conserved.
F or an instantaneous release this can be expressed as:

$$
\begin{equation*}
\iiint_{\text {all space }}\left\{\rho(x, y, z)-\rho_{\mathrm{a}}(z)\right\} d x d y d z=\text { constant } \tag{kg}
\end{equation*}
$$

Here, $\rho(x, y, z)$ denotes the density in the cloud and $\rho_{a}(z)$ denotes the density of the ambient air at the same height.

H owever, some processes in the cloud may change the total buoyancy:

- heat transfer from the surface to the cloud;
- vaporisation of liquid aerosol in the cloud;
- condensation and evaporation of water vapour aerosol in the cloud;
- chemical reactions which change the number of moles and/or which are endothermic or exothermic.

Heat transfer from the surface is relevant to cold plumes, originating e.g. from releases of cryogenic gases. The warm surface heats the cold gas, which can change from negatively buoyant to positively buoyant, causing the cloud to lift from the ground.
Depending on the velocity of the cloud over the surface and the temperature difference, heat transfer is dominated by forced convection or by free convection. F or forced convection, the heat flux from the surface is about proportional to the friction velocity and the temperature difference. For free convection, the heat flux is independent of velocity and about proportional to the temperature difference to the power 4/3 rd.

Vaporisation of liquid aerosol, during releases of e.g. pressurised liquified gases, will cool down the air/gas mixture in the cloud, increasing its negative buoyancy.

The ambient air contains always some water vapour. For releases of cold material, the water vapour mixed into the cloud may condensate, thereby increasing the buoyancy. At a later stage, the condensed water may well evaporate again, cooling down the cloud, but these effects often happen at a distance or travel time from the release, where density effects are no longer relevant.

If the released material reacts with components in the air during which the number of molecules change, the total buoyancy is no longer conserved. If the number of molecules decreases, the cloud will become denser and vice versa. T he heat produced or required by the chemical reaction will change the total buoyancy as is the case with condensation or evaporation of water.

### 4.2.7.2 Chemical reactions

Chemical reactions will also convert the initialy released substance into another secondary substance. From a point of view of hazards one might be interested in the primary substance or in the secondary.
In general, a reaction of the form

$$
A+B \rightarrow C+D
$$

is controlled by a reaction constant K which determines equilibrium between the substances $A, B, C$ and $D$ :

$$
\begin{equation*}
K=\frac{[\mathrm{A}][\mathrm{B}]}{[\mathrm{C}][\mathrm{D}]} \text { (K can be zero or infinite) } \tag{-}
\end{equation*}
$$

([A], [B], etc, denote concentrations of the substances $A, B$, etc.)

Local deviations from equilibrium are due to finite reaction rates and, relevant near the release, to concentration fluctuations inside the cloud.

### 4.2.7.3 Deposition

$M$ aterial can be removed from the cloud by deposition of material on the ground. One may discriminate the following deposition mechanisms:

- sedimentation of aerosols;
- dry deposition of gases and aerosols at the surface;
- wet deposition by precipitation (rain, snow) of gases and aerosols from the cloud.

All particles in the air have a finite sedimentation velocity. The sedimentation velocity $\mathrm{w}_{\mathrm{s}}$ can be approximated by Stokes law:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{s}}=\frac{1}{18} \mathrm{~d}^{2} \mathrm{~g} \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{a}} v} \tag{4.4}
\end{equation*}
$$

H ere $d$ is the (aerodynamic) diameter of the particle and $\rho_{p}$ the specific density of the particle, $\rho_{\mathrm{a}}$ the density of air, g is gravitational acceleration, and $v$ is the kinematic viscosity of air.
In practice one may assume that the sedimentation velocity of particles smaller than $10 \mu \mathrm{~m}$ diameter ( $\mathrm{w}_{\mathrm{s}}<0.02 \mathrm{~m} / \mathrm{s}$ ) is negligible, and that dispersion of these particles is similar to dispersion of gas.

Dry deposition of aerosols and gases can be described as a deposition flux $F_{d}$ which is the product of a deposition velocity $\mathrm{w}_{\mathrm{d}}$ and a concentration c at some reference height above the surface.

$$
F_{d}=w_{d} c \quad\left(\mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)
$$

The deposition velocity is the inverse of the sum of three resistances; viz. an aerodynamic resistance dominated by turbulence and stability of the atmosphere between the surface and the reference height; a resistance which is caused by the flow around structures at the surface (surface induced resistance), dominated by the friction velocity and surface roughness, and a surface resistance, which depends on the properties of the substance (e.g. solubility in water) and the type of surface (vegetation).
The aerodynamic resistance can change from about $1000 \mathrm{~s} / \mathrm{m}$ (stable conditions, smooth surface and low wind speed) down to 3 (high-wind speed, rough surface).
Typical values for the surface induced resistance are in the order of $10 \mathrm{~s} / \mathrm{m}$. Surface resistances can vary from order of 10 to more than $1000 \mathrm{~s} / \mathrm{m}$.

Wet deposition only occurs during precipitation, but it can be much more effective than dry deposition. Wet deposition can be described by a wash-out
coefficient $\Lambda\left(\mathrm{s}^{-1}\right.$ per mm precipitation per hour) ${ }^{1)}$ and an intensity of precipitation I $(\mathrm{mm} / \text { hour })^{1)}$. T he wet deposition flux $\mathrm{F}_{\mathrm{n}}$ can be written as:

$$
\mathrm{F}_{\mathrm{n}}=\Lambda I \int_{\text {surface }}^{\text {cloudheight }} \mathrm{C}(\mathrm{z}) \mathrm{dz} \quad\left(\mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)
$$

Here, $c(z)$ is the concentration in the cloud. For aerosol $\Lambda I$ is typically $4 \cdot 10^{-4} \mathrm{~s}^{-1}$ for a precipitation of 1 mm per hour.

### 4.2.7.4 Obstacle effects

Dispersion over flat terrain with homogeneous roughness of which the individual roughness elements are smaller than the height of the cloud is rather well understood. The flow and dispersion around individual obstacles or arrays of obstacles is difficult to describe and to quantify in a general way (for a number of specific situations approximate solutions have been found).
O bstacle effects however are important. A rule of thumb to estimate when to account for obstacles is that the smaller value of height or width (in cross-wind direction) is larger than 0.5 to 1 . times the local cloud height.
Behind obstacles a so-called recirculation zone exists. T his zone may extend to about 10 times the obstacle height [D uijm and W ebber, 1993]. D ue to increased turbulence in the wake of the obstacle, the maximum groundlevel concentration down-wind of the recirculation is lower than in the absence of the obstacle. N earer to obstacles no general trend can be indicated: an increase of concentration is possible and increases by a factor of 2 have been reported.

[^3]
### 4.3 General overview of existing models

### 4.3.1 Introduction to Section 4.3

Section 4.3 provides an overview of methods and models used for dispersion calculations. It presents alternative methods and provides short descriptions of the contents of the main types of models in a general way.
In this section the following themes are discussed:

- Section 4.3.2 presents atmospheric stability schemes and methods to predict characteristics of the atmosphere.
- Section 4.3.3 presents passive dispersion models with emphasis on the Gaussian plume models.
- Section 4.3.4 presents models for jets and plumes in still air and in ambient wind, and simple models for plume rise.
- Section 4.3.5 presents various types of dense gas dispersion models.


### 4.3.2 Models to describe atmospheric stability and atmospheric parameters

### 4.3.2.1 Atmospheric stability classifications

All models used to describe or predict atmospheric dispersion need information about the stability of the atmosphere, mainly to define the rate at which the material is passively dispersed by atmospheric turbulence. This information can be obtained through various methods:

- Direct measurement of the intensity of wind direction fluctuations in lateral and vertical direction [E rbrink, 1991]. This method requires measurements which are not routinely carried out. The link with alternative schemes (e.g. the Pasquill scheme, see below) is difficult. H owever, the results can be directly applied to calculate the dispersion parameters (plume widths) for the Gaussian plume model.
- Classification of horizontal wind direction traces as defined by Singer and Smith 71953], the so-called Brookhaven Gustiness Classes, changing from Class A (unstable) to Class D (stable). It is not clear whether this scheme can represent stability adequately over different types of terrain and different climates.
- Classification of atmospheric stability from routine meteorological data, such as the well-known Pasquill scheme [Pasquill and Smith, 1983] which is based on observations of wind speed, cloud cover and time of day. T he Pasquill scheme is currently the most applied scheme.
- Direct measurement of friction velocity $u_{*}$ and $M$ onin-Obukhov lenght $L$, which provides an unambiguous measure of stability in the lower part of the atmospheric boundary layer (see Section 4.2.2). These measurements are not routinely carried out. T he link to e.g. the Pasquill scheme can be made.
- Calculation of friction velocity and $M$ onin-Obukhov length from routine meteorological data and terrain specification as by H oltslag, N ieuwstadt and V an U Iden [H oltslag, 1984; van U Iden and H oltslag, 1985; H oltslag and N ieuwstadt, 1986; H oltslag and de Bruin, 1987; H oltslag, 1987]. The link to the Pasquill scheme can be made.

M ost widely-used dispersion models make use of the Pasquill stability categories (A-unstable to F -stable) and parametrisations of the local lateral and vertical plume width ( $\sigma_{y}$ and $\sigma_{z}$ ) corresponding to Pasquill-Gifford, Briggs, Smith, etc. (see e.g. Seinfeld [1986], pp 577).

H owever, better results can be obtained if the qualitative schemes are exchanged in favour of schemes using quantifications of physical parameters of the boundary layer (such as roughness length $z_{0}$, heat flux $H_{0}$, friction velocity $u_{*}$, and $M$ onin-Obukhov length L).
A complete scheme using routinely meteorological data has been developed by H oltslag, N ieuwstad and Van U Iden. The scheme is based on providing an estimate of the surface heat budget, i.e.:

$$
\begin{gathered}
\text { sensible heat flux + latent heat flux + heat flux into the soil = } \\
\text { net radiation }= \\
(1-\text { albedo }) * \text { solar radiation }+ \text { incoming long wave radiation } \\
\text { - outgoing long wave radiation }
\end{gathered}
$$

The sensible heat flux determines the stability of the atmosphere. H oltslag's scheme provides methods of estimating all terms in the equation above based on routinely available data and information of the local situation (e.g. surface roughness, albedo and solar elevation). H oltslag's scheme is described in Section 4.5.2.

It is possible to link the Pasquill stability scheme to the M onin-Obukhov length depending on local surface roughness by a graph proposed by G older [1972]. This method is included in Section 4.5.2 (see Figure 4.11).

The stability over extended water surfaces (seas) depends mainly on the temperature differences between the air and the water. F rom the temperature difference one can compute the sensible heat flux which, together with the friction velocity, determines stability. H su [1992] developed a simple scheme (nomogram) to relate the stability in terms of M onin-O bukhov length and Pasquill classes to the temperature difference between the water surface and the air and the wind speed, which are routinely available data, see Section 4.5.2.4 and Figure 4.12.

### 4.3.2.2 Other atmospheric characteristics

Almost all characteristics of the mixing layer can be expressed in terms of stability parameters (friction velocity $u_{*}$ and $M$ onin-Obukhov length L). Quantities relevant to dispersion are:

- vertical variation of wind speed;
- vertical variation of standard deviations of turbulent velocities in cross-wind and vertical direction ( $\sigma_{v}$ and $\sigma_{w}$ respectively);
- mixing height.
$V$ ariation of wind speed
The vertical variation of wind speed is often approximated by a power law. Alternatively, wind speed $u_{a}$ can be described by relations which follow from similarity theory in the surface layer:

$$
\begin{equation*}
u_{\mathrm{a}}(z)=\frac{u_{*}}{\kappa} f\left(z / z_{0}, z / L\right) \tag{4.7}
\end{equation*}
$$

Here $f\left(z / z_{0}, z / L\right)$ is an empirical function, $u_{*}$ the friction velocity and $\kappa$ the Von K arman constant. This relation is adequate up to a height of about 100 m above which the vertical variation of wind speed can be neglected. W ell-known suggestions for the function f are from Businger and D yer and Bradley and can be found in the text books Pasquill and Smith [1983], Seinfeld [1986], Panofsky and D utton [1984], and Stull [1988]. M ore details can be found in Section 4.5.2.

T urbulence parameters
Values for standard deviations of turbulent velocities in the surface layer are provided by Panofsky and Dutton [1984]. Proposals for formulae describing the vertical variation of these quantities can be found in Gryning et al. [1987], Seinfeld [1986] and Stull [1988]. M ore information is provided in Sections 4.4.2 and 4.5.2.
$M$ ixing height
The mixing height depends on:

- height of inversion layers;
- surface friction velocity;
- M onin-Obukhov length;
- latitude of position on earth.

T he height of inversion layers is very often dominated by advection of large-scale air masses in which these inversion layers are present. T hese have little relation with the local situation of the mixing layer at any given moment. In The N etherlands the mixing height is dominated by these inversion layers about one third of the time. This situation will be different in other areas, depending on location on earth, proximity to seas and oceans, etc.

If no inversion layers are present, one might estimate the local mixing height from $u_{*}$, $L$ and the Coriolis parameter $f$, which is defined as:

$$
\begin{equation*}
f=2 \Omega \sin \varphi \tag{-1}
\end{equation*}
$$

with $\Omega$ the earth rotation ( $7.27 .10^{-5} \mathrm{~s}^{-1}$ ) and $\phi$ the latitude of position on earth (about $51^{\circ}$ for T he N etherlands).
For purely neutral conditions, the mixing height can be calculated as (see e.g. Panofsky and Dutton, [1984]):

$$
\begin{equation*}
\mathrm{h}_{\mathrm{i}}=0.2 \mathrm{u}_{*} / \mathrm{f} \tag{m}
\end{equation*}
$$

For stable conditions one may write for stationary conditions [Panofsky and D utton, 1984, Pasquill and Smith, 1983]:

$$
\begin{equation*}
h_{i}=0.4 \sqrt{\frac{u_{*}}{f} L} \tag{m}
\end{equation*}
$$

N o stationary solution exists for the mixing height in unstable conditions. The mixing height at a certain time of day can be calculated from the vertical temperature profile at sunrise and the time integrated heat flux since sunrise.

Statistical information about mixing heights can also be estimated from meteorological data. This information accounts for the effects of elevated inversions, but it can not be applied to all positions on earth. F or calculations involving unstable conditions without information of time, this is the only applicable method.
Suggestions for mixing height predictions, based on statistical meteorological information and formulae (4.9) and (4.10) above, are presented in Section 4.5.2.

### 4.3.3 Models to describe passive dispersion

Passive dispersion is governed by atmospheric turbulence. Atmospheric turbulence is determined by the stability of the atmosphere and the height above the surface. Gryning et al. [1987] have defined scaling regions in the atmosphere (Figure 4.5).

Gaussian plume models have been used extensively for all regions mentioned in Figure 4.5. The basic expression for the Gaussian plume model for a continuous release is:

$$
\begin{equation*}
c(x, y, z)=\frac{q}{2 \pi u_{a} \sigma_{y} \sigma_{z}} \cdot \exp \left(-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) \cdot \exp \left(-\frac{(h-z)^{2}}{2 \sigma_{y}^{2}}\right) \quad\left(\mathrm{kg} \mathrm{~m}^{-3}\right) \tag{4.11}
\end{equation*}
$$



Figure 4.5 The scaling regions of the atmospheric boundary layer shown as function of the dimensionless height $z / h_{i}$, and the stability parameter $h_{i} / L$. A detailed discussion can be found in Holtslag and Nieuwstadt [1986]. When used to determine dispersion regions, the dimensionless height is replaced by $h / h_{i}$ where $h$ is the source height.

The equivalent expression for an instantaneous release is written as:

$$
\begin{align*}
c(x, y, z, t)= & \frac{Q}{(2 \pi)^{3 / 2} \sigma_{x} \sigma_{y} \sigma_{z}} \cdot \exp \left(-\frac{\left(x-u_{\mathrm{a}} \cdot t\right)^{2}}{2 \sigma_{x}^{2}}\right) \cdot \exp \left(-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) . \\
& \exp \left(-\frac{(\mathrm{h}-\mathrm{z})^{2}}{2 \sigma_{z}^{2}}\right) \tag{4.12}
\end{align*} \quad\left(\mathrm{kg} \mathrm{~m}^{-3}\right) .
$$

In (4.11) and (4.12) $c(x, y, z)$ is the concentration at position $x, y, z$. $Q$ and $q$ are the total released mass and release rate, respectively. $u_{a}$ is the ambient velocity at which the plume or puff is advected by the wind. $\sigma_{x}, \sigma_{y}$, and $\sigma_{z}$ are the so-called dispersion parameters in along-wind, cross-wind, and vertical direcion, respectively. T he height of the plume centre-line is denoted by $h$.
F or plumes near the ground or near the mixing height additional terms appear in (4.11) and (4.12) to account for 'reflection' of material against the surface or the mixing height.

Within the framework of the G aussian plume models, differences may appear in:

- the choice of the plume averaged transport velocity $u_{a}$ : and
- the choice of the dispersion parameters $\sigma_{x}, \sigma_{y}$, and $\sigma_{z}$.

In most applications of the Gaussian plume model the transport velocity is taken as the wind speed at plume height $h$, with a minimum of $h$ for surface releases.

With respect to the dispersion parameters $\sigma_{x}, \sigma_{y}$, and $\sigma_{z}$ different approaches can be followed, two of which are mentioned here. The fundamentals of the different approaches are discussed in Pasquill and Smith [1983].

The first approach is based on the statistical theory of dispersion in homogeneous turbulence. This leads to expressions in which the spread (i.e. the dispersion parameter) in any direction is proportional to the intensity of velocity fluctuations in that direction times a function of travel time $t$ and some integral time-scale of the turbulence $t_{L}$ :

$$
\begin{equation*}
\sigma_{x}=\sigma_{u} f\left(\mathrm{t}, \mathrm{t}_{\mathrm{L}}\right) ; \quad \sigma_{\mathrm{y}}=\sigma_{\mathrm{v}} \mathrm{f}\left(\mathrm{t}, \mathrm{t}_{\mathrm{L}}\right) ; \quad \sigma_{\mathrm{z}}=\sigma_{\mathrm{w}} \mathrm{f}\left(\mathrm{t}, \mathrm{t}_{\mathrm{L}}\right) \tag{4.13}
\end{equation*}
$$

Several proposals for the function $f\left(t, t_{L}\right)$ for $\sigma_{y}$ and $\sigma_{z}$ have been suggested, see e.g. Pasquill and Smith [1983], Panofsky and Dutton [1984], Stern et al. [1984], and Seinfeld [1986]. T he function as suggested by D raxler [Stern et al., 1984] for $\sigma_{y}$ and $\sigma_{z}$ is widely used.

The other approach is to provide fits to experimental data without a link to theoretical considerations. This leads to expressions of the form:

$$
\begin{equation*}
\sigma_{x}=\mathrm{f}(\mathrm{x}) ; \quad \sigma_{y}=\mathrm{f}(\mathrm{x}) ; \quad \sigma_{\mathrm{z}}=\mathrm{f}(\mathrm{x}) \tag{4.14}
\end{equation*}
$$

Widely-used suggestions for the function $f(x)$ for $\sigma_{y}$ and $\sigma_{z}$ are those of PasquillGifford, M.E. Smith and Briggs [Pasquill and Smith, 1983; Stern et al., 1984; Panofsky and Dutton, 1984]. Seinfeld [1986] also includes the suggestions by K lug as incorporated in German guidelines for stack plume dispersion modelling.

Strictly speaking, the Gaussian plume model can not be used for description of passive dispersion in the surface layer because the vertical variations of wind speed and turbulence intensity in the surface layer cause the vertical concentration distribution to deviate from a normal distribution. Based on similarity theory and the concept of eddy-diffusivity one is able to provide analytical solutions or approximations for the vertical concentration distribution [Pasquill and Smith, 1983; Van U Iden, 1991, G ryning et al., 1987].

Little information is available on the along-wind dispersion parameter $\sigma_{x}$ for (near) instantaneous releases. N ot only turbulence in along-wind direction contributes to the increase of $\sigma_{x}$, but also the vertical variation of wind speed contributes to an increase of $\sigma_{x}$. Van U Iden [1991] provides a scheme for $\sigma_{x}$ which accounts for both effects.

Schemes to estimate the cross-wind dispersion parameter $\sigma_{y}$ need to indicate the averaging-time for which they are valid. In order to transfer $\sigma_{y}$-values to other averaging-times a power law expression with an exponent between 0.1 and 0.5 is generally accepted [Guinnup, 1992]. An exponent of 0.2 is widely used [Ermak, 1990];

$$
\begin{equation*}
\sigma_{y, t 1}=\sigma_{y, t 2}\left(\frac{t_{\mathrm{av}, 1}}{t_{\mathrm{av}, 2}}\right)^{0.2} \tag{m}
\end{equation*}
$$

Here $\sigma_{y, t 1}$ and $\sigma_{y, t 2}$ refer to a horizontal dispersion parameters for an averaging-time of $\mathrm{t}_{\mathrm{av}, 1}$ and $\mathrm{t}_{\mathrm{av}, 2}$, respectively.

Relations for cross-wind spread of instantaneous releases are provided by Pasquill and Smith [1983], Panofsky and D utton [1984] and Van U Iden [1991]. T hese should be used as minimum values for short-term exposure.

The selection of methods for description in the Y ellow Book is justified in Section 4.4.3. T he description of selected methods is provided in Section 4.5.3.

### 4.3.4 The modelling of turbulent jets and plumes

### 4.3.4.1 Jets and plumes in still air

The formalism for the modelling of free turbulent jets has been developed already several decades ago. It is the aim of this section to present the background information of the jet model, which is needed in gas dispersion calculations. The plume model, which is similar in many aspects, is also discussed. The aim of the recent scientific work has not been to make further improvements to the theory, but is concerned mainly with the collection of experimental data to determine the empirical constants in the formalism. The monograph of Chen and Rodi [1980] on the subject contains an outstanding and extensive compilation of the experimental results. Their recommended values of model parameters are discussed in Section 4.5.4.1.

Within the context of the Y ellow Book, the definition of a pure jet is: a source of momentum and energy in the atmospheric environment. The fluid motion in a jet release is governed by the inertial forces. When the density of the released compound is different from the density of air, the buoyancy force will compete with the inertial force. The jet is called a positively buoyant jet when the inertial force and the buoyancy force act in the same direction; for a negatively buoyant jet the directions are opposite. Examples of buoyant jet releases are releases of vent stacks, exhausts, safety valves and punctures in pipes and reservoirs. All positively buoyant jets eventually become plumes. The jet momentum is continuously increased by buoyancy, and at some point sufficiently far above the source the momentum of the jet is largely independent of the initial momentum. T his represents the fundamental property of a (pure) plume: it is a source of buoyancy. The pure plume can also emerge from a source release without initial momentum. e.g. heat diffusers, cooling towers, chimneys, burners, pool fires and evaporating liquid spills.

The analysis of jets in this section is made under the following simplifying assumptions:

- The release of the chemical compound consists of a turbulent outflow of gases. T wo-phase releases are discussed in chapter 2 of this book.
- The source is axially symmetric, with a uniform outflow. T hese conditions provide a good approximation for the description of a wide class of controlled or accidental gas releases.
- It is assumed that buoyancy can either be neglected, or the buoyancy force is parallel to the inertial forces. In the latter case the release is in vertical direction, since the buoyancy force is caused by gravitation.
- The analysis is only valid when there are no large density differences between the jet and the surrounding atmosphere. T his is called the B oussinesq approximation. The restriction is not severe, since jets and plumes which violate the Boussinesq approximation soon mix by entrainment of the surrounding air.
- The atmospheric environment consists of quiescent air at ambient conditions. The environment is neutrally stratified. It does not contain walls or other obstacles.
- Compressibility effects are neglected. In situations where the chemical compound is stored under high pressure a source model must be used to describe the initial expansion of the pressurised release (see Chapter 2 ), before using the jet model.

A turbulent jet (or plume) consists of 3 regions (see Figure 4.6): an initial region, a transition region, and the fully developed jet. T he initial region consists of the core flow and a surrounding shear layer, which forms the boundary with the quiescent air. For a uniform exit velocity the core flow is nearly free of shear. In the transition region, the jet entrains air by the turbulent eddies in the shear layer, and the details of the exit core flow become obliterated. T he resultant eddy-dominated flow is called fully developed.


Figure 4.6 The development of a turbulent jet in still air

N on-buoyant jets
The analysis in this section aims to describe the distributions of velocity and concentration in the third region of a fully developed jet. Since the jet develops free of externally applied constraints, the distribution functions are dynamically similar if all quantities are nondimensionalised by local length and time-scales. It is convenient
to relate length and time-scales to the axial distance s from the origin of the jet and to the exit velocity $u_{0}$. In this approach it is assumed that the origin of the jet is a virtual point source instead of a finite circular source. In other words, the dimension of the source is neglected. T he virtual point source does not necessarily coincide with the real source. H owever, experimental studies have shown that the separation distance is small, so s is approximately the distance from the real source exit.

The mass flow $\mathrm{q}(\mathrm{s})$ in the jet increases with the axial distance:

$$
\begin{equation*}
d q / d s=2 \pi b \rho_{\mathrm{a}} \mathrm{w}_{\mathrm{e}} \quad\left(\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right) \tag{4.16}
\end{equation*}
$$

b is an estimate of the radius between the jet centre-line and the boundary surface of the jet; $\rho_{\mathrm{a}}$ is the ambient density. Equation 4.16 defines the entrainment velocity $\mathrm{w}_{\mathrm{e}}$. The physical interpretation is that an air flow passes through the boundary surface of the jet with a velocity $\mathrm{w}_{\mathrm{e}}$. A dimensional analysis shows that $\mathrm{w}_{\mathrm{e}}$ is proportional to the jet centre-line velocity $u_{c}$. The ratio of these velocities is a measure of the dilution of the jet and is called the entrainment coefficient. The dynamic similarity of the nonbuoyant jet in the region of fully developed flow has several other implications for the physical properties:

- The decay of the centre-line velocity $u_{c}$ and of the centre-line concentration $c_{c}$ of the chemical compound are both proportional to the inverse of the axial distance s.
- In lateral direction, perpendicular to the jet centre-line, the velocity and the concentration are only a function of the non-dimensional coordinate $y / s$, where $y$ is the radial distance from the centre-line. Thus, the width $b$ of the jet is proportional to the axial distance $s$, and the jet shape is conical with the origin, for which $b$ is equal to zero, located at the virtual point source.
$N$ ote that the concentration of the compound is defined in parts per unit volume relative to the atmospheric level, i.e. it is the difference between the local value and the value in air.


## Buoyant jets

The physical properties of the non-buoyant jet are determined by the cross-section integrated axial momentum $M_{0}$ and by the ambient density $\rho_{\mathrm{a}}$. For the pure, nonbuoyant jet the density ratio $\rho_{0} / \rho_{\mathrm{a}}$ of the initial chemical compound and ambient air is unity. In the description of a buoyant jet, the buoyancy flux factor $F_{0}$ of the chemical compound and ambient air appears as a third parameter. It can be shown [C hen and Rodi, 1980] that dynamic similarity can not exist for buoyant jets, so it is not possible to derive simple relations for the flow quantities, as in the case of the nonbuoyant jet. In situations where the buoyant term in the momentum equations of the jet are of minor importance, the non-buoyant relations are approximately valid. The validity depends on the axial distance s, since for large s the buoyant force always becomes competitive with the inertial force. A negatively buoyant jet will rise to a maximum height under its inital momentum and then fall back on itself. A positively buoyant jet will gradually change into a pure plume. The properties of a pure plume are discussed below. Chen and Rodi define in their monograph length-scales that determine the regions of non-buoyant and pure plume behaviour.

## Pure plumes

A plume is a buoyant jet whose initial momentum is nearly zero. F or convenience it is assumed in this text that:

- The plume weighs less per unit volume than air, so the plume is driven upward under the pressure of the surrounding air.
- M olecular diffusion is negligible compared with turbulent transport.

It can be shown [C hen and Rodi, 1980] that with these assumptions the pure plume is self-preserving, or in other words, dynamically similar. The flow quantities can be derived by performing a dimensional analysis, which begins with the definition of the F roude number:

$$
\begin{equation*}
\mathrm{Fr}=\frac{\rho_{0}}{\left|\rho_{\mathrm{a}}-\rho_{\mathrm{o}}\right|} \frac{\mathrm{u}_{0}^{2}}{2 \mathrm{~b}_{\mathrm{o}} g} \tag{-}
\end{equation*}
$$

H ere, $u_{0}$ is the exit velocity from the source, $b_{0}$ is the radius of the real axial jet source, $\rho_{0}$ is the density of the released material and $\rho_{a}$ is the ambient density. It can be shown that the centre-line velocity $\mathrm{u}_{\mathrm{c}}$ and the centre-line concentration $\mathrm{c}_{\mathrm{c}}$ of the chemical compound are dependent on the F roude number and decay, respectively, as s ${ }^{-1 / 3}$ and $s^{-5 / 3}$. Chen and Rodi have compared the simple relations of non-buoyant jets and pure plumes with experimental data, and determined the values of the model parameters in the equations. $T$ his is discussed in section 4.5.4.1.

### 4.3.4.2 Jets and plumes in cross-wind

The properties of jet and plume releases into a quiescent atmosphere have been discussed in the previous section. In the applications in industry and environmental problems, the release is usually deflected under the action of ambient wind. This configuration, which is called a jet in a cross-flow, is addressed in the present section. T he dispersion of the chemical compound in the jet can be calculated with models which solve the full set of conservation equations of the relevant physical quantities. The review of O oms and D uijm [1984] on the modelling of the dispersion of dense gas stack plumes has not lost its actuality and is used as the basis for the present general discussion of the formalism. A list of the most prominent models is given in this section, and one of these models is treated in detail in Section 4.5.4.2. An easier, although less accurate, way to calculate the plume dispersion is to apply the simple Gaussian plume model. In this case a correction must be made for the initial rise of the released compound due to momentum and density effects. Several mathematical expressions have been derived by Briggs [1969] to model the height of the total plume rise. The present section discusses the mathemathics of the model, and in doing so follows an approach that was originally adopted by D avidson [1989]. Section 4.5.4.3 gives recommendations on the application of Briggs' formulae.

The analysis of jets and plumes in a cross-flow starts from the same simplifying assumptions as given in the introduction of Section 4.3.4.1, with two modifications:

- The atmosphere is not quiescent, but the ambient air is moving as a uniform horizontal turbulent flow.
- In the discussion of integral trajectory models, the Boussinesq approximation is not used.

Section 4.3.4.1 was concerned with free jets and plumes, and their dispersion in an unbounded atmosphere. In practical situations of gas cloud dispersion the important quantity is usually the concentration of the chemical compound at ground level, which can only be determined with a model that accounts for the height of the source with respect to the ground.

The wind imposes a pressure field on the jet, which deflects the jet, deforms the initially circular jet cross-section into a kidney shape and establishes a pair of counterrotating vortices in the cross-section. Entrainment of the air from the wind into the jet causes further deflection and after some distance the jet movement is approximately horizontal, with a mean velocity approaching the wind velocity (see Figure 4.7).


Figure 4.7 The plume trajectory in a cross-flow

O ne-dimensional integral trajectory models
Integral methods are based on simple profile shapes (mostly tophat or G aussian) for the velocity, temperature and density distributions in the jet cross-section. Although some models attempt to describe the vortex structures in the jet with an ellipsoid, it is assumed here that the jet cross-section remains circular along its path. The conservation equations for mass, momentum, energy and chemical compound can then be integrated over the jet cross-section to yield ordinary differential equations of some characteristic velocity and density. To close the system of equations, it is
necessary to make further assumptions about the entrainment of air into the jet. The integral equations are of the form:

$$
\begin{equation*}
\frac{d}{d s}\left[\int_{0}^{\sqrt{2} b} \rho u \phi 2 \pi y d y\right]=2 \pi b \rho_{a} \phi_{\mathrm{a}} \mathrm{w}_{\mathrm{e}}(\mathrm{~s})+\mathrm{f}(\mathrm{~s}) \quad\left(\phi \mathrm{kgm}^{-1} \mathrm{~s}^{-1}\right) \tag{4.18}
\end{equation*}
$$

In the equation $s$ is the axial coordinate of the jet or plume, and $y$ is the radial coordinate, perpendicular to the axis. $\rho$ is the density and $u$ the flow velocity in the jet, $b$ is the width parameter of the jet and $\rho_{\mathrm{a}}$ is the density of ambient air. The term $\mathrm{w}_{\mathrm{e}}(\mathrm{s})$ can be interpreted as the entrainment velocity (cf. equation 4.16) and contains contributions from 3 processes:

- Jet entrainment occurs due to the shear stress with the atmosphere.
- Air is entrained by the velocity component of ambient wind, perpendicular to the jet axis.
- Entrainment due to atmospheric turbulence can be neglected close to the stack, but not at larger distances where it becomes the dominant process.
The functions $\phi$ and $\phi_{\mathrm{a}}$, represent the conserved physical quantity in the jet and in ambient air. It can be equal to 1 (unity), or the horizontal velocity $u_{x}$, or the concentration c or the heat content $\mathrm{c}_{\mathrm{p}} \cdot \Delta \mathrm{T}$, leading to the conservation equations of, respectively, the total mass, the horizontal momentum, the chemical compound mass and the thermal energy. The function $f(s)$ is non-zero only in the momentum equation, where it represents a drag term which takes into account changes in momentum due to the pressure field. It is a point of controversy whether the inclusion of drag forces in the momentum equation is really necessary. T he set of equations is completed with the conservation equation for vertical momentum, in which case $\phi$ equals $u_{z}$, and the right-hand side of equation 4.18 includes the influence of the gravitational force.

In the equation the stratification of the atmosphere is not specified. T he simplest plume trajectory models introduce two additional assumptions:

- The distributions of physical quantities within the plume are constant (tophat shape) at any given distance from the source.
- The atmosphere is not stratified.

The simplifications allow for an integration of the conservation equations over the whole plume cross-section. T he integrated version of equation 4.18 is:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{ds}}\left[\rho \mathrm{u} \phi \mathrm{~b}^{2}\right]=2 \pi \mathrm{~b} \rho_{\mathrm{a}} \phi_{\mathrm{a}} \mathrm{w}_{\mathrm{e}}(\mathrm{~s})+\mathrm{f}(\mathrm{~s}) \quad\left(\phi \mathrm{kgm}^{-1} \mathrm{~s}^{-1}\right) \tag{4.19}
\end{equation*}
$$

Since by definition $\Delta \mathrm{T}_{\mathrm{a}}=0$ in an unstratified atmosphere, the integrated conservation equation of thermal energy implies that the buoyancy flux factor $F$ is a conserved quantity, see also Section 4.2.7.1 and formula (4.2). It is a measure of the density difference between the jet and ambient air, and defined as:

$$
\begin{equation*}
F=g^{\prime} u b^{2} . \quad\left(\mathrm{m}^{4} \mathrm{~s}^{-3}\right) \tag{4.20}
\end{equation*}
$$

The density difference is contained in the effective gravity g '.

The conservation equations are usually solved numerically, and yield the averaged density $\rho$ and velocity $u$ of material in the plume, the tilt $\theta\left(=\arctan \left(u_{z} / u_{x}\right)\right)$ of the plume axis, and the width $b$ of the plume, as a function of the distance $s$ along the plume axis. T he tophat profile of the physical quantities in the plume can, if required, afterwards be transformed into a $G$ aussian shape.

The differences in the assumptions of integral trajectory models become apparent when a comparison is made between the models, which have been implemented in four current dense gas dispersion models, i.e. DEGADIS, HGSYSTEM, PHAST and SLAB. T he four implemented plume models are, respectively:

- the Ooms model (1972),
- the HFPLUME model (M cF arlane et al. 1990),
- the TECJET model (H avens and Spicer, 1990),
- the model of H oot, M eroney and Peterka (H M P, 1973).

T he H M P differs from the other models in some aspects:

- It consists of analytic expressions for the ground locations of maximal plume rise and touch-down, the maximal height and the centre-line concentrations at these locations. T he other models must be solved by means of numerical techniques;
- Entrainment from atmospheric turbulence is not included. Therefore, it does not describe passive gas releases.
In T able 1, information of the models is presented on a number of physical aspects.

Table 4.2 Physical aspects of 1-dimensional integral plume models

|  | cross <br> section | cross- <br> wind <br> profile | surface <br> roughness | entrainment <br> from <br> atmospheric <br> turbulence | drag <br> force | zone of flow <br> establishment | slumped <br> plume <br> interface |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ooms | ellips | Gaussian <br> HFPLUME <br> circle <br> tophat <br> TECJET | yes | yes | yes | yes | yes |
| CMP | circle | Gaussian | no | yos | yes | no | yes |
| tophat | no | no | no | no | no ${ }^{1)}$ |  |  |

1) Included in dispersion model.

Plume rise formulae
F or many practical problems, it is sufficient to estimate the trajectory of the jet or plume in a cross-flow from empirical correlations. The derivation of the relevant parameters is best done by considering each of the terms in the conservation equations. In this section, the approach of D avidson [1989] is followed. First, the equations are simplified further by application of the Boussinesq approximation ( $\rho=\rho_{\mathrm{a}}=$ constant, except in density differences) and the bent-over plume assumption $\left(u=u_{a}\right)$. T hese assumptions allow to derive an analytical equation for the plume trajectory, which includes the effects of both inertial forces and buoyancy forces.

Since the Boussinesq approximation and the bent-over plume approximation are used in the derivation of the trajectory equation, it is not intended for the calculation of properties close to the source. The plume rise due to initial momentum $M_{0}$ and initial buoyancy $F_{0}$ contribute with a down-wind dependency of $x^{1 / 3}$ and $x^{2 / 3}$, respectively. This implies that at distances further away from the source, the buoyant plume rise is the dominating term.

The formalism of $D$ avidson is incomplete in the sense that it does not treat the effects of atmospheric stratification and stability. As a consequence, the equations predict an infinite plume rise, whereas in reality it is observed that the plume levels off at a certain height, after which it is influenced almost solely by the atmospheric conditions.

Assuming that the transition to a horizontal plume occurs at a down-wind distance $\mathrm{x}_{\mathrm{r}}$ and that the plume rise due to the initial momentum is relatively small, the final plume rise is equal to

$$
\begin{equation*}
\Delta \mathrm{h}_{\mathrm{r}}=\text { constant } \mathrm{F}_{\mathrm{o}}^{1 / 3} / \mathrm{u}_{\mathrm{a}} \tag{m}
\end{equation*}
$$

In equation 4.21, $\mathrm{F}_{0}$ is the buoyancy flux factor of the source (defined by 4.20 with $u_{0}, g_{0}{ }^{\prime}$ and $b_{0}$ ). The constant has dimension ( $\mathrm{m}^{2 / 3}$ ). It has been shown by Briggs [1969] that experimental observations of plume rise from tall stacks can be described by equation 4.21, provided that the constant is a function of $F$ and also of the atmospheric stability. Briggs has also derived expressions for momentum-dominated plume rise, of the form

$$
\begin{equation*}
\Delta \mathrm{h}_{\mathrm{r}}=\text { constant } / \mathrm{u}_{\mathrm{a}}^{2 / 3} \tag{m}
\end{equation*}
$$

H ere the constant has dimension ( $\mathrm{m}^{2 / 3} \mathrm{~s}^{-2 / 3}$ ).
$M$ any models of final plume rise have been proposed by Briggs and by other authors, and most of them assume the functional behaviour which is given in the above equations. T hey differ mainly in the way that the effects of atmospheric stability are treated. A well-established model is presented in section 4.5.4.3

### 4.3.5 The modelling of dense gas dispersion

O ur interest is in catastrophic releases of a chemical compound, with a large volume or volume flow rate. M any hazardous volatile materials are heavier than air, for one or more of the following reasons:

- The molecular weight of the chemical compound is higher than that of air. Examples are: LPG, cyclohexane, freon and chlorine.
- The chemical compound is released as a cold gas, or cooled due to the evaporation process. Examples are: LN G, ammonia and hydrogen fluoride.
- In case of a flashing release, the cloud is a mixture of aerosols and vapour. T his is often seen in ammonia releases.
- Chemical reactions occur which are endothermic or result in the pick-up of atmospheric water vapour. Reactive chemical compounds are ammonia, hydrogen fluoride and nitrogen tetroxide.

T he temporal behaviour of the dispersion process is determined by the failure mode:

- In an instantaneous release, a volume of gas is released in a very short time. Examples of instantaneous sources are severely ruptured vessels or rapidly emptying pressurised tanks.
- In a time-varying release the volume flow continues over a long period in an irregular way. An example is a liquid pool which is both spreading and vapourising.
- A continuous release is characterised by a constant volume flow rate with a sufficiently long duration for a steady state to be formed. Examples of this source type are steady-state liquid pools and small ruptures in pipes and vessels.
The instantaneous release type differs from the other two in that along-wind dispersion plays an important role in the dilution of the cloud.
During the dispersion process of a dense (negatively buoyant) gas cloud, 4 consecutive phases are observed:
- The initial phase. The fluid motion is a strong function of the release conditions.
- The gravity spreading phase. The entrainment is mainly due to the turbulence generation by the gravity-induced motion of the cloud.
- An intermediate phase. Entrainment is due to an interplay between the atmospheric turbulence and gravitational forces.
- The passive (neutrally buoyant) dispersion phase.

T he gravity spreading phase (see also Section 4.2.6) provides a good illustration of the effects which are typical for dense gas:

- The density gradient induces gravity spreading in the horizontal direction. These gravity currents drive the flow within the cloud, independent of the atmospheric wind.
- M ixing is primarily through the self-generated vortices at the edge of the cloud (also called gravity-front).
- M ixing by atmospheric turbulence at the top of the cloud is suppressed by the density gradient.
- Turbulence within the cloud is reduced due to the stable stratification (i.e. a negative vertical density gradient) of the dense gas layer.
As a consequence, a dense gas cloud remains in the lower part of the atmosphere, with a large spread in the lateral direction. M eandering due to atmospheric turbulence is less than for passive clouds. Attempting to describe dense gases by adapting $G$ aussian models suitable for passive clouds is inherently inadequate, because the Gaussian models do not account for the momentum and energy effects.
Present dense gas dispersion models can be roughly divided into 3 classes:
- Phenomenological models, in which the dispersion behaviour is described by a series of nomograms.
- Intermediate models, such as box models and grounded plume models.
- Advanced models which solve the N avier-Stokes equations.

Except for models solving the three dimensional $N$ avier-Stokes equations none of the models describe the internal flow in the cloud, such as the vortex in the gravity front. A general description of the models in the 3 classes is given in the Sections 4.3.5.14.3.5.3.

### 4.3.5.1 Empirical relations of dense gas dispersion

Empirical relations between the observed physical quantities in dense gas dispersion experiments originate from laboratory simulations on a small-scale, or from field tests, or from both. Simple formulae based on dimensional arguments can explain many observations of dense gas dispersion. It is, in general, not necessary to specifically model the detailed flows inside the gas cloud, since the gross entrainment integrated over the cloud is important. The starting-point is an inventory of the independent variables that are relevant in dense gas dispersion. T hey are:

- The mean wind velocity $u_{a}$.
- The initial volume $\mathrm{V}_{0}$ of the chemical compound (in case of an instantaneous release), or the volume flow rate $\mathrm{v}_{0}$ (for time-varying releases).
- The dimension $b_{0}$ of the source.
- The density $\rho_{0}$ of the chemical compound and ambient density $\rho_{\mathrm{a}}$. Other variables, such as the atmospheric stability, the local roughness length and the source geometry, are less important. A dimensional analysis yields the parameters that determine the dispersion process:

$$
\mathrm{x} / \mathrm{b}_{0}, \mathrm{y} / \mathrm{b}_{0}, \mathrm{z} / \mathrm{b}_{0}, \mathrm{u}_{\mathrm{a}} \mathrm{t} / \mathrm{b}_{0}, \mathrm{u}_{\mathrm{a}}^{2} /\left(\mathrm{gb} \mathrm{~b}_{0}\right), \rho_{0} / \rho_{\mathrm{a}} \text {, and either } \mathrm{v}_{0} /\left(\mathrm{u}_{\mathrm{a}} \mathrm{~b}_{0}^{2}\right) \text { or } \mathrm{V}_{0}^{1 / 3} / \mathrm{b}_{0} .
$$

H ere x is the down-wind distance, y is the lateral coordinate, z is the height, t is the time and $g$ is the gravity constant. T he number of parameters can be reduced further by: (1) considering only ground level concentrations, (2) assuming that at any downwind distance the maximum concentration occurs on the centre-line, and (3) employing the Boussinesq approximation. In the Boussinesq approximation the parameters $u_{a}{ }^{2} /\left(\mathrm{gb}_{0}\right)$ and $\rho_{0} / \rho_{\mathrm{a}}$ can be replaced by a single parameter $\mathrm{u}_{\mathrm{a}}{ }^{2} /\left(g_{0}{ }^{\prime} \mathrm{b}_{0}\right)$, where $g_{0}{ }^{\prime}=g\left(\rho_{0}-\rho_{a}\right) / \rho_{a}$ is the effective gravity at the source.

In an instantaneous release, the important dependent (output) variable is the concentration of the chemical compound at the time of arrival of the cloud. The concentration attains its maximum value $c_{\max }$ at that moment, and subsequently decreases with time as the cloud is advected past the point.
$c_{\text {max }}$ is made non-dimensional with the initial concentration $c_{0}$ expressed as the volume of chemical compound per unit volume. F or a source with an approximately spherical or cubic shape, the dimension $b_{0}$ of the source is proportional to $V_{0}^{1 / 3}$, and $\mathrm{C}_{\max } / \mathrm{c}_{0}$ depends on only 2 parameters: $x / V_{0}^{1 / 3}$ and $u_{a}^{2} /\left(g_{0}^{\prime} V_{0}^{1 / 3}\right)$.

In a time-varying or continuous release, the important dependent variable is the timeaveraged concentration $\mathrm{c}_{\text {mean }}$.

The source dimension $b_{0}$ is less important further away from the source, as the plume forgets its past history. $T$ hen $c_{\text {mean }} / c_{0}$ again depends on 2 parameters: $x \sqrt{\left(u_{a} / v_{0}\right)}$ and $u_{a}^{5 / 2} /\left(g_{o}^{\prime} \sqrt{v_{0}}\right)$.

The functional behaviour of the concentration values can be derived from experimental data and the resulting correlations can then be reproduced in nomograms. This approach has been followed by Britter and M cQuaid in their Workbook (1988), and also in the VD I Guideline 3783 part 2 (1990).

### 4.3.5.2 Simple dense gas dispersion models

This section reviews the physical basis and algorithms of models for instantaneous releases (called box models) and models for continuous releases (grounded plume models). T he simple dense gas dispersion models describe only the overall behaviour of the cloud. T his becomes apparent when one considers the basic assumptions that are made in box and plume models:

- The dispersion moves over flat terrain or water.
- The substrate properties (surface roughness, thermal properties) are uniform over the entire terrain.
- Similarity profiles of velocity and concentration are imposed in all directions of the cloud (usually tophat or G aussian).
- The cloud spreading is described by gravity intrusion models.
- Local concentration fluctuations are not modelled.

Several extensive publications have appeared on the subject of simple dense gas dispersion models, for instance Wheatley and Webber [1984]; H anna and Drivas [1987]; and Ermak, Rodean, L ange and Chan [1988].

B ox models
Box models have been developed for the description of the dispersion process, which follows after an instantaneous release of dense gas. T ypical examples are:

- The work of Cox and Carpenter [1979], which resulted in the computer models CON SEQ, SAFETI and PHAST.
- The work of Eidsvik [1980], and the associated computer model CHARM [Radian C orporation, 1988].
- The work of F ryer and K aiser [1979], and the associated computer model DENZ.
- The work of K aiser and Walker [1978], which resulted in the computer models SAFER and TRACE.

All box models assume that the dense gas cloud has the shape of a flat circular cylinder, with a uniform height and radius, and a uniform gas concentration in the entire cloud volume (see Figure 4.8).


Figure 4.8 The box model of a dense gas cloud

The mean concentration of the cloud is determined by solving the ordinary differential equations for the time-dependent volume (V), radius ( $r$ ) and position ( $x$ ) of the cloud. The down-wind position is calculated from the advection velocity of the cloud, which depends on the mean wind speed $u_{a}$.

The equation for the evolution of $\mathrm{V}(\mathrm{t})$ is

$$
\begin{equation*}
\mathrm{dV} / \mathrm{dt}=\pi r^{2} \mathrm{w}_{\mathrm{e}, \mathrm{t}}+2 \pi r \mathrm{~b}_{\mathrm{z}} \mathrm{w}_{\mathrm{e}, \mathrm{e}} \quad\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right) \tag{4.23}
\end{equation*}
$$

In equation 4.23, $b_{z}$ is the height of the cloud, and $w_{e, t}$ and $w_{\mathrm{e}, \mathrm{e}}$ are entrainment velocities at the upper surface and at the edge of the cloud. The biggest disagreement between different box models is how these turbulent entrainment velocities are treated.

The equation for the evolution of $r(t)$ is

$$
\begin{equation*}
\mathrm{dr} / \mathrm{dt}=\mathrm{C} \sqrt{\left(\mathrm{~g}^{\prime} \mathrm{b}_{\mathrm{z}}\right)} \tag{-1}
\end{equation*}
$$

$C$ is a constant and $g$ ' is the effective gravity. Equation 4.24 is called the gravity front equation. It describes the gravity slumping in the initial dispersion phase, i.e. the gravity-induced motion of the cloud. The underlying principle is that the heightaveraged pressure drop across the gravity front is in balance with the resistance pressure from the ambient air.
The mean concentration c in the cloud is calculated as a function of down-wind distance $x$ from the relation

$$
\begin{equation*}
c(x) / c_{0}=V_{0} / V(x) \tag{-}
\end{equation*}
$$

where $c_{0}$ and $V_{0}$ are, respectively, the initial concentration of the chemical compound and the released volume. Equation 4.25 is valid for a gas cloud that does not exchange heat with its environment (the substrate and the atmosphere) or generate heat internally through latent heat processes (evaporation, condensation) or chemical conversions. These internal heat changes can affect the dispersion of the cloud, and are included in most of the present box models.
At some down-wind distance, the cloud ceases to be influenced by the density perturbation and subsequent dispersion proceeds as if the cloud were neutrally buoyant. At that point the dense gas dispersion formulae can be replaced by the simpler Gaussian puff formalism (see Section 2). M ost of the box models have arbitrary assumptions for the transition point, for instance:

- The density perturbation drops below a critical value.
- The Richardson number drops below a critical value.
- The gravity-front velocity reaches a lower level, which is usually some fraction of the ambient wind velocity.

G rounded plume models
The plume models are used for the description of the dispersion process, which follows after a continuous or time-varying release of dense gas. The models assume that the initial momentum of the release is small, so in the Y ellow Book they are called grounded plume models in order to distinguish them from the one-dimensional integral trajectory models for lofted plumes (see Section 4.3.4). Steady state plume models describe plumes from a continuous source, and can be developed in
one-to-one correspondence with the already discussed box models, by replacing the time variable $t$ with the down-wind distance $x$ from the source. A typical example is the work of Jagger [1983]. T his model employs the entrainment coefficients of F ryer and K aiser [1979]. A computer model, CRUNCH, was also developed. The more recent computer models (e.g. PHAST [H anna et al., 1991], DRIFT [W ebber et al., 1992], etc.) contain the box module and the plume module within a single package. In grounded plume models, it is assumed that a plume has a rectangular cross-section of height $b_{z}(x)$ and half-width $b(x)$ (see Figure 4.9).


Figure 4.9 The grounded plume model of a continuous dense gas plume

The concentration $c$ of the chemical compound and the advection velocity $u$ are uniform over the entire area $A(x)$ of the cross-section, and in general an empirical relation is assumed between this averaged value of $u$ and the plume height $b_{z}$.

T he equation for the increase of total mass is

$$
\begin{equation*}
d(\rho u A) / d x=2 \rho_{a} b w_{e, t}+2 \rho_{a} b_{z} w_{e, e} \quad\left(\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right) \tag{4.26}
\end{equation*}
$$

$\rho$ and $\rho_{a}$ are, respectively, the densities of the plume gas and of ambient air. $w_{e, t}$ and $\mathrm{w}_{\mathrm{e}, \mathrm{e}}$ are entrainment velocities at the upper surface and at the edge of the plume. Because of the similarity between the equations 4.23 and 4.26 , a plume model equivalent can be built for each box model, by assuming the same closure relations for the entrainment. T he equation for the evolution of $b(x)$ is

$$
\begin{equation*}
u \mathrm{db} / \mathrm{dx}=C \sqrt{\left(\mathrm{~g}^{\prime} \mathrm{b}_{\mathrm{z}}\right)} \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right) \tag{4.27}
\end{equation*}
$$

$C$ is a constant, and $\mathrm{g}^{\prime}$ is the effective gravity. It should be noted that gravitational slumping, and also mixing, in the longitudinal direction is neglected in the steadystate plume model. T his is justifiable in sufficiently high-wind conditions.
The concentration decay as a function of down-wind distance is obtained by solving the equation of compound species flux simultaneously with the equations 4.26 and
4.27. It is noted that, for simplicity, the internal heat changes have been neglected in the equations, whereas they are incorporated in most of the present steady state plume models.
If the plume material is removed from the source at a lesser rate than the flow rate from the source, then plume material is accumulated at the source. T he accumulation is accompanied by horizontal, buoyancy-induced motions providing a much larger plume area near the source. As a result the effective source size can be much larger than the physical source size. M ost of the present plume models contain an algorithm to describe the formation of the secondary source blanket.
A different technique to simulate a steady release is to divide the total release into a number of puffs, each of which is considered as a separate release. This technique is used in the CHARM computer model.

Generalised plume models
G eneralised steady state plume models give greater structure to the spatial variations of the dense gas concentration than merely assuming a rectangular or Gaussian profile. T his enables a greater range of physical processes to be modelled, and certain processes to be more realistically modelled. A well-known example is the model of Colenbrander [1980], where similarity forms for the concentration profiles present the plume as a horizontally homogeneous centre section with $G$ aussian concentration profile edges (see F igure 4.10).


Figure 4.10 The down-wind development of the concentration profiles in vertical and lateral direction, in a generalised plume model. The dashed curve is the LFL isoconcentration contour

In formula:

$$
\begin{aligned}
& c(x, y, z)=c_{c}(x) F_{y}(y) F_{z}(z), \\
& \begin{cases}F_{y}(y) & = \\
F_{y}(y) & =\exp \left(-(|y|-b(x))^{2} / \sigma_{y}(x)^{2}\right)\end{cases} \text { for }|y| \leq b \\
& F_{z}(z)=\exp \left(-\left(z / \sigma_{z}(x)\right)^{2}\right)
\end{aligned}
$$

( $\mathrm{kg} \mathrm{m}^{-3}$ or parts per unit volume)

The model is formulated in terms of eddy-diffusivities rather than entrainment velocities. This means that the diffusion equation is solved in the vertical and lateral direction.

This way of formulating the plume model guarantees that the transition to passive behaviour in the edge entrainment and lateral spreading is continuous. The model of Colenbrander has been implemented in computer models such as HEGADAS [M cF arlane et al., 1990] and D EGADIS [H avens, 1989].

## Time-varying releases

In some cases (e.g. a spreading and vaporising liquid pool) the volume flow rate of the release will show variations with time, and this will also affect the concentration levels in the resulting plume. C olenbrander [1980] has proposed to describe a time-varying release with the concept of travelling observers. The concept consists of 4 steps:

- Observers travel at a series of times with the wind, starting upwind of the pool.
- The pool data observed by each observer are determined.
- F or each observer, the concentration is computed via a steady state plume model, adopting the observed pool data. The concentration at time $t$ for a certain downwind distance is determined by calculating the positions of observers at times $t$.
- At timet, the actual concentration is determined from a G aussian integration with respect to down-wind distance of all observer concentrations. The Gaussian integration involves the longitudinal diffusion by means of a down-wind dispersion coefficient $\sigma_{x}$.
In formula:
$c_{c}(x, t)=\int c_{c}\left(u_{a} t\right) /\left(\sqrt{(2 \pi)} \sigma_{x}\left(u_{a} t\right)\right) \exp \left(-0.5\left(x-u_{a} t\right)^{2} / \sigma_{x}\left(u_{a} t\right)^{2}\right) d u_{a} t$
$\left(u_{\mathrm{a}} \mathrm{t}\right)$ is the position at time $t$ of an observer travelling with the wind in the down-wind direction. At this position the observer observes the concentration $c_{c}\left(u_{a} t\right)$, which is obtained from a steady state plume model. An often used expression for the dispersion coefficient is $\sigma_{x}(x)=0.13 x$ (see also Sections 4.3.3 and 4.5.3.3 on the Gausian plume model).


### 4.3.5.3 The conservation equations for a dense gas release

The full equations describing the release of a dense gas are the N avierStokes equations for the instantaneous velocity and density fields. The N avier-Stokes equations are partial differential equations expressing the conservation of total mass and the conservation of compound species (the continuity equations), the conservation of enthalpy, and a 3 -vector equation of motion. An equation of state is also required. The equations are averaged to obtain equations for the mean fields. In the application of the $N$ avier-Stokes equations to gas dispersion processes, a convenient set of independent fields is formed by the velocity, the temperature, the density and the concentration of the chemical compound. The pressure field is not included, since the mixture of air and dense gas is assumed to be incompressible. A turbulence closure scheme is needed for the description of correlations of fluctuating quantities.
There are dispersion models which attempt to solve, by means of numerical techniques, the N avier-Stokes equations in 3 dimensions, but their development is not at a sufficiently advanced stage that the models can be used routinely. At the moment, the 3-dimensional models can best be viewed as a research tool in the study of the flow field of dispersed clouds. The costs of undertaking a fully 3 -dimensional simulation also tend to be significantly greater than the costs of using simple dispersion models. F or these reasons the 3 -dimensional models are excluded from a discussion in the Yellow Book. An overview of 3-dimensional dense gas dispersion models can be found in the study of Ermak et al. [1988].

The shallow layer theory is related to the 3-dimensional approach. It is based on the full set of conservation equations, but advantage is taken of the simple structure of dense gas clouds in cross-wind planes. The computational effort is greatly reduced by regarding the cross-wind variables as depending only on time and down-wind distance.

Zeman [1982] has developed the formalism to describe the dispersion of a dense gas release in the presence of wind by means of a 1-dimensional shallow layer model. A recent computer implementation based on the formalism is the SLAB model [Ermak, 1990]. The discussion in this section starts with the shallow layer formulation for a continuous grounded plume, and subsequently treats the case of an instantaneous cloud.

The shallow layer plume model
The fields of physical quantities in a plume are regarded as depending only on downwind distance x , and are averaged in the cross-wind direction. The conservation equations in the shallow layer plume model are equivalent to the equations for a 1dimensional integral plume model, with additional terms in the former set of equations for the description of the gravitational slumping on the ground. The main difference between the two sets is that the averaging of the fields in the integral plume models is done over the plume cross-sections, and in the shallow layer theory it is done over the cross-wind cross-sections. T his implies that the shallow layer equations can be used for lofted plumes in the region where the plume has been bent-over by the wind.
The shallow layer plume model and the steady state grounded plume model, which was discussed in the previous section, differ in their treatment of momentum conservation. In the shallow layer approach, the vector equation of momentum
conservation is solved, whereas the steady state grounded plume model solves the gravity slumping equation (4.27).

The shallow layer cloud model
In the shallow layer model of Zeman [1982], the puff is treated as a grounded cloud with a half-length $b_{x}$, a half-width $b_{y}$ and a height $b_{z}$. The independent variable is the down-wind travel time $t$ of the cloud centre-of-mass. The fields of physical quantities in the cloud are averaged over the cloud volume $V=4 b_{x} b_{y} b_{z}$.
Air is entrained in the down-wind and cross-wind sides of the cloud, with different entrainment rates, and at the upper surface of the cloud. T he difference between the shallow layer formalism and the box formalism is in the description of gravity slumping. The shallow layer approach solves a vector equation of motion for the gravity spreading, whereas the box models are based on the gravity front equation (4.24).
Theshallow layer cloud model can also be applied to releases above ground level. The terms in the conservation equations for gravity spreading must then be replaced by terms which describe a sinking cloud.

### 4.4 Selection of models

### 4.4.1 Introduction to Section 4.4

In Section 4.4 the considerations which have led to the selection of models which are included in Section 4.5, are explained. In general the selection is based on considerations with respect to:

- The degree to which a model is able to describe the physical phenomena correctly (validation and verification).
- The general acceptance of a model.
- The degree to which a model is flexible to input and output requirements (applicability and ease of use).
- The transparency and internal consistency of a model (i.e. the consequent use of clear principles and assumptions).

These considerations are presented as follows:

- Section 4.4.2 addresses methods to calculate atmospheric stability and quantities in the mixed layer such as wind speed and turbulence.
- Section 4.4.3 addresses selection of dispersion parameters in Gaussian plume models for passive dispersion.
- Section 4.4.4 addresses mainly the selection of integral models for jets and plumes in ambient wind.
- Section 4.4.5 addresses the selection of dense gas dispersion models.


### 4.4.2 Schemes for atmospheric stability categories and meteorological data

### 4.4.2.1 Atmospheric stability catagories

[^4]H owever, we have to acknowledge the fact that long-term meteorological data is very often available in terms of Pasquill stability classes. Therefore use will be made of Golder's scheme [1972], see Figure 4.11, to relate Pasquill classes to roughness length and M onin-Obukhov length and vice versa.

F or stability over sea the scheme by H su [1992], see F igure 4.12, will be adopted.

### 4.4.2.2 Variation of wind speed

All dispersion models (passive dispersion models and dense gas dispersion models) need information about the vertical variation of wind speed. F or wind speeds in the surface layer the use of the Businger-D yer relations is selected [Panofsky and Dutton, 1984]. These relation use roughness length and $M$ onin-Obukhov length as input.

### 4.4.2.3 Variation of turbulence

Some application of dispersion parameters for Gaussian plume models require the standard deviation of turbulent velocities in cross-wind and vertical direction. From available suggestions to calculate the variation of these turbulent quantities the expressions by G ryning et. al. [1987] are selected with a change of the proportionality constant in order to make them consistent with the surface-layer data of turbulence provided by Panofsky and D utton [1984].

### 4.4.2.4 Determination of mixing height

N o selection of mixing height can be made which is valid for all locations. For applications in the $N$ etherlands the expressions for stable conditions as presented in Section 4.3.2.2 are selected. F or near neutral conditions (Pasquill class D ) a combination is selected from the expression in Section 4.3.2.2 and a fixed value of 500 m . F or Pasquill class C a value of 1000 m and for Pasquill A and B a value of 1500 m is used.

### 4.4.3 Selection of models for passive dispersion

### 4.4.3.1 Selection of model type

F or passive dispersion the use of the $G$ aussian plume model is selected for all scaling regions in the mixing layer (Figure 4.5). F or the surface layer and the mixing layer other models provide better agreement with reality, but they are much less flexible with respect to source height, source dimensions and output.

### 4.4.3.2 D ispersion parameters

G aussian plume models make use of two (for continuous releases) or three (for instantaneous releases) dispersion parameters $\sigma_{x}, \sigma_{y}, \sigma_{z}$.

The dispersion parameters $\sigma_{x}, \sigma_{y}, \sigma_{z}$ of the $2^{\text {nd }}$ edition of CPR14E are used (see section 4.5.3.4).

### 4.4.4 Selection of models for jets and plumes

T his section indicates which jet and plume models have been selected from the survey in Section 4.3.4.

J ets and plumes in still air
The theory of jets and plumes is based on similarity principles. The fixation of the empirical constants in the expressions by Chen and Rodi [1980] and their usage of Gaussian profiles for the physical distribution functions in a cross-section have become widely-accepted, and is therefore selected for a more detailed discussion.

O ne dimensional integral trajectory models
At present it is not possible to make a conclusive statement which of the various 1-dimensional integral plume models is preferable. H owever, in many cases the model will be used as a front-end module to a dense gas dispersion model, and the coupling of the models will impose additional model requirements. If the lofted plume model has to be coupled to a grounded steady plume model, which can only treat surface area sources, then the plume touch-down and slumping have to be modelled separately. On the other hand, if the lofted plume model acts as a front-end module to a model that is based on solving the conservation equations, then it is sufficient for the lofted plume model to describe the initial phase of plume rise and down-wind bending of the plume. The dense gas dispersion model, which is discussed in Section 4.5.5, is of the last-mentioned type. The model of Hoot et al. [1973] is easy to couple to this dense gas dispersion model, and it is one of the simplest integral trajectory models, and for these reasons is treated in greater detail.

## Plume rise formulae

The selected plume rise formulae are based on an early publication of Briggs [1969], which has become widely-accepted. D uring the development of the ' $D$ utch $N$ ational M odel' [D utch committee on the dispersion of air pollution, 1984] some additions were made in order to extend the validity to tall stacks and to all atmospheric stability conditions. These additions deal 1) with the criterium for final plume rise in neutral atmosphere, and 2) with plume rise in stable atmosphere. The adaptions are incorporated in the set of selected formulae.

### 4.4.5 Selection of dense gas dispersion models

Criteria for model selection
T he criteria for selection of a dense gas dispersion model relate to three aspects, i.e. operational requirements (ease of use), physical plausibility, and educational aspects (transparency of the model).

The operational requirements are:
I The model is usable in operational conditions. Constraints on cost and time are imposed by the operational environment, and the sophistication and efficiency of the algorithms in the physical model should be compatible with these constraints. It is emphasised that it is not the intention to evaluate the user-friendliness of the software implementations of models. There is a continuous improvement in this area, and available computer models can be adapted to the needs of the user without great effort.
II The model is current. In other words, the model is supported by an organisation, and the model is widely used. C urrency of usage can for instance be assessed from the frequency of references in the recent (1983-1993) scientific literature.
III The model allows for coupling of source term models and explosion/fire models.

It is desirable that the model is based on plausible physical assumptions. F or dense gas modelling, Wheatley and Webber [1984] have formulated this in terms of 3 objectives:
I In the model, the transition between the dense gas phase and passive phase of dispersion should be continuous.
II The model should include all turbulent dilution mechanisms (jet entrainment, shear production and enhanced entrainment from gravity spreading, convection).
III The modelling of entrainment should be consistent with results of laboratory experiments on entrainment in stratified flows.
C oncerning output requirements, within its range of validity the model should give a fair description of the actual gas dispersion in a realistic release situation. This is formulated by Wheatley and W ebber as a 4th objective:
IV The model should realistically describe the ensemble-average spatial concentration distribution in both the dense gas phase and in the passive phase of dispersion.

From an educational point of view, it is preferred to have a few models with wide applicability instead of many models with restricted applicability.

The selection procedure
D ense gas dispersion models for operational use can be divided into 2 classes:
I Phenomenological models, in which the dispersion behaviour is described by a series of nomograms (see Section 4.3.5.1);
II Intermediate models, such as box models and models based on shallow layer theory (see Sections 4.3.5.2 and 4.3.5.3).
$M$ any of the models are available as computer codes; they often contain source and jet models to describe the initial phase of the dense gas release. The selection of source models is not part of the present chapter; this topic is discussed in the Chapters 2 and 3 of the Y ellow Book. The selection of jet models is discussed in Section 4.4.4.

A useful reference document for the assessment of models is the report of H anna et al. [1991] on an extensive model evaluation project of 14 dispersion models. The project was initiated because there were no standard objective quantitative means of evaluating the dense gas dispersion models.
In the project of Hanna et al. a system has been developed to evaluate the performance of microcomputer-based dispersion models that are applicable to chemical releases into the atmosphere. The study is better than previous dense gas dispersion model evaluation projects because a method was developed which gives conclusive results. F ollowing this work, H anna and C hang [1992] have reviewed the HGSYST EM package in the same way as the other 14 models.

The W orkbook of Britter and $M$ cQuaid [1988] is widely-accepted as a reference text for dense gas dispersion. The nomograms in the book were evaluated by H anna and turned out to give a good description of experimental data sets.
Therefore, the W orkbook is selected in the Y ellow Book as a representative of class I models. A detailed discussion of the Britter and McQuaid model is presented in Section 4.5.5.1.

In the reports of Hanna et al. it is concluded that HEGADAS (and also the HGSYSTEM package, which contains HEGADAS as a module) has a good performance for continuous dense gas and passive releases, but it is not intended for modelling instantaneous releases.
The models CH ARM, PH AST and SLAB have an acceptable performance for all of the gas releases included in the study of H anna (i.e. continuous and instantaneous dense gas releases, and continuous passive gas releases). CHARM and PHAST are proprietary models, HEGADAS and SLAB are publicly available.
Since the performances of HEGADAS, CHARM, PHAST and SLAB are all acceptable, the selection of a model for a more detailed discussion was based on educational aspects. The SLAB computer model makes use of shallow layer theory (see Section 4.3.5.3), which has the advantage that the physical processes of dense gas dispersion are formulated in a transparent way. The SLAB model is described extensively in Section 4.5.5.2, as a representative of class II models.
It should be mentioned that, compared with the other 3 acceptable models, SLAB might underpredict concentrations near to the source [H anna et. al., 1991].

### 4.5 Description of models

### 4.5.1 Introduction to Section 4.5

This section provides the description of the recommended models and methods. It contains all necessary information to carry out calculations. No background information on models is provided, for this, the reader should refer to Section 4.3.
H owever, the reader is advised also to consult section 4.7 with respect to validity and applicability of the models.
The section includes the methods to calculate dispersion from positively, neutrally, and negatively (dense) buoyant releases. The necessary sections for different types of releases are indicated in the scheme below.
Additionally one needs to characterise atmospheric stability. M ethods to do so are provided in Section 4.5.2.


### 4.5.1. 1 Guide to the calculations

Initial conditions for the dispersion are determined by the characteristics of the release (see C hapters 2 and 3), and, except for the free jet model, by the state of the atmosphere (Section 4.5.2). So any calculation starts by selecting the correct calculation procedure according to release type.

## Step 1

H as the release a high initial momentum?

- Y es: U se the free jet model in Section 4.5.4.1. Check the validity of the model $1)$ by applying the conditions provided in formulae (4.71-4.72), and 2) by ensuring cross-wind (for vertical jets) has not bent the plume over in the region of interest (jet velocity should exceed ambient velocity by a factor of 10). If the model is not valid, proceed with steps $2,3,4$ or 5 .

If beyond the jet region atmospheric dispersion is of interest, proceed also with steps $2,3,4$ or 5 .

Step 2

- D etermine the roughness length of the area of interest, using T able 4.3, Section 4.5.2.1.

Step 3

- D etermine stability of the atmosphere by calculating the M onin Obukhov length and the friction velocity according to Sections 4.5.2.2, 4.5.2.3 and 4.5.2.4. It might be necessary to use the expressions provided in Section 4.5.2.1.

Step 4
D etermine whether the release will lead to a cloud denser than the ambient air.

- No: Proceed with step 5.
- Y es: Step 4.1

Is the release instantaneous?

- Yes: D ecide whether a fast solution or a complex solution is preferred.

F or a fast solution, proceed by using the Britter and $M$ cQuaid nomogram Figure 4.15 and Diagram 4.1, Section 4.5.5.1.
Otherwise, use the SL AB-model, Section 4.5.5.2, Diagram 4.10.

- $\quad$ Step 4.2

Is the release continuous?

- Yes: Step 4.2.1.

Is the release a vertical jet and this jet be ignored?

- Yes: U se the HMP-model, Section 4.5.4.2, to determine maximum plume rise and concentration.
Thereafter, couple the results with the SLAB-model (formulae 4.107-4.112, D iagram 4.6, Section 4.5.5.2), and proceed the calculation with the continuous SLABmodel (Diagram 4.4).
- No: D ecide whether a fast solution or a complex solution is preferred. For a fast solution, proceed by using the Britter and McQuaid nomogram Figure 4.17 and D iagram 4.2, Section 4.5.5.1.
Otherwise, use the SLAB-model, Section 4.5.5.2, Diagram 4.4.


## - $\quad$ Step 4.3

Is the release of finite duration?

- Y es: D ecide whether a fast solution or a complex solution is preferred. F or a fast solution, use the Britter and M cQ uaid nomograms and follow the instructions at the end of Section 4.5.4.1.
Otherwise, use the SLAB-model, Section 4.5.4.2, and follow the instructions related to Diagram 4.9.

Step 5

T he release is non-buoyant or positively buoyant.

- Step 5.1

Is the release instantaneous?

- Yes: Apply the Gaussian model as introduced in formula 4.52 and use Sections 4.5.3.1, 4.5.3.2, and 4.5.3.3. If necessary, apply formula 4.65 numerically to calculate flammable mass.
- Step 5.2

Is the release continuous?

- Yes: Apply the Gaussian model as introduced by formula 4.51 and use Sections 4.5.3.1, 4.5.3.2, and, if necessary, 4.5.3.4. Apply approximations 4.66-4.70 to calculate flammable mass.
- Step 5.3

The release is time-dependent.

- $\quad$ Apply the $G$ aussian model as introduced in formulae4.51 and 4.52. U se Sections 4.5.3.1, 4.5.3.2, and 4.5.3.3, but note the Sections 4.5.3.5 and 4.5.3.6. $U$ se formula 4.65 numerically to calculate the flammable mass.


### 4.5.2 Models to determine atmospheric stability and vertical variation of wind speed

Atmospheric stability is determined by the M onin-Obukhov length L and/or the Pasquill stability class.
$T$ his section provides techniques to calculate $M$ onin-O bukhov length $L$ from routine meteorological data (Section 4.5.2.2), from Pasquill stability class (Section 4.5.2.3), and over sea (Section 4.5.2.4).
First, however, in Section 4.5.2.1, methods to determine vertical variation of velocity and other relevant characteristics will be presented, as these are to be used during the calculation of stability in Section 4.5.2.2 and for application in dispersion models. Additional properties of the atmosphere are presented in Sections 4.5.2.5 through 4.5.2.6.

### 4.5.2.1 Calculation of vertical variation of velocity and temperature

The necessary data to calculate the vertical variation of wind speed are:

- wind speed at specified height z (e.g. at 10 m height);
- surface roughness length $z_{0}$, using $T$ able 4.3;
- an estimate of the $M$ onin-O bukhov length $L$, from Section 4.5.2.2.

The roughness length should be representative for the whole area over which dispersion calculations are performed. Of course, different values for $z_{0}$ may be used for different wind directions. It should also be noted that the upwind area has an influence on the turbulence characteristics of the atmosphere. T he atmosphere is in equilibrium with the (new) roughness length over a height of approximately one tenth of the down-wind distance from a change in roughness length.

The surface friction velocity $u_{*}$ can be calculated from velocity $u_{a}(z)$ at specified height $z$ as follows:
(if $z>100 \mathrm{~m}$; use $\mathrm{z}=100 \mathrm{~m}$ )

$$
\begin{equation*}
u_{*}=\kappa \cdot \frac{u_{a}(z)}{f\left(z / z_{0}, L\right)} \tag{4.30}
\end{equation*}
$$

(the determination of $L$ and $u_{*}$ is coupled. Section 4.5.2.2 provides methods to calculate $u_{*}$ and $L$ iteratively) and inversely the velocity at an arbitrarily height $z$ from the friction velocity:

$$
\begin{equation*}
\mathrm{u}_{\mathrm{a}}(\mathrm{z})=\frac{\mathrm{u}_{*}}{\kappa} \cdot \mathrm{f}\left(\mathrm{z}_{\left./ \mathrm{z}_{0}, \mathrm{~L}\right)} \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right)\right. \tag{4.31}
\end{equation*}
$$

(if $z>100 m ; u_{a}(z)=u_{a}(100 m)$ )
$\kappa$ is the $V$ on $K$ arman constant; $\kappa=0.4$. The function $f\left(Z / Z_{0}, L\right)$ is defined as:

$$
\begin{cases}f\left(z_{/} / z_{0}, L\right)=\ln \frac{z}{z_{0}}+5 \frac{\left(z-z_{0}\right)}{L} & \text { for } 1 / L>0 \\ f\left(z / z_{0}, L\right)=\ln \frac{z}{z_{0}}-\Psi\left(\frac{z}{L}\right)+\Psi\left(\frac{z_{0}}{L}\right) & \text { for } 1 / L \leq 0\end{cases}
$$

Here $\Psi\left(\frac{\mathrm{Z}}{\mathrm{L}}\right)=2 \ln \left(\frac{1+\Psi^{\prime}}{2}\right)+\ln \left(\frac{1+\Psi^{\prime 2}}{2}\right)-2 \arctan \left(\Psi^{\prime}\right)+\frac{\pi}{2}$

$$
\Psi^{\prime}=\left(1-16 \frac{z}{L}\right)^{1 / 4}
$$

Table 4.3 Terrain classification in terms of aerodynamical roughness length $z_{0}$, by Wieringa, [Holtslag, 1987])

| Class | Short terrain description | $\mathbf{z}_{\mathbf{o}}(\mathbf{m})$ |
| :---: | :--- | :--- |
| 1 | Open water, fetch ${ }^{1}$ ) at least 5 km | 0.0002 |
| 2 | Mud flats, snow; no vegetation, no obstacles | 0.005 |
| 3 | Open flat terrain; grass, few isolated obstacles | 0.03 |
| 4 | Low crops; occasional large obstacles, $\mathrm{x} / \mathrm{h}>20^{2)}$ | 0.10 |
| 5 | High crops; scattered obstacles, $15<\mathrm{x} / \mathrm{h}<20^{2)}$ | 0.25 |
| 6 | Parkland, bushes; numerous obstacles, $\mathrm{x} / \mathrm{h}<15^{2)}$ | 0.5 |
| 7 | Regular large obstacle coverage (suburb, forest) | $(1.0)^{3)}$ |
| 8 | City center with high- and low-rise buildings | $(3)^{3)}$ |

1) The upwind length over water should be at least 5 km .
${ }^{2)}$ Here x is a typical upwind obstacle distance and h the height of the corresponding major obstacles.
2) These values are rough indications. The presented dispersion models do not account for obstacle effects. The reader should also consult section 4.7.5.

For stable conditions, Section 4.5.2.2, it is necessary to calculate temperature differences in the surface layer. T hese are calculated as follows (for $1 / L>0$ ):

$$
\begin{equation*}
\mathrm{T}_{\mathrm{a}}\left(\mathrm{z}_{2}\right)-\mathrm{T}_{\mathrm{a}}\left(\mathrm{z}_{1}\right)=\frac{\mathrm{T}_{*}}{\kappa}\left\{\ln \left(\frac{\mathrm{z}_{2}}{\mathrm{z}_{1}}\right)+5 \frac{\mathrm{z}_{2}-\mathrm{z}_{1}}{\mathrm{~L}}\right\}-\Gamma_{\mathrm{d}}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \tag{K}
\end{equation*}
$$

$\Gamma_{\mathrm{d}}$ is the dry adiabatic lapse rate $\left(0.011 \mathrm{~K} \mathrm{~m}^{-1}\right) . \mathrm{T}_{*}$ is the turbulent temperature scale, to be calculated from the $M$ onin-Obukhov length-scale $L$ and surface friction velocity:

$$
\begin{equation*}
\mathrm{T}_{*}=\frac{\mathrm{u}_{*}^{2} \cdot \mathrm{~T}_{\mathrm{a}}}{\mathrm{\kappa gL}} \tag{K}
\end{equation*}
$$

Here $T_{a}$ is temperature at about 2 m height ( K ).
$N$ ote that these formulae are valid for let say $z>10 \cdot z_{0}$, meaning that $u_{a}>u_{*}$ in practical situations.

### 4.5.2.2 Calculation of Monin-O bukhov length from routine meteorological data

The input for calculation of $M$ onin-O bukhov length $L$ requires:

- cloud cover N ;
- wind speed at specified height $z_{u}$ (normally 10 m ), $u_{a}\left(z_{u}\right)$;
- temperature at specified height $z_{T}$ (normally 2 m ) $\mathrm{T}_{\mathrm{a}}$;
- roughness length $z_{0}$;
- solar elevation $\chi$ (from position, latitude and longitude, date and time, see Appendix 1);
- wet bulb temperature at $\mathrm{z}_{\mathrm{T}}$ (only for night-time condition) $\mathrm{T}_{\mathrm{w}}$.

The $M$ onin-O bukhov length can be calculated from the sensible heat flux $H_{0}$ when the surface friction velocity $u_{*}$ is known. (Normally, $L$ and $u_{*}$ need to be calculated iteratively.)

$$
\begin{equation*}
\left(L=-\frac{\rho_{\mathrm{a}} c_{p} T_{a} u_{*}^{3}}{\kappa g H_{o}}\right) p \tag{m}
\end{equation*}
$$

The next subsections will provide methods to estimate the sensible heat flux.
Alternatively, L can be determined from a Pasquill stability class (Section 4.5.2.3), or temperature difference with sea water (Section 4.5.2.4).

Estimate of sensible heat flux for day-time conditions
D uring day-time conditions, i.e. between local sunrise and sunset (where sunrise and sunset may be later or earlier, respectively, than the astronomical times due to shading by mountains), the sensible heat flux $\mathrm{H}_{0}$ is dependent on the net radiative heat flux $H_{r}$ at the surface. T herefore first the incoming solar radiation $H_{r s}$ is to be calculated depending on solar elevation $\chi$ and cloud cover N :

$$
\begin{equation*}
\mathrm{H}_{\mathrm{rs}}=\left(\mathrm{C}_{1} \cdot \sin \chi-\mathrm{C}_{2}\right) \cdot\left(1-0.75 \cdot \mathrm{~N}^{3.4}\right) \tag{4.36}
\end{equation*}
$$

Here $C_{1}=990 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, and $\mathrm{C}_{2}=30 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$.
Including incoming and outgoing long wave radiation the net radiation $H_{r}$ is calculated as

$$
\begin{equation*}
\mathrm{H}_{\mathrm{r}}=\left\{(1-\mathrm{e}) \cdot \mathrm{H}_{\mathrm{rs}}+\mathrm{C}_{3} \mathrm{~T}_{\mathrm{a}}^{6}-\sigma \cdot \mathrm{T}_{\mathrm{a}}^{4}+\mathrm{C}_{4} \cdot \mathrm{~N}\right\} / 1.12 \quad\left(\mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \tag{4.37}
\end{equation*}
$$

Here $\sigma$ is the Stefan-Boltzmann constant $\left(5.67 .10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right), \mathrm{C}_{3}=5.31 .10^{-13}$ $\mathrm{J} \mathrm{K}^{-6} \mathrm{~m}^{-2} \mathrm{~s}^{-1}, C_{4}=60 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, and $e$ the albedo. Values of $e$ are tabulated in T able 4.4.

Table 4.4 Albedo for various surfaces from Byrne et al. [1992]

| Surface | Albedo e |
| :--- | :--- |
| Soils (Dark, wet - Light, dry) | $0.05-0.40$ |
| Desert | $0.20-0.45$ |
| Grass (Long [1.0 m] - Short [0.02 m]) | $0.16-0.26$ |
| Agricultural crops | $0.18-0.25$ |
| Orchards | $0.15-0.20$ |
| Forests | $0.15-0.20$ |
| Decious (bare-leaved) | $0.05-0.15$ |
| $\quad$ Coniferous | $0.03-1.00$ |
| Water | $0.40-0.95$ |
| Snow (Old - Fresh) | $0.30-0.45$ |
| Ice | $0.20-0.40$ |
| Sea | 0.05 |
| Glacier | $0.20-0.45$ |
| Tarmac, Asphalt |  |
| Buildings |  |

The soil heat flux is estimated to be $10 \%$ of the net radiative heat flux; the remaining heat flux is divided between latent heat flux and sensible heat flux.

The sensible heat flux then reads:

$$
\begin{equation*}
H_{0}=\frac{(1-\alpha)+\gamma}{1+\gamma}\left(0.9 H_{r}\right)-C_{5} \alpha \quad\left(J \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \tag{4.38}
\end{equation*}
$$

H ere $C_{5}=20 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, and $\gamma$ is the ratio of specific heat of air at constant pressure to latent heat of evaporation of water, and to the rate of change of the saturation specific humidity with temperature (values of $\gamma$ are tabulated in T able 4.5).

Table 4.5 The dependency of the ratio $\gamma$ on temperature for standard pressure (= 1000 mbar)

| $\mathbf{T}_{\mathbf{a}}$ <br> $\left({ }^{\mathbf{C}} \mathbf{C}\right)$ | $\gamma$ |
| :---: | :---: |
| -5 | 2.01 |
| 0 | 1.44 |
| 5 | 1.06 |
| 10 | 0.79 |
| 15 | 0.60 |
| 20 | 0.45 |
| 25 | 0.35 |
| 30 | 0.27 |
| 35 | 0.21 |

$\alpha$, the moisture availability constant, depends on the surface moisture condition ( $0 \leq$ $\alpha \leq 1$ ). If sufficient moisture is available for evaporation, like a grass-covered surface in T he N etherlands, $\alpha=1$; for dry bare soil $\alpha=0$.

When temperature $T_{a}$ and sensible heat flux $H_{o}$ are known, $L$ and $u_{*}$ can be solved by iteration. The iteration starts by calculating $u_{*}$ for $1 / L=0$ (neutral condition). N ormally 3 iterations are sufficient to achieve an accuracy of 5\% in L.

E stimate of sensible heat flux for night-time conditions
Estimates of $M$ onin-Obukhov length $L$ and friction velocity $u_{*}$ for night-time conditions are also based on the surface heat fluxes. In this case the four terms in the heat balance, viz. the net long wave radiation $H_{r}$; the sensible heat flux $H_{0}$; the latent heat flux $\mathrm{H}_{ן}$; and the ground heat flux $\mathrm{H}_{g}$, which are all direct or indirect functions of $L$ and/or $u_{*}$, are to be calculated. T he total sum of heat fluxes needs to be zero, thus:

$$
\begin{equation*}
\mathrm{H}_{0}+\mathrm{H}_{\mathrm{l}}+\mathrm{H}_{\mathrm{g}}-\mathrm{H}_{\mathrm{r}}=0 \quad\left(\mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \tag{4.39}
\end{equation*}
$$

This can only be obtained by an iterative procedure, e.g. the method of regula falsi, for which $1 / L=0$ (neutral conditions) and $1 / L=1$ (extremely stable) are appropriate starting values.

For each step in the iterative procedure, $\mathrm{u}_{*}$ and $\mathrm{T}_{*}$ need to be calculated by means of formulae (4.30) and (4.34) from Section 4.5.2.1 above, using the current estimate of $L$ and using measured values of wind speed $u_{a}$, roughness length $z_{0}$, and temperature at so-called screen height (about 2 m ).
The scheme requires introduction of temperatures at different levels:
$\mathrm{T}_{\mathrm{a}}$ : temperature at 'screen height' (about 2 m ).
$\mathrm{T}_{\mathrm{w}}$ : wet bulb temperature at 2 m .
$T_{r} \quad: \quad$ temperature at reference height of 50 m .
$T_{0}$ : temperature at height of roughness length $z_{0}$.
$\mathrm{T}_{\mathrm{s}}$ : surface (vegetation) temperature.
$T_{r}$ and $T_{o}$ are calculated using the relation (4.33) from Section 4.5.2.1 $\mathrm{T}_{\mathrm{s}}$ can be calculated over land from:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{s}}=\mathrm{T}_{0}-\mathrm{T}_{*}\left(10+\frac{\mathrm{C}_{6}}{\mathrm{u}_{*}}\right) \tag{K}
\end{equation*}
$$

Here $\mathrm{C}_{6}=4.2 \mathrm{~m} \mathrm{~s}^{-1}$.
N ow the expressions for the four heat fluxes used in formula (4.39) will be given. It is useful to define an intermediate step, the so-called isothermal net long wave radiation $\mathrm{H}_{\mathrm{ri}}$ :

$$
\begin{equation*}
H_{r i}=-\sigma T_{r}^{4}\left(1-C_{7} \cdot T_{r}^{2}\right)+C_{8} N \quad\left(J^{-2} s^{-1}\right) \tag{4.41}
\end{equation*}
$$

where $\sigma$ is the Stefan Boltzmann constant, $\mathrm{C}_{7}=9.35 .10^{-6} \mathrm{~K}^{-2}, \mathrm{C}_{8}=60 \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, and N cloud cover.

The net long wave radiation $H_{r}$ is then:

$$
H_{r}=H_{r i}+4 \sigma T_{r}^{3}\left(T_{r}-T_{s}\right) \quad\left(\mathrm{J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)
$$

The sensible heat flux $\mathrm{H}_{\mathrm{o}}$ follows from (4.34) and (4.35):

$$
H_{o}=-\rho_{\mathrm{a}} \mathrm{c}_{\mathrm{p}} \mathrm{u}_{*} \mathrm{~T}_{*} \quad\left(\mathrm{~J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)
$$

Here $\rho_{a}$ is the density and $c_{p}$ the specific heat of air.

The ground heat flux $\mathrm{H}_{\mathrm{g}}$ follows from:

$$
\begin{equation*}
H_{g}=1.2\left(\frac{H_{r i}}{3}-\frac{H_{0}}{4}\right) \quad\left(\mathrm{J} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \tag{4.44}
\end{equation*}
$$

F inally, the latent heat flux is calculated by:

$$
\begin{equation*}
H_{I}=\frac{\frac{1}{1+\gamma}\left(H_{r}-H_{g}\right)+\rho_{a} c_{p}\left(T_{a}-T_{w}\right) K_{s} u_{*}}{\left(1+\frac{C_{9} \gamma}{1+\gamma} k_{s} u_{*}\right)} \quad\left(\mathrm{Jm}^{-2} \mathrm{~s}^{-1}\right) \tag{4.45}
\end{equation*}
$$

H ere $C_{9}=500 \mathrm{~m}^{-1} \mathrm{~s}, \gamma$ follows from $T$ able 4.5 and the transfer coefficient $\mathrm{k}_{\mathrm{s}}$ is defined by:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{s}}=\frac{\mathrm{T}_{*}}{\mathrm{~T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{s}}} \tag{-}
\end{equation*}
$$

N ow all terms in formula (4.39) are defined.

### 4.5.2.3 Calculation of Monin-Obukhov length from Pasquill-stability categories

G older [1972] has developed a scheme to relate Pasquill stability categories A-F to $M$ onin-Obukhov length $L$, using local surface rougness length. This relation is presented in a graph (Figure 4.11).

N umerically, the M onin-Obukhov length can be calculated from the Pasquill stability categories as follows:

$$
\begin{equation*}
1 / L=\frac{1}{L_{s}} \cdot \log _{10}\left(\frac{Z_{0}}{Z_{s}}\right) \tag{4.47}
\end{equation*}
$$

$$
\left(m^{-1}\right)
$$

F or $0.001 \leq \mathrm{z}_{0} \leq 0.5 \mathrm{~m}_{\mathrm{s}}$ and $\mathrm{z}_{\mathrm{s}}$ are constants, depending on the Pasquill stability class according to T able 4.6. For $\mathrm{z}_{0}>0.5 \mathrm{~m}$, the M onin-Obukhov length calculated for $z_{0}=0.5 \mathrm{~m}$ should be used. F or Pasquill stability class $D$, formula 4.47 leads to $1 / L=0$.


Figure 4.11 Graph proposed by Golder [1972] to relate Pasquill classes to Monin-Obukhov length and surface roughness

Table 4.6 Calculation of Monin-Obukhov length from
Pasquill-stability categories

| Pasquill stability | $\mathbf{L}_{\mathbf{s}}(\mathbf{m})$ | $\mathbf{z}_{\mathbf{s}}(\mathbf{m})$ |
| :---: | :---: | :---: |
| A | 33.162 | 1117 |
| B | 32.258 | 11.46 |
| C | 51.787 | 1.324 |
| D | $\infty$ | (not applicable) |
| E | -48.330 | 1.262 |
| F | -31.325 | 19.36 |

### 4.5.2.4 Determination of stability over sea

A stability criterion for wind over sea is provided by H su [1992]. 'Sea' is defined as a water surface of a depth of at least 1 m and an upwind distance to the shore of at least 5 km (see also Table 4.3). Stability depends on the wind speed (at 10 m height) and the temperature difference between the air and the sea water, which are routinely observed. The results are obtained graphically (see Figure 4.12).


Figure 4.12 Graph proposed by Hsu [1992] to relate Pasquill stability classes and MoninObukhov length over sea to the temperature difference between the air and the sea water

### 4.5.2.5 Mixing height

M ixing height $h_{i}$ depends on stability. The recommendations for mixing height are summarised in T able 4.7. U se needs to be made of the so-called C oriolis parameter f , defined as:

$$
\begin{equation*}
f=2 \Omega \sin \varphi \tag{-1}
\end{equation*}
$$

with $\Omega$ the earth's rotation ( $7.27 \cdot 10^{-5} \mathrm{~s}^{-1}$ ) and $\varphi$ the latitude of position on earth (about $51^{\circ}$ for T he N etherlands).

Also the friction velocity $u_{*}$ and $M$ onin-Obukhov length $L$ need to be known. The mixing height is then given by T able 4.7.

Table 4.7

| $\mathbf{1 / L}$ | Pasquill | $\mathbf{h}_{\mathbf{i}}(\mathrm{m})$ |
| :---: | :---: | :---: |
|  |  |  |
| 0 | F,E,D | $0.4 \sqrt{\frac{\mathrm{u}_{*}}{\mathrm{f}} \mathrm{L}}$ |
| 0 | D | the smallest value of |
|  |  | $0.2 \mathrm{u} / \mathrm{f}$ or 500 m |
| $<0$ | C | 1000 |
|  | B | 1500 |
|  | A | 1500 |

### 4.5.2.6 Standard deviation of turbulent velocities

Some of the calculations of dispersion parameters in the Gaussian plume models require the use of the standard deviations of turbulent velocities in vertical direction ( $\sigma_{w}$ ) and cross-wind direction ( $\sigma_{v}$ ). Preferably, use should be made of measured values. Otherwise, use can be made of the following expressions:

$$
\begin{cases}\sigma_{v}=1.9 u_{*} \sqrt{1-\frac{h}{h_{i}}} & \text { for } 1 / L>0  \tag{4.49}\\ \sigma_{v}=u_{*} \sqrt{0.35\left(\frac{h_{i}}{-\kappa L}\right)^{2 / 3}+\left(3.6-\frac{h}{h_{i}}\right)} & \left(\mathrm{m} \mathrm{~s}^{-1}\right)\end{cases}
$$

The friction velocity $u_{*}$ follows from stability and wind speed, see Section 4.5.2.1, but a minimum value of $u_{*}$ of $0.6 / \ln \left(10 / z_{0}\right)$ should be used to maintain turbulence during low wind speed conditions. $h$ is plume height and $h_{i}$ the mixing height (Section 4.5.2.4).

It should be noted that these expressions provide hourly average values of $\sigma_{v}$.

$$
\begin{cases}\sigma_{w}=1.30 u_{*}\left(1-\frac{h}{h}\right)^{3 / 4} & \text { for } 1 / L>0 \\ & \left(\mathrm{~m} \mathrm{~s}^{-1}\right)  \tag{4.50}\\ \sigma_{w}=u_{*} \sqrt{1.5\left(\frac{h}{v}\right)^{2 / 3} \exp \left(\frac{-2 h}{1}\right)+\left(1.7-\frac{h}{r}\right)} & \text { for } 1 / L \leq 0\end{cases}
$$

### 4.5.3 Passive dispersion

For passive dispersion, use is made of the G aussian plume model (GPM). The GPM is valid for dispersion calculations over flat, uniform terrain. It can be applied to a short distance from the release down to a distance corresponding to 3 hours of travel time (see section 4.7.2).

The general expression for a continuous release is

$$
\begin{equation*}
c(x, y, z)=\frac{q}{u_{a}} F_{y}(x, y) F_{z}(x, z) \quad\left(\mathrm{kg} \mathrm{~m}^{-3}\right) \tag{4.51}
\end{equation*}
$$

where $q$ is the (semi) continuous release rate and $u_{a}$ the wind velocity at plume height h (if the plume height is less than 10 m , the wind speed at 10 m should be used).

The expression for an instantaneous or short-duration release is:

$$
\begin{equation*}
c(x, y, z, t)=Q F_{x}(x, t) F_{y}\left(t u_{a}, y\right) F_{z}\left(t u_{a}, z\right) \tag{4.52}
\end{equation*}
$$

The functions $F_{y}$ and $F_{z}$ in both equations are the same, although the averaging-time applied for $F_{y}$ will be different in both cases.

In the following sections, the functions $F_{y}, F_{z}$, and $F_{x}$ will be presented.

### 4.5.3.1 Lateral dispersion

The expression $\mathrm{F}_{\mathrm{y}}(\mathrm{x}, \mathrm{y})$ which accounts for lateral (cross-wind) dispersion is calculated as follows:

If lateral dimensions of the source are zero:

$$
\begin{equation*}
F_{y}(x, y)=\frac{1}{\sqrt{2 \pi} \sigma_{y}(x)} \cdot \exp \left(-\frac{y^{2}}{2 \sigma_{y}^{2}(x)}\right) \tag{4.53a}
\end{equation*}
$$

$$
\left(m^{-1}\right)
$$

If lateral width of the source is $2 \mathrm{~b}_{\text {oy }}>0$ :

$$
F_{y}(x, y)=\frac{1}{4 b_{o y}}\left\{\operatorname{erf}\left(\frac{b_{o y}-y}{\sqrt{2} \sigma_{y}(x)}\right)+\operatorname{erf}\left(\frac{b_{o y}+y}{\sqrt{2} \sigma_{y}(x)}\right)\right\}
$$

[^5]The error function $\operatorname{erf}(x)$ is defined as $\operatorname{erf}(x)=2 / \sqrt{\pi} \int_{0}^{x} \exp \left(-t^{2}\right) d t$.
N umerical approximate solutions can be found for instance in Press et al. [1986]. An reasonable analytical approximation is given by

$$
\operatorname{erf}(x) \approx \frac{x}{|x|} \cdot \sqrt{1-e^{-\frac{4 x^{2}}{\pi}}}
$$

### 4.5.3.2 Vertical dispersion

The expression $F_{z}(x, z)$ which accounts for vertical dispersion is calculated as follows:

If vertical dimensions of the source are zero and if $\underline{\sigma_{\mathrm{z}}(\mathrm{x})<0.6 . \mathrm{h}_{\mathrm{i}} \sqrt{1-\mathrm{h} / \mathrm{h}_{\mathrm{i}}} \text { : }}$

$$
\begin{equation*}
F_{z}(x, z)=\frac{1}{\sqrt{2 \pi} \sigma_{z}(x)} \cdot\left\{\exp \left(-\frac{(z-h)^{2}}{2 \sigma_{z}^{2}(x)}\right)+\exp \left(-\frac{(z+h)^{2}}{2 \sigma_{z}^{2}(x)}\right)\right\} \quad\left(m^{-1}\right) \tag{4.57a}
\end{equation*}
$$

If the vertical dimension of the source is $\underline{2 . b_{0 z}>0}$ and
$\sigma_{\mathrm{z}}(\mathrm{x}) \leq 0.6 \mathrm{~h}_{\mathrm{i}} \sqrt{1-\mathrm{h} / \mathrm{h}_{\mathrm{i}}}:$

$$
\begin{align*}
F_{z}(x, z)= & \frac{1}{4 b_{o z}}\left\{\operatorname{erf}\left(\frac{b_{o z}-z+h}{\sqrt{2} \sigma_{z}(x)}\right)+\operatorname{erf}\left(\frac{b_{o z}+z-h}{\sqrt{2} \sigma_{z}(x)}\right)+\right. \\
& \left.+\operatorname{erf}\left(\frac{b_{o z}-z-h}{\sqrt{2} \sigma_{z}(x)}\right)+\operatorname{erf}\left(\frac{b_{o z}+z+h}{\sqrt{2} \sigma_{z}(x)}\right)\right\} \tag{-1}
\end{align*}
$$

If $0.6 h_{i} \sqrt{1-h / h_{i}}<\sigma_{z}(x) \leq 1.6 h_{i}$ :

$$
\begin{aligned}
F_{z}(x, z)= & \frac{1}{\sqrt{2 \pi} \sigma_{z}(x)}\left\{\exp \left(-\frac{\left(2 h_{i}-h-z\right)^{2}}{2 \sigma_{z}^{2}(x)}\right)+\exp \left(-\frac{\left(2 h_{i}-h+z\right)^{2}}{2 \sigma_{z}^{2}(x)}\right)\right. \\
& +\exp \left(-\frac{(z-h)^{2}}{2 \sigma_{z}^{2}(x)}\right)+\exp \left(-\frac{(z+h)^{2}}{2 \sigma_{z}^{2}(x)}\right) \\
& \left.+\exp \left(-\frac{\left(2 h_{i}+h-z\right)^{2}}{2 \sigma_{z}^{2}(x)}\right)+\exp \left(-\frac{\left(2 h_{i}+h+z\right)^{2}}{2 \sigma_{z}^{2}(x)}\right)\right\} \quad\left(m^{-1}\right)
\end{aligned}
$$

1) $\sigma_{z}(x)$ should be read as: ' $\sigma_{z}$ as a function of $x$ '.

$$
\text { If } \frac{\sigma_{z}(x)>1.6 h_{i}:}{F_{z}(x, z)=\frac{1}{h_{i}}}
$$

F ormula (4.57c) accounts for reflection of plume material at the mixing height, formula ( 4.57 d ) assumes the plume material to be uniformly distributed in the mixed layer. In these cases the effects of finite source dimensions are negligible.

### 4.5.3.3 Along-wind dispersion

F or instantaneous releases at time $t=0$, the term $F_{x}$ which accounts for along-wind dispersion is calculated as follows:

If longitudinal dimensions of the source are zero:

$$
\begin{equation*}
F_{x}(x, t)=\frac{1}{\sqrt{2 \pi} \sigma_{x}\left(u_{a} t\right)} \exp \left(-\frac{\left(x-u_{a} t\right)^{2}}{2 \sigma_{x}^{2}\left(u_{a} t\right)}\right) \tag{-1}
\end{equation*}
$$

If longitudinal dimension of the source is $2 \mathrm{~b}_{\mathrm{ox}}>0$ :

$$
\begin{equation*}
F_{x}(x, t)=\frac{1}{4 b_{o x}}\left\{\operatorname{erf}\left(\frac{b_{0 x}-x+u_{a} t}{\sqrt{2} \sigma_{x}\left(u_{a} t\right)}\right)+\operatorname{erf}\left(\frac{b_{o x}+x-u_{a} t}{\sqrt{2} \sigma_{x}\left(u_{a} t\right)}\right)\right\} \quad\left(m^{-1}\right) \tag{4.59b}
\end{equation*}
$$

(here, t is time since release)
F or short duration releases with total emission $Q$ during a release time from $t=0$ to $t=t_{r}$, Bianconi and T amponi [1993] derived the following approximate solution (the solution is exact in case the dispersion parameters are proportional to the square root of diffusion constant times travel time):
for $0<t<t_{r}$ :

$$
\begin{align*}
& F_{x}(x, t)=\frac{1}{2 u_{\mathrm{a}} t_{r}}\left\{\operatorname{erf}\left(\frac{x}{\sqrt{2} \sigma_{x}(x)}\right)-\right. \\
&\left.\quad \operatorname{erf}\left(\frac{x-u_{\mathrm{a}} t}{\sqrt{2} \sigma_{x}(x)}\right)\right\} \tag{-1}
\end{align*}
$$

[^6]For $t \geq t_{r}$ :

$$
\begin{align*}
F_{x}(x, t)= & \frac{1}{2 u_{a} t_{r}}\left\{\operatorname{erf}\left(\frac{x-u_{a}\left(t-t_{r}\right)}{\sqrt{2} \sigma_{x}\left(u_{a} t\right)}\right)-\right. \\
& \left.\quad \operatorname{erf}\left(\frac{x-u_{a} t}{\sqrt{2} \sigma_{x}\left(u_{a} t\right)}\right)\right\} \tag{4.60b}
\end{align*}
$$

### 4.5.3.4 Dispersion parameters

## Continuous source

## 1. Practical formulae for $\sigma_{\mathbf{y}}$ and $\sigma_{\mathbf{z}}$

For practical calculations $\sigma_{y}$ and $\sigma_{z}$ are approximated as follows [C ommissie TNO, 1976]:

$$
\begin{aligned}
& \sigma_{y}(x)=a \cdot x^{b} \\
& \left.\sigma_{z}(x)=c \cdot x^{d} \quad \text { (adjusted for } 100 \text { to } 10^{4} m\right)
\end{aligned}
$$

For $a, b, c$ and $d$ the values according to $T$ able 4.8 are applicable:

Table 4.8 Parameters for the calculation of $\sigma_{y}$ and $\sigma_{z}$, adjusted according to ref. 1,2,3.

|  |  | a | b | c | d |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Very unstable | (A) | 0.527 | 0.865 | 0.28 | 0.90 |
| Unstable | (B) | 0.371 | 0.866 | 0.23 | 0.85 |
| Slightly unstable | (C) | 0.209 | 0.897 | 0.22 | 0.80 |
| Neutral | (D) | 0.128 | 0.905 | 0.20 | 0.76 |
| Stable | (E) | 0.098 | 0.902 | 0.15 | 0.73 |
| Very stable | (F) | 0.065 | 0.902 | 0.12 | 0.67 |

N otes:

1. $\sigma_{\mathrm{y}}$ to be taken as 10-minutes average
2. $\sigma_{\mathrm{z}}$ for $\mathrm{z}_{0}=0.1 \mathrm{~m}$ and $\mathrm{h}<20 \mathrm{~m}$
3. $\mathrm{X}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$ in meters

Nb : If it is necessary to consider distances smaller than 100 meters in the calculation, it is best to interpolate linearly between 0 and the value of $\sigma$ at 100 meters.

## 2. Correction for the roughness length $\mathrm{z}_{0}$

Reference [Pasquill and Smith, 1983] gives a method for taking into account the roughness of the earth's surface and, in particular, the effect of it on the dispersion in the z-direction.

The roughness also includes overgrowth, cultivations and building. In Table 4.9; $\sigma_{z}$ is given for $z_{0}=0.1 \mathrm{~m}$. F or other roughness lengths a correction factor according to ref. [P asquill and Smith, 1983] is used. H owever, the calculation is made with the aid of a formula according to ref. [Commissie TN O, 1976]:

$$
\begin{aligned}
& C_{z_{0}}=\left(10 \cdot z_{0}\right)^{0.53 \cdot x^{-0.22}} \\
& \sigma_{z}(x)=C_{z_{0}} \cdot c \cdot x^{d}
\end{aligned}
$$

T able 4.9 gives some representative values for $\mathrm{z}_{0}$.

| Flat land | (f.i. polder land with few trees) | $\mathrm{z}_{0}=\mathrm{ca} 0.03 m$. |
| :--- | :--- | :--- |
| Farm land | (f.i. airfield, aqricultural land, polder with many trees) | $\mathrm{z}_{0}=\mathrm{ca} 0.10 m$. |
| Cultivated land | (f.i. glass-house land, open area with much <br> overgrowth, scattered houses) | $\mathrm{z}_{0}=$ ca. 0.30 m |
| Residential land | (f.i. area with densely located but low buildings, <br> wooded area, industrial area with obstacles which are <br> not to high) | $\mathrm{z}_{0}=$ ca. 1.0 m |
| Urban land | (f.i. a big city with high buildings, industrial area with <br> high obstacles) | $\mathrm{z}_{0}=$ ca. 3.0 m |

Since $C_{z 0}$ depends on $x$, it will be easier and even necessary, for most applications, to calculate, for a given value of $z_{0}$, new values for $c$ and $d$, so that with equation: $\sigma_{z}(x)=c . x^{d}$ one can immediately obtain the corrected values of $\sigma_{z}$ (see T able 4.9).

Table $4.9 \quad$ Values of $c^{\prime}$ and $d^{\prime}$ for various values of $z_{0}$.

|  |  | $\mathbf{z}_{\mathbf{0}}=\mathbf{0 . 0 3} \mathbf{m}$ |  | $\mathbf{z}_{\mathbf{0}}=\mathbf{0 . 1} \mathbf{m}$ |  | $\mathbf{z}_{\mathbf{0}}=\mathbf{0 . 3} \mathbf{m}$ |  | $\mathbf{z}_{\mathbf{0}}=\mathbf{1} \mathbf{m}$ |  | $\mathbf{z}_{\mathbf{0}}=\mathbf{3} \mathbf{m}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{c}^{\prime}$ | $\mathbf{d}^{\prime}$ |
| Very unstable | (A) | 0.193 | 0.932 | 0.28 | 0.90 | 0.383 | 0.873 | 0.550 | 0.842 | 0.760 | 0.814 |
| Unstable | (B) | 0.160 | 0.881 | 0.23 | 0.85 | 0.317 | 0.822 | 0.455 | 0.792 | 0.631 | 0.763 |
| Slightly unstable | (C) | 0.155 | 0.830 | 0.22 | 0.80 | 0.308 | 0.771 | 0.441 | 0.740 | 0.612 | 0.712 |
| Neutral | (D) | 0.139 | 0.791 | 0.20 | 0.76 | 0.276 | 0.732 | 0.395 | 0.701 | 0.548 | 0.673 |
| Stable | (E) | 0.104 | 0.761 | 0.15 | 0.73 | 0.207 | 0.702 | 0.296 | 0.671 | 0.411 | 0.643 |
| Very stable | (F) | 0.083 | 0.701 | 0.12 | 0.67 | 0.164 | 0.642 | 0.236 | 0.611 | 0.327 | 0.583 |

N b: All of the values can be approximated by the use of the two equations below:

$$
\begin{aligned}
& c^{\prime}=c \cdot 1.98^{\log \left(10 \cdot z_{0}\right)} \\
& d^{\prime}=d-0.059 \cdot \log \left(10 \cdot z_{0}\right)
\end{aligned}
$$

The new values of $c$ and $d$ will be then called $c^{\prime}$ and $d^{\prime}$ in the text, whereby the following applies to $\sigma_{z}$ :

$$
\sigma_{z}(x)=c^{\prime} \cdot x^{d^{\prime}}
$$

## 3. Correction for the mean time of a measurement

If we take a snap shot of a smoke plume we see a band winding erratically (as the hatched part in Figure 4.13). If, however, we were to take an exposure lasting, let us say, 10 minutes, much of the effort of the winding (the 'meandering') would be "averaged out" and we would see a much broader and more regular plume.


Figure 4.13 Schematic representation of a plume. The hatched part is a snap-shot, the wider contour an average over 10 minutes.

This effort influences measurements and the quantity which a person breathes-in. If a short-duration measurement is taken in an instantaneous position of the plume, a high concentration is registered. If, however, an average value is determined at the same location over a period of, for instance, 10 minutes or an hour, the concentration will be substantially lower. T his can be approximately brought into the calculation by introducing a correction factor $\mathrm{C}_{\mathrm{t}^{\prime}}$ as follows:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{t}^{\prime}}=\left(\frac{\mathrm{t}^{\prime}}{600}\right)^{0.2}\left(\mathrm{t}^{\prime} \text { in seconds }\right) \\
& \sigma_{\mathrm{y}}(\mathrm{x})=\mathrm{C}_{\mathrm{t}^{\prime}} \cdot \mathrm{a} \cdot \mathrm{x}^{\mathrm{b}}
\end{aligned}
$$

Nb : T his correction is consequently only applicable to $\sigma_{\mathrm{y}}$.
$\sigma_{y}$ cannot, however, be smaller than the value for an instantaneous source (see next section). The factor $\mathrm{C}_{\mathrm{t}^{\prime}}$ has a minimum value of about 0.5 .

## Instantaneous source

## 4. Practical formulae for $\sigma_{\mathbf{x l}}, \sigma_{\mathbf{y l}}$ and $\sigma_{z l}$

$\sigma_{\mathrm{xI}}, \sigma_{\mathrm{yI}}$ and $\sigma_{\mathrm{zI}}$ are described by the equations:

$$
\begin{aligned}
& \sigma_{x l}(x)=e_{1} \cdot x^{f_{1}} \\
& \sigma_{y l}(x)=a_{1} \cdot x^{b_{1}} \\
& \sigma_{z 1}(x)=c_{1} \cdot x^{d_{1}}
\end{aligned}
$$

The data in the literature for these variables are clearly scarcer than those for continuous sources. Values for $\sigma_{\mathrm{xI}}$, determined partly theoretically, partly experimentally, are given in the references [Beals, 1971], [D rivas and Shair, 1974], [Saffman, 1962], [T yldesley and W allington, 1965] and [C hatwin, 1968]. In view of the limited nature of the data, it is all put together by taking the same $\sigma_{\mathrm{xI}}$ for all stability classes $(=0.13 \cdot x)$. T he values of $\sigma_{\mathrm{yI}}$ are in the initial stage based on reference [Slade, 1968], with a small adjustment in order to avoid discrepancies with the value for $\sigma_{y}$ in case of an continuous source. The value of $\sigma_{z I}$ is chosen equal to the one of a continuous source, since the correction for the average-time hardly plays a role in this case and because of the fact that close to the ground the vertical "meandering" is repressed by the presence of the ground surface. In reference [H anna, Briggs and H osker, 1982] a comparison is made between continuous and instantaneous sources. There it is found that the standard radial deviation of the concentration ( $\sigma$ ) of an instantaneous cloud is proportional to the age of the cloud increased by the power of $3 / 2$. F or large times $\sigma$ (instantaneous) approaches the value of $\sigma$ (continuous), so that the values of the sigmas previously described and practical to apply can be used.

C onsequently, we arrive at the following values for the constants:

$$
\begin{array}{ll}
e_{1}=0.13 & f_{1}=1 \\
a_{1}=a / 2 & b_{1}=b \\
c_{1}=c & d_{1}=1
\end{array}
$$

The correction factor $\mathrm{C}_{\mathrm{t}^{\prime}}$ is obviously hereby not applicable. T he correction factor $\mathrm{C}_{\mathrm{z} 0}$ for $\sigma_{z}$ is applicable. The values obtained with the help of the above constants are applicable at ground level. F or $\sigma_{\mathrm{xI}}$, in particular, it must be considered that $\sigma_{\mathrm{xI}}$ is strongly dependent on the height of the source since it is primarily influenced by the increase of the wind with the height. Also hereby it is more practical, in most cases, for the $z_{0}$ from which we want to initiate our calculations, to determine first the corrected values of $c_{I}$ and $d_{I}$.

### 4.5.3.5 Sources with finite dimensions

In Sections 4.5.3.1 and 4.5.3.2 solutions are presented for situations in which a continuous source has merely cross-wind or vertical dimensions.

For merely along-wind dimensions $2 \mathrm{~b}_{\text {ox, }}$ the GPM -solution (Gaussian Plume M odel) for a continuous release is:

$$
\begin{equation*}
c(x, y, z)=\int_{\left(x-b_{o x}\right)}^{\left(x+b_{o x}\right)} \frac{q}{2 b_{o x} u_{a}} F_{y}\left(x^{\prime}, y\right) F_{z}\left(x^{\prime}, z\right) d x^{\prime} \quad\left(k g ~ m^{-3}\right) \tag{4.62}
\end{equation*}
$$

It appears that al ready at a short distance the effect of $b_{0 x}$ becomes small.
For line sources which are not oblique or parallel to the wind, the line source should be discretised in a large number of point sources.

For area sources with arbitrary shapes, the area can be divided into a number of crosswind line sources.

### 4.5.3.6 Sources with time-dependent release rates

A source for which the release rate varies with time can be dealt with by integrating a series of instantaneous releases with a released mass $q(t) d t$ over the time of release:

$$
\begin{array}{r}
c(x, y, z, t)=\int_{0}^{\infty} q\left(t^{\prime}\right) F_{x}\left(x, t-t^{\prime}\right) F_{y}\left(\left(t-t^{\prime}\right) u_{a}, y\right) F_{z}\left(\left(t-t^{\prime}\right) u_{a}, z\right) d t^{\prime} \\
\left(k g ~ m^{-3}\right) \tag{4.63}
\end{array}
$$

### 4.5.3.7 Considerations with respect to semi-continuous or time-dependent releases

At a short distance from a release which has a constant release rate $q$ over a finite release time $t_{r}$, one will observe for a certain time a plume as if it were a continuous release with the same release rate q .
In contrast, at a large distance, even a release over a fairly long period will be observed as a single 'puff'.
Although the expressions ( $4.60 \mathrm{a}, \mathrm{b}$ ) and (4.63) are correct and applicable to all distances, one may simplify the calculations, as in the former ' $Y$ ellow Book', by using the formula (4.51) for continuous sources up to a down-wind distance where

$$
\begin{equation*}
\sigma_{x}(x)<0.13 u_{a} t_{r} \tag{m}
\end{equation*}
$$

(4.64a),
whereas formula (4.52) for pure instantaneous releases may be used for distances beyond where

$$
\begin{equation*}
\sigma_{x}(x)>1.3 u_{a} t_{r} \tag{m}
\end{equation*}
$$

These simplifications reduce the complexity and time consumption of the calculations but introduce considerable continuity problems for $C(x, y, z, t)$ in the down-wind axis $(0<x<\infty)$.

### 4.5.3.8 Calculation of the total mass of contaminant between Lower and Upper Flammability Limit

In order to assess the impact of delayed ignition of a cloud of inflammable material, it is necessary to calculate the total mass of inflammable material between LFL and UFL.

The general methodology for any type of source or release is as follows:

$$
\begin{align*}
& x_{|f|} y_{|f|} z_{f \mid}  \tag{4.65}\\
& Q_{e x}(t)=\iint_{0} \int_{-y_{|f|}} f(x, y, z, t) d x d y d z, \tag{kg}
\end{align*}
$$

where the function $f(x, y, z, t)$ is defined as follows:

$$
\left\{\begin{array}{l}
f(x, y, z, t)=c(x, y, z, t) \text { if } L F L<c(x, y, z, t)<U F L \\
f(x, y, z, t)=0 \text { elsewhere. }
\end{array}\right.
$$

(F or continuous releases, the dependency on time vanishes.)
Here, the concentration has to be calculated by the appropriate representation, depending release mode and source dimensions. F or these calculations the lateral dispersion parameter $\sigma_{y}(x)$ for instantaneous plume cross-sections must be used!

In general, this integral needs to be solved numerically, in discretised form. The evaluation of the integral of (4.65) starts in practice by finding the maximum LFLdistance $x_{|f|}$, the maximum cloud width to LFL, $y_{|f|}$, and the maximum cloud height to LFL, $z_{|f|}$. In order to obtain practical values for these upper boundaries for integration, some methods will be provided to estimate the contour to the LFL, by use of approximate analytical solutions.

F or a continuous point source at ground level, the down-wind distance to the LFL can be calculated as:

$$
\begin{equation*}
x_{|f|, \text { ground }}=\left\{\frac{q}{\pi 0.3 \sigma_{v} f_{z 1}\left(z_{0}, L\right) c_{|f|}}\right\}^{\frac{1}{f_{z 2}(L)+1}} \tag{m}
\end{equation*}
$$

Here $c_{|f|}$ denotes the $L F L$ concentration, $f_{z 1}\left(z_{0}, L\right)$ and $f_{z 2}(L)$ follow from (4.58).
It should be noted that for an elevated plume which has not yet touched the ground, the LFL at centre-line is reached at a shorter distance:

$$
\begin{equation*}
x_{|f|, \text { elevated }}=x_{|f|, \text { ground }}\left(\frac{1}{2}\right)^{\frac{1}{f_{22}(\mathrm{~L})}} \tag{m}
\end{equation*}
$$

For plumes which have touched the ground, $x_{|f|}$ will be between $x_{|f|, e l e v a t e d}$ and $\mathrm{X}_{\mathrm{IfI}, \text { ground }}$.
$N$ ote that we consider the plume to touch the ground if $2 \times \sigma_{z}>h$.
The cross-wind distance to LFL at the ground can be calculated for elevated plumes and plumes at the ground by:

$$
\begin{equation*}
y_{|f|}(x)=\sigma_{y}(x) \sqrt{2 \ln \left(\frac{c(x, 0,0)}{c_{|f|}}\right)} \tag{m}
\end{equation*}
$$

where $c(x, 0,0)$ is the concentration at ground level below the plume centre-line.

In the previous approximations of LFL-contours, one may include initial source dimensions by means of a virtual source distance. The virtual source distances $x_{v y}$ and $x_{v z}$ follow from the implicit relations:

$$
\begin{equation*}
\sigma_{y}\left(x_{v y}\right)=\frac{b_{o y}}{2.15}, \quad \sigma_{z}\left(x_{v z}\right)=\frac{b_{o z}}{2.15} \tag{4.68}
\end{equation*}
$$

A conservative estimate for $x_{|f|}$ can be obtained by substracting the smaller value of $x_{v y}$ or $x_{v z}$ from $x_{|f| \text {, ground }}$ or $x_{|f| \text {,elevated }} y_{|f|}(x)$ can be obtained by using $\sigma_{y}\left(x+x_{v y}\right)$ and $\sigma_{z}\left(x+x_{v z}\right)$ instead of $\sigma_{y}(x)$ and $\sigma_{z}(x)$ in (4.67) (including in the calculation of $c(x, 0,0))$.

F or continuous point sources, the mass $Q_{\text {ex }}$ between UFL and LFL can be obtained from an approximate analytical solution:

$$
\begin{equation*}
\frac{\mathrm{Q}_{\mathrm{ex}}}{\mathrm{q}}=\frac{\mathrm{f}_{\mathrm{z} 2}(\mathrm{~L})+1}{\mathrm{f}_{\mathrm{z} 2}(\mathrm{~L})+2} \frac{\mathrm{x}_{\mathrm{If\mid}}-\mathrm{x}_{\mathrm{ufl}}}{\mathrm{u}_{\mathrm{a}}} \tag{s}
\end{equation*}
$$

$\mathrm{X}_{\mathrm{ufl}}$ can be calculated similar as $\mathrm{X}_{\mathrm{ffl}}$.

1) $\quad \sigma_{y}(x)$ should be read as: ' $\sigma_{y}$ as a function of $x$ '.

F or sources with initial dimension, but for which $x_{v y} \sim x_{v z}=x_{v}$, this solution is:
$N$ ote that $Q_{e x} / q=0$ if $x_{|f|}=0$, which will be the case when the initial concentration is lower than $\mathrm{x}_{\mathrm{If} \mid}$.

### 4.5.4 Models for jets, plumes and plume rise

### 4.5.4.1 The free turbulent jet model

The aim of this section is to explain the jet model of Chen and R odi [1980], which has been selected for the description of gas releases in a uniform quiescent atmosphere. The source is axially symmetric, with a radius $b_{0}$ and a uniform outflow velocity $u_{0}$ in vertical direction. The model is valid for gases which can be approximated to be incompressible, i.e. the release velocity should be less than about one-third of the speed of sound under ambient pressure. In cases where buoyancy can be neglected, the requirement on the initial direction of the release can be omitted. The formulation of flow development is based on the self-preserving properties of jet releases, which is discussed in Section 4.3.4. In a self-preserving flow, simple expressions exist for the centre-line velocity and concentration of the released chemical compound. Chen and Rodi determine common values for the empirical constants in the expressions. They define empirical conditions under which a jet model is applicable, and give expressions for the distribution functions of physical quantities in the lateral cross-sections of the flow (i.e., perpendicular to the mean flow axis).
The dynamical similarity of positively buoyant jets is a good approximation as long as

$$
\begin{equation*}
\mathrm{s}<0.5 \cdot \mathrm{~b}_{\mathrm{o}} \sqrt{\mathrm{Fr}}\left(\rho_{0} / \rho_{\mathrm{a}}\right)^{1 / 4} \tag{m}
\end{equation*}
$$

where Fr is the (densimetric) Froude number, $\rho_{0}$ and $\rho_{\mathrm{a}}$ are the densities of respectively the initial chemical compound and air, $b_{0}$ is the radius of the source and $s$ is the axial distance to the hypothetical point source with the same flow characteristics as the real source. T he F roude number was already defined in Section 4.3.4 as a measure for the relative importance of initial momentum and weight deficit.

$$
\begin{equation*}
F r=\frac{\rho_{0}}{\left|\rho_{\mathrm{a}}-\rho_{0}\right|} \frac{u_{0}^{2}}{2 b_{0} g} \tag{-}
\end{equation*}
$$

H ere $u_{0}$ is the exit velocity from the source.
The condition (4.71) implies that the model is only usable in cases in which inertial forces dominate over buoyant forces.
The no wind condition of the free jet model applied to vertical or cross-wind releases is equivalent to assuming that the centre-line velocity is much larger than the ambient wind velocity, typically by a factor of 10 . In other situations, simple expressions for the flow quantities do not exist, and calculations have to be done with plume rise formulae (see Section 4.5.4.2), the Gaussian plume model (Section 4.5.3) and integral models like the SLAB computer model (Section 4.5.5.2).

The distribution functions, or profiles, are functions only of the nondimensional cross-flow coordinate $\mathrm{y} / \mathrm{s}$. The experimental observations show that the velocity and concentration profiles are approximately Gaussian after the potential core at a distance $\mathrm{s}_{\mathrm{s}}$ ( see T able 4.10) has disappeared:

$$
\begin{align*}
& u(y / s) / u_{c}(s)=\exp \left(-c_{y u}(y / s)^{2}\right)  \tag{-}\\
& c(y / s) / c_{c}(s)=\exp \left(-c_{y c}(y / s)^{2}\right) \tag{4.73}
\end{align*}
$$

$u_{c}(s)$ and $c_{c}(s)$ are the centre-line values, and $C_{y u}$ and $C_{y c}$ are empirical constants that determine the profile width. T he concentration of the chemical compound is defined in parts per unit volume relative to atmospheric level, i.e. it is the difference between the local value and the value in air. The width constants turn out to be different for jets and plumes.

N on-buoyant jets
$N$ on-buoyant jets are defined as releases of a chemical compound whose density $\rho_{0}$ is equal to the density $\rho_{\mathrm{a}}$ of ambient air. The collection of experimental data sets in the review of $C$ hen and Rodi consists mainly of this type of release. Some typical aspects were observed in the data sets:

- In most of the experiments, the locations of the real (circular) source and the virtual point source of the model do not coincide, i.e. the real source is located at a distance $+\left(s_{0}\right)$. A good approximation is to take $s_{0}=0$.
- In lateral direction, the concentration profiles are broader than the corresponding velocity profiles.
- Close to the source, the potential core is still visible in the jet profile. T he distance $\mathrm{s}_{\mathrm{s}}$ from the origin to the region of established flow can be derived from the location, where the jet profiles in lateral direction become Gaussian and (4.73) and (4.74) become valid. A good approximation is to take $S_{S} / b_{0}=25$.
The jet flow in the region of established flow is described by the set of equations
$u_{c}(s) / u_{0}=C_{u} b_{o} / s$
$c_{c}(s) / c_{o}=C_{c} b_{0} / s$
$\mathrm{C}_{0}$ is the concentration of the initial chemical compound. A number of empirical constants occur in the model: $\mathrm{C}_{\mathrm{u}}, \mathrm{C}_{\mathrm{c}}, \mathrm{C}_{\mathrm{yu}}, \mathrm{C}_{\mathrm{yc}}, \mathrm{s}_{0}$ and $\mathrm{s}_{\mathrm{s}}$, and their values are given in T able 4.10 for the non-buoyant jet model of $C$ hen and $R$ odi. The values for $\mathrm{C}_{u}, \mathrm{C}_{\mathrm{c}}$, $\mathrm{C}_{\mathrm{yu}}$ and $\mathrm{C}_{\mathrm{yc}}$ are recommendations, whereas for $\mathrm{s}_{0}$ and $\mathrm{s}_{\mathrm{s}}$ also the range of observed values is indicated.


## B uoyant jets

Buoyant jets have an initial density $\rho_{0}$ which is different from the density $\rho_{\mathrm{a}}$ of ambient air. The expressions 4.74-4.77 are still valid as long as condition 4.73 is satisfied. T he empirical constants $\mathrm{C}_{u}, \mathrm{C}_{c}, \mathrm{C}_{\mathrm{yu}}$ and $\mathrm{C}_{\mathrm{yc}}$ can then be obtained from the values for a non-buoyant jet in Table 4.10. Chen and Rodi [1980] suggest in their monograph to correct the constants for density effects:

$$
\begin{align*}
& C_{c}^{\prime}=\sqrt{\frac{\rho_{a}}{\rho_{0}}} C_{c}  \tag{-}\\
& C_{u}^{\prime}=\sqrt{\frac{\rho_{0}}{\rho_{a}}} C_{u}
\end{align*}
$$

A vertical negatively buoyant jet rises to a maximum height $s_{h}$ and then falls back on itself. C hen and Rodi give an equation for the height:

$$
\begin{equation*}
s_{h}=4.11 \sqrt{F r} b_{0} \tag{m}
\end{equation*}
$$

Also for negatively buoyant jets the formulae 4.74-4.79 are valid as long as $\mathrm{s} \leq \mathrm{s}_{\mathrm{h}}$.

Table 4.10 Empirical constants in the non-buoyant jet model of Chen and Rodi [1980]

| non-buoyant jet |  |  |
| :--- | ---: | :--- |
| $\mathrm{C}_{\mathrm{u}}$ | 6.2 |  |
| $\mathrm{C}_{\mathrm{c}}$ | 5 |  |
| $\mathrm{C}_{\mathrm{yu}}$ | 94 |  |
| $\mathrm{C}_{\mathrm{yc}}$ | 57 |  |
| $\mathrm{~S}_{\mathrm{o}} / \mathrm{b}_{\mathrm{o}}$ | 0 | (range -6 to 6) |
| $\mathrm{s}_{\mathrm{s}} / \mathrm{b}_{\mathrm{o}}$ | 25 | (range 20 to 30) |

Zone limits for ignition and explosive contents
The limiting distances for the ignition of a jet release are determined by the upper and lower flammability level of the chemical compound. A conservative estimate of the safe distance is obtained by equating the concentration on the jet axis to the lower flammability level $c_{|f|}$. The safe distance $s_{|f|}$ for jets and plumes can then be derived from the equation 4.76, and taking into account (4.79):

$$
\begin{equation*}
s_{\mathrm{If} 1}=\min \left(b_{0} C_{c}^{\prime} \frac{c_{0}}{c_{\mathrm{Ifl}}}, s_{h}\right) \tag{m}
\end{equation*}
$$

The width of the lower flammability level isocontour can be derived from the equations 4.74, and 4.73. F or jets they are given by

$$
\begin{equation*}
y_{l f 1, j e t}(s)=\left(s / \sqrt{C_{y c}}\right) \sqrt{\ln \left(\frac{b_{0}}{s} C_{c}^{\prime} \frac{c_{0}}{c_{|f|}}\right)} \tag{4.81}
\end{equation*}
$$

(m)
$N$ ote that the equation is invalid in the region of flow establishment, close to the source ( $\mathrm{s}<\mathrm{s}_{\mathrm{s}}$ ).
The explosive contents of jets and plumes is obtained by integrating over the volume between the upper and lower flammability isocontours. The mathematical formulation for the mass contents of the chemical compound is

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{ex}}=\frac{\pi \rho_{o} \mathrm{~b}_{0}^{3}\left(\mathrm{C}_{\mathrm{c}}^{\prime}\right)^{3} \mathrm{C}_{0}}{6 \mathrm{C}_{\mathrm{yc}}}\left[\left(\frac{\mathrm{C}_{0}}{\mathrm{C}_{|f|}}\right)^{2}-\left(\frac{\mathrm{C}_{0}}{\mathrm{C}_{\mathrm{uf\mid}}}\right)^{2}\right] \tag{kg}
\end{equation*}
$$

$N$ ote, that in this paragraph $c_{0}, c_{u f l}$ and $c_{\mid f l}$ are to be used in parts per unit volume. If $\mathrm{c}_{\mathrm{o}}<\mathrm{c}_{\mathrm{uf\mid}}$ the last term between the brackets vanishes. If $\mathrm{c}_{\mathrm{o}}<\mathrm{c}_{\mathrm{If\mid}}$ then $\mathrm{Q}_{\mathrm{ex}}=0$.

### 4.5.4.2 Models for jets and plumes in ambient wind

This section discusses the model of H oot, M eroney and Peterka [H M P, 1973] for the dispersion of negatively buoyant plumes, and Briggs formulae [1969] regarding positively buoyant plumes. The models describe the plume trajectory, with emphasis on the development in the region of plume rise. T he discussion is based on the one-dimensional integral plume theory, and on the analytical expressions which are derived from simplified versions of this theory. The basic assumptions of the theory are explained in Section 4.3.4. The model is valid for gases which can be approximated to be incompressible, i.e. the release velocity should be less than onethird of the speed of sound under ambient pressure.

The model of H oot, M eroney and Peterka
N egatively buoyant jets and plumes injected vertically into a cross-wind initially loft to some maximum height, subsequently descend to the ground, impact to the ground with a nearly circular cross-sectional configuration, and then spread laterally as they disperse down-wind (see Figure 4.14).


Figure 4.14 The development phases of lofted plumes for a dense gas: initial plume rise, plume sinking and touch-down, development of a slumped grounded plume

The integral model of H oot, M eroney and Peterka [1973] assumes a cross-wind of constant velocity, and tophat profiles for the velocity, the density and the temperature inside the plume. The entrainment due to atmospheric turbulence is not taken into account, so the model is invalid in the far field. H oot et al. do not solve the equations numerically. Instead they divide the plume path in regions and then obtain in each region analytical solutions of the conservation equations, i.e. sets of equations that describe the plume development. H oot et al. determined the values of the empirical constants by a comparison of model results with wind-tunnel experiments.
The first set of equations describes the important quantities during plume rise. The down-wind distance to maximum plume rise is estimated in the HMP model as

$$
\begin{equation*}
x_{r}=\min \left(\frac{\rho_{0} u_{o} u_{a}}{g\left(\rho_{o}-\rho_{a}\right)}, 23.3 b_{o} \frac{u_{0}}{u_{a}}\right) \tag{m}
\end{equation*}
$$

$g$ is the gravity constant, $u_{0}$ and $\rho_{0}$ are the velocity and the density of the chemical compound at the stack exit, and $\rho_{\mathrm{a}}$ is the density of ambient air. In the H M P model the plume rise $\Delta h_{r}$ is given by

$$
\begin{equation*}
\Delta h_{r} / b_{o}=2.10\left(x_{r} / b_{o}\right)^{1 / 3}\left(u_{0} / u_{a}\right)^{2 / 3} \tag{-}
\end{equation*}
$$

$\mathrm{b}_{0}$ is the radius of the stack exit. N ote that a similar dependency on the down-wind distance $x$ and the wind velocity $u_{a}$ is obtained in Section 4.3.4 for the plume rise of a non-buoyant jet. T he peak concentration $c_{r}$ of the chemical compound at maximum plume rise is

$$
\begin{equation*}
c_{r} / c_{0}=6.09\left(b_{0} / \Delta h_{r}\right)^{1.85}\left(u_{0} / u_{a}\right) \tag{-}
\end{equation*}
$$

The second set of equations in the HM P model describes the important quantities during plume touch-down to the ground. The location $x_{g}$ of the maximal ground concentration is given in the H M P model by

$$
\begin{equation*}
x_{g}-x_{r}=0.28\left(\left(\left(h_{s}+2 \Delta h_{r}\right)^{3}-\Delta h_{r}^{3}\right) / b_{o}\right)^{1 / 2}\left(\rho_{a} / \rho_{o}\right)^{1 / 2}\left(x_{r} / b_{o}\right)^{1 / 2}\left(u_{a} / u_{0}\right) \tag{m}
\end{equation*}
$$

$h_{s}$ is the height of the stack. At touch-down the surface peak concentrations $c_{g}$ are of the order

$$
\begin{equation*}
c_{g} / c_{0}=9.4\left(b_{0} /\left(h_{s}+2 \Delta h_{r}\right)\right)^{1.95}\left(u_{0} / u_{a}\right) \tag{-}
\end{equation*}
$$

(4.87).

The surface concentration decreases from the touch-down value as the plume material is transported down-wind and gradually approaches the behaviour of a ground source.

The B riggs formulae for plume rise
In the simplified integral trajectory theory discussed by D avidson [1989] the rise of a positively buoyant plume, neglecting momentum rise, is related to the down-wind distance ( $x$ ) by a 2/3-power law. Briggs [1969] has derived the empirical constants in the plume rise relations by measuring plume rises from conventional stacks in calm and windy, thermally stratified atmospheres. The equation for the plume trajectory according to Briggs is

$$
\begin{equation*}
\Delta h_{B}(x)=1.60 F_{o}^{1 / 3} x^{2 / 3} / u_{a} \tag{m}
\end{equation*}
$$

Here, $u_{\mathrm{a}}$ is the wind speed at release height, with a minimum of 10 m .
$F_{o}$ is the buoyancy flux factor, defined as

$$
\begin{equation*}
\mathrm{F}_{0}=\mathrm{gb}_{\mathrm{o}}^{2} \mathrm{u}_{0}\left(1-\frac{\rho_{0}}{\rho_{\mathrm{a}}}\right) \tag{4.89}
\end{equation*}
$$

Briggs states that in a neutral or unstable atmosphere (Pasquill-classes A, B, C and D ) the plume final rise occurs at

$$
\begin{array}{lll}
x_{r}=C_{1} \cdot F_{0}^{5 / 8} & \text { if } & F_{0} \leq 55 \mathrm{~m}^{4} / \mathrm{s}^{3}  \tag{4.90}\\
x_{r}=C_{2} \cdot F_{0}^{2 / 5} & \text { if } & F_{0}>55 \mathrm{~m}^{4} / \mathrm{s}^{3}
\end{array}
$$

Here, $C_{1}=49 \mathrm{~m}^{-3 / 2} \mathrm{~s}^{15 / 8}$, and $C_{2}=119 \mathrm{~m}^{-3 / 5} \mathrm{~s}^{6 / 5}$.
The plume final rise is obtained by substitution of the equation $4.90\left(x_{r}\right)$ in equation 4.88 .

For a release in a stable atmosphere (Pasquill-classes E and F) it is advised to employ a relation from the $D$ utch $N$ ational $M$ odel. The $N$ ational $M$ odel states that full rise occurs at

$$
\begin{equation*}
x_{r}=C_{3} u_{a} \tag{m}
\end{equation*}
$$

Here, $C_{3}=87 \mathrm{~s}$.

Equation 4.91 is valid as long as the vertical temperature gradient at heights between 10 and 200 m in the atmosphere is on average $-0.0065 \mathrm{~K} / \mathrm{m}$, which corresponds to a temperature gradient as observed under neutral conditions (Pasquill-class D) in T he N etherlands.

For low wind velocities in a neutral or unstable atmosphere, the calculation of the plume rise with the equations 4.88-4.90 gives values which are larger than the measured values. Therefore a rule of thumb has been set, stating that in neutral or unstable conditions the calculated plume rise must not exceed the plume rise calculated for stable conditions. In cases where the rule is violated, the equation 4.91 for stable conditions should be applied.

Briggs [1969] has also derived expressions for plume rise dominated by momentum forces, under conditions of neutral atmospheric stability. T hey are:

$$
\begin{align*}
& \Delta \mathrm{h}_{\mathrm{M}}=6 \mathrm{~b}_{\mathrm{o}} \mathrm{u}_{\mathrm{o}} / \mathrm{u}_{\mathrm{a}}  \tag{4.92}\\
& \text { and }
\end{align*}
$$

$$
x_{r}=23.3 b_{o} u_{0} / u_{a}
$$

In cases where both the initial momentum and buoyancy contribute to the final plume rise, it is calculated according to

$$
\begin{equation*}
\Delta h_{r}=\left(\Delta h_{B}^{3}+\Delta h_{M}^{3}\right)^{1 / 3} \tag{m}
\end{equation*}
$$

Trajectory and dilution predictions from simple integral plume theory
T he flow diagram in Section 4.5.1 shows that plume rise formulae are used to provide the initial conditions for more complex dispersion models. In some cases it will be necessary to predict the concentration distribution of the release during plume rise. This can be calculated in a 3-step procedure with the simple model discussed by D avidson [1989].

First, the plume trajectory is calculated for all down-wind distances $x$ during plume rise, by means of equation 4.84 for negatively buoyant jets and by means of equations 4.92 (for plume rise $\Delta h_{M}$ due to momentum), 4.88 and 4.93 for neutral or positively buoyant jets. The local height $h(x)-h_{s}$ is obtained from these equations by replacing $x_{r}$ by .

The radius at other down-wind distances can be calculated by:

$$
\begin{equation*}
b(x)=b_{o} \sqrt{\frac{\rho_{0} u_{0}}{\rho_{\mathrm{a}} u_{a}}}+0.41\left(h(x)-h_{s}\right) \tag{m}
\end{equation*}
$$

Finally, for a concentration distribution with a tophat shape the cross-sectional averaged concentration can be calculated by:

$$
\begin{equation*}
c(x) / c_{0}=\left(b_{0} / b(x)\right)^{2}\left(u_{0} / u_{a}\right) \tag{-}
\end{equation*}
$$

( N ote the similarity of the model equation 4.95 with the empirical equations 4.85 and 4.88 for the peak concentrations in the H M P model).

The total mass of inflammable material can be calculated by the general expression 4.65 .

### 4.5.5 Dense gas dispersion models

The purpose of this section is 3-fold:

1. To give a scientific description of 2 models for dense gas dispersion, i.e. the Workbook of Britter and M cQuaid [1988], and the SLAB computer model [Ermak, 1990]. The description treats the scientific aspects in detail, or refers to the open literature in cases where such a treatment would be too extensive.
2. To indicate the sensitivity, robustness, reliability and restrictions of the algorithms in the 2 models.
3. To provide the user with the same information in order to allow for an effective use of the model, including the preparation of input data and interpretation of the model output.
In other words, the contents of the section is an assessment of the algorithms in the models from a physical point of view, and a discussion of the connection between the in/output parameters of the models and the physical concepts in dense gas atmospheric dispersion.
The 2 models are developed for use in different situations:

- The Britter and McQuaid Workbook contains a set of nomograms which represent the concentration decay in releases from a continuous point source and an instantaneous cubic source, as a function of down-wind distance. It is useful for calculations with an indicative purpose.
- The SLAB computer code should be applied in more advanced dense gas dispersion studies. It describes the concentration in a cloud or plume by solving a 1-dimensional set of conservation equations for mass, chemical compound concentration, energy and the 3 components of momentum. $T$ he source can be a horizontal or vertical jet, a steady state surface area source, or an instantaneous release.


### 4.5.5.1 The Britter and McQuaid model

The model of Britter and McQuaid consists of empirical correlations between a set of independent variables that determine the gross properties of the dense gas dispersion process. The correlations are presented in an extensive W orkbook which has been written by Britter and M cQ uaid [1988] in order to enable non-specialists to prepare estimates of the dispersion of pollutant dense gas emissions. The simplicity of the model imposes restrictions on its applicability. The primary aim of the model is to enable estimates of:

- average concentration levels along the plume axis, for continuous releases, and
- maximum concentration levels along the down-wind cloud path, for instantaneous releases.
In addition, Britter and McQuaid give rules of thumb to estimate isoconcentration contours.
The correlations are based on the method of dimensional analysis which has been presented in Section 4.3.5.1. It is shown there that the dimensional analysis gives the most compact results when the continuous and instantaneous releases are treated separately. T his approach is also followed in the Britter and $M$ cQuaid (BM ) model.


Figure 4.15 Nomograms for instantaneous releases, according to the Workbook of Britter and McQuaid. Note: the curves correspond to the indicated values of $c_{\max } / c_{0}$.

## C orrelations for instantaneous releases

The BM model consists of a collection of curves for down-wind maximum concentrations $c_{\text {max }} / c_{0}$ in the range between 0.001 and 0.1 , which provide the functional behaviour of $x / v_{0}^{1 / 3}$ versus $u_{a}{ }^{2} /\left(g_{0}{ }_{0} V_{0}^{1 / 3}\right)$ :

$$
\begin{equation*}
x / V_{0}^{1 / 3}=f_{i}\left[\sqrt{\left(g_{0}^{1} v_{0}^{1 / 3} / u_{a}^{2}\right)}\right] \tag{-}
\end{equation*}
$$

The symbols in equation 4.96 have already been defined in Section 4.3.5.1. Figure 4.15 is a graphical presentation of the curves, or nomograms, in the BM model. The nomograms were derived from widely-accepted field test data (usually referred to as 'Porton D own' and 'T horney Island') and from windtunnel data (see the W orkbook of Britter and $M$ cQuaid, for more detailed information).

It is noted that the dimensionless parameter $u_{a}{ }^{2} /\left(g_{0} V_{0}{ }^{1 / 3}\right)$ is transformed in equation 4.96 so that its range of values for the used field and laboratory experimental data is of the order of unity: $0.7<\sqrt{\left(\mathrm{g}_{0}^{\prime} \mathrm{V}_{\mathrm{o}}^{1 / 3} / \mathrm{u}_{\mathrm{a}}^{2}\right)}<10$.
The reference wind velocity $u_{a}$ is taken at a height of 10 m . Concentration values are intended to be valid for the ensemble-average of the maximum of short-time ( 0.6 s ) mean concentrations. H ere 'ensemble-average' means that the fluctuations, which occur between successive experiments due to changes in the atmospheric conditions and in the in-cloud conditions, are averaged out.

As already mentioned in the introduction, the BM cloud model was developed in order to calculate the down-wind maximum concentration values on the path of the cloud centre. T his enables a conservative estimate to be made of the safe distance for ignition or intoxication in all directions. The Workbook of Britter and M cQuaid describes another procedure in order to determine the safe distances (in other words, the isocontours) with greater precision. It consists of 3 steps:


Figure 4.16 Approximations for isoconcentration contours of instantaneous releases, according to the Workbook of Britter and McQuaid

1. Calculate the down-wind distance $x$ to the safe concentration level with the nomograms of the BM cloud model;
2. Calculate the arrival time $t$ of the cloud at $x$ from the relation
$x=0.4 u_{a} t+b(t)$
where $0.4 u_{a}$ is an empirical estimate of the advection velocity, and $b$ is the cloud radius. It is given by

$$
\begin{equation*}
\mathrm{b}(\mathrm{t})=\sqrt{\mathrm{b}_{0}^{2}+1.2 \mathrm{t} \sqrt{\left(\mathrm{~g}_{0}^{\prime} \mathrm{V}_{0}\right)}} \tag{m}
\end{equation*}
$$

(4.98).
$b_{0}$ is the radius of the cloud at the source. N ote that the mean height of the cloud follows from:
$b_{z}(t)=c_{0} V_{0} /\left(\pi b(t)^{2} c_{\max }(t)\right)$
(4.99).
3. The radius $\mathrm{b}(\mathrm{t})$ is al so the half-width of the cloud at time t . T he complete contour of the safe concentration consists of a parabola which encloses the source and is closed off by a circular portion of radius $b(t)$ at the down-wind end (see F igure 4.16).

The 3 steps in the estimation of safe distances are summarised in F low diagram 4.1.

## Diagram 4.1 Estimation of safe distances for an instantaneous release



## Correlations for continuous releases

The BM model consists of a collection of curves for down-wind mean concentrations $C_{\text {mean }} / C_{0}$ in the range between 0.002 and 0.1 , which provide the functional behaviour of $x \sqrt{\left(u_{a} / v_{0}\right)}$ versus $u_{a}^{5 / 2} /\left(g_{0}^{\prime} \sqrt{v_{0}}\right)$ :

$$
\begin{equation*}
x / \sqrt{\left(v_{0} / u_{a}\right)}=f_{c}\left[\left(\left(g_{0}^{\prime}\right)^{2} v_{0} / u_{a}^{5}\right)^{1 / 5}\right] \tag{-}
\end{equation*}
$$

The symbols in equation 4.108 have already been defined in Section 4.3.5.1. Figure 4.17 is a graphical presentation of the curves, or nomograms, in the BM model. The nomograms have been derived from widely-accepted field test data (usually referred to as 'T horney Island', 'M aplin Sands' and 'China L ake'; the last one consists of 2 campaigns, named Burro and Coyote) and from windtunnel data (see the W orkbook of Britter and M cQuaid for more detailed information).


Figure 4.17 Nomograms for continuous releases, according to the Workbook of Britter and McQuaid. Note: the curves correspond to the indicated values of $c_{\text {mean }} / c_{0}$.

It is noted that the dimensionless parameter $u_{a}^{5 / 2} /\left(g_{0}^{\prime} \sqrt{v_{0}}\right)$ is transformed in equation 4.100 so that its range of values for the used field and laboratory experimental data is of the order of unity: $0<\left(\left(g_{0}^{\prime}\right)^{2} v_{0} / u_{a}^{5}\right)^{1 / 5}<4$. The reference wind velocity $u_{a}$ is taken at a height of 10 m . Concentration values are long-time (order of 10 min ) averages, so greater concentrations are possible over short times due to fluctuations in concentration. Britter and McQuaid suggest that short-duration averaged concentrations can be a factor 1.6 higher than $\mathrm{C}_{\text {mean }}$.
A conservative estimate of the safe distance for ignition or intoxication in all directions is obtained by calculating the down-wind mean concentration values on the plume axis. The W orkbook of Britter and M CQ uaid describes another procedure in order to determine the safe distances with greater precision. It describes the plume by means of empirical expressions for the cross-wind plume area, and consists of 3 steps:


Figure 4.18 Approximations for isoconcentration contours of continuous releases, according to the Workbook of Britter and McQuaid

1. Calculate the down-wind distance $x$ to the safe concentration level with the nomograms of the BM plume model,
2. Calculate the upwind extension $x_{u}$ of the plume, given by
$\mathrm{x}_{\mathrm{u}}=\mathrm{b}_{\mathrm{o}}+2 \mathrm{~L}_{\mathrm{b}}$
(m)
where $b_{0}$ is the source radius.
$L_{b}=v_{0} g_{0} / u_{a}{ }^{3}$
(m)
3. The down-wind growth of the lateral plume width $b(x)$ is given by
$b(x)=2 b_{0}+8 L_{b}+2.5 L_{b}{ }^{1 / 3} x^{2 / 3}$
The isocontour can then be calculated from equation 4.103, with an upwind cutoff at $x_{u}$, and a down-wind cut-off at $x$ (see Figure 4.18).

The 3 steps in the estimation of safe distances are summarised in flow diagram 4.2.


If it is assumed that the down-wind advection velocity is $u_{a}$, then the height $h$ of the plume can be calculated from:

$$
\begin{equation*}
b_{z}(x)=v_{0} /\left(2 u_{a} b(x)\right) \tag{m}
\end{equation*}
$$

## Releases of limited duration

In the BM model, a release is considered as effectively steady at a down-wind location $x$, when the duration $t_{r}$ is larger than $2.5 x / u_{a}$.

In this case the plume model in Figure 4.17 is applied. The BM cloud model in Figure 4.15 is applicable to releases with a duration less than $0.6 \times / u_{a}$.

When $t_{r}$ is between these boundaries, the nomograms for instantaneous or continuous releases are not directly applicable. In this case the W orkbook of Britter and M cQ uaid recommends the following 3-step procedure for the calculation of the concentration value at a down-wind location x :

1. Assume that the release is instantaneous, with a total volume $V_{0}$, and calculate the maximum concentration.
2. Assume that the release is continuous, with a release rate $v_{0}=V_{0} / t_{r}$, and calculate the mean concentration.
3. The smaller of the concentration estimates in the steps 1 and 2 provides the upper bound on the concentration for the finite-duration release.

The 3 steps in the estimation of concentration levels for finite-duration releases are summarised in flow diagram 4.3.


### 4.5.5.2 The SLAB computer model

T he SLAB model is based on the concepts for air entrainment into a dense gas cloud and the subsequent gravity spread of the cloud, which were originally presented by Zeman [1982]. The formalism is an extension of the shallow layer theory, which is described in Section 4.3.5. The implementation into a computer code and the further development of the concepts of Zeman have been carried out by Ermak and Chan [1988, 1990] at Lawrence Livermore N ational Laboratory, U SA. SLAB can treat continuous, finite duration and instantaneous gas releases from ground level area sources and jet flows. Though the model was designed for heavier-than-air releases, it will also simulate cloud dispersion of non-buoyant releases, and even lofting clouds in cases where the cloud becomes lighter than air. T he range of applicability is similar to that of the G aussian Plume $M$ odel (see section 4.5.3).

## Continuous releases

When the duration of the release is sufficiently long for the settling of a steady state in the down-wind area, the SLAB model performs a calculation for a continuous release.
This implies that the set of conservation equations, which is solved, is averaged over the cross-wind area A of the plume. As the source release rate q drops to zero, the release changes from a plume into a cloud; the discussion of such finite-duration releases is deferred until later in this section. T he calculation for a continuous release consists of 5 steps, which are summarised in the flow diagram 4.4. The initial conditions are defined by the source term parameters. The SLAB model solves the set of governing cross-wind-averaged equations and subsequently performs a correction for the meandering wind (see Section 4.2.3). The concentration distribution $c(x, y, z)$ in 3 dimensions is obtained by means of a transformation, which matches the cross-wind-averaged parameters with realistic lateral and vertical profile functions. Finally the effect of the averaging-time $t_{a v}$ can be included in order to estimate toxic doses or to simulate the response of a sensor.

Diagram 4.4 The dispersion calculation for a continuous release in the SLAB model


Source terms
The flow diagram 4.5 presents the source terms in the SLAB mode, for continuous releases. Since source modelling is already described in C hapters 2 and 3, the present discussion is only concerned with the aspects which are relevant for the SLAB model.

Diagram 4.5 Source conditions for a continuous release


The evaporating pool release: The release is produced by a ground-level area source of finite duration, and its initial form (as long as the source is active) is that of a steadystate plume. T he source material consists of pure vapour, with a temperature that is
equal to the boiling point of the chemical compound. In cases where the source area A is not known, it is calculated from the evaporation rate $u_{0}$ using the equation

$$
\begin{equation*}
A=q /\left(\rho_{0} u_{0}\right) \tag{4.105}
\end{equation*}
$$

$q$ is the input mass source rate and $\rho_{0}$ is the vapour density at the boiling point temperature of the chemical compound.
The horizontal jet: The source is an area perpendicular to the ambient wind direction, and its outflow direction is pointing down-wind. T he source material consists of a single chemical compound, which may be partially liquid and partially vapour. The vapour fraction is input. T he jet temperature is also input, but this may not be below the boiling point of the chemical compared. The height of the source is an input parameter.
The vertical jet: The source is an area source and the source velocity is vertical, in upward direction. T he source material consists of a single chemical compound, which may be partially liquid and partially vapour, similar to the horizontal jet. T he height of the source is an input parameter. Since the SLAB dispersion model can not handle cross-wind releases, the initial rise and down-wind bending of the jet release is simulated with the 1-dimensional integral model of Hoot , M eroney and Peterka [H oot, 1973]. T he shallow layer dispersion algorithm is used to describe the sinking of the bent-over lofted plume, the touch-down phase, the slumped plume phase and the far field behaviour. The procedure in SLAB to couple the HM P model output results to the input requirements of the shallow layer plume dispersion algorithm is presented below. N ote that it is different, and more complex, than the procedure recommended in Section 4.5.4.2, formula (4.95).
T he procedure consists of 3 steps:

- The peak concentration $c_{r}$ at maximal plume rise is calculated with the HM P model, and then the cross-wind-averaged concentration $c\left(x_{r}\right)$ is obtained from the equation (note here c is to be expressed in parts per unit volume):

$$
\begin{equation*}
c\left(x_{r}\right)=\left(0.524\left(1-c_{r}\right)+c_{r}\right) c_{r} \tag{-}
\end{equation*}
$$

In the derivation of this equation it is assumed that the concentration profile is G aussian, so that the cross-wind-averaged concentration is 0.524 times the peak value. The additional terms in the equation are needed to ensure that $\mathrm{c} \leq 1$ for large values of $c_{r}$.

- The HM P model assumes that the velocity of the bent-over plume is equal to the ambient wind velocity $u_{a}$. A correction is applied in SLAB for high density releases, where the down-wind plume velocity can be considerably smaller than $u_{a}$. It is:

$$
\begin{equation*}
u\left(x_{r}\right)=0.5 u_{a}\left(1-m-2 C_{f}+\left((1-m)^{2}+4 m C_{f}\right)^{1 / 2}\right) /\left(1-C_{f}\right) \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right) \tag{4.107}
\end{equation*}
$$

$C_{f}$ is a friction coefficient, with a value of 0.02 , and $m$ is the mass concentration, defined as:
$m=\mu_{s} c\left(x_{r}\right) /\left(\mu_{a}+\left(\mu_{s}-\mu_{a}\right) c\left(x_{r}\right)\right)$
$\mu_{\mathrm{s}}$ and $\mu_{a}$ are molecular weights of the chemical compound and ambient air respectively. The conversion from volume concentration $\mathrm{c}\left(\mathrm{m}^{3} / \mathrm{m}^{3}\right)$ to mass
concentration in ( $\mathrm{kg} / \mathrm{kg}$ ) is needed because the internal calculations in SLAB are done in 'm'.

- To complete the description of the plume at the point of maximum plume rise, the plume half-width $b$, the height and centre height $h$ need to be determined. First the area of the plume cross-section at maximum plume rise is obtained from the equation
$A_{r}=q /(\rho u m)$
$\left(m^{2}\right)$
(4.109).
$q$ is the mass flow rate of the source. It is assumed that the half-height is $60 \%$ of the half-width:
$b_{y}=1.2 b$
(m)
(4.110).
$\mathrm{b}_{\mathrm{y}}=\max \left(\sqrt{\left(\mathrm{A}_{\mathrm{r}} / 2.4\right)}, \mathrm{b}_{o}\right)$
(m)
(4.111).

T he plume centre height at maximal plume rise is $h\left(x_{r}\right)=h_{s}+\Delta h_{r}$.
The procedure is summarised in the F low diagram 4.6.
In the region of plume rise, the trajectory $\left(x, z_{c}\right)$ of the plume centre is described by the equation of an ellipse:

$$
\begin{equation*}
\left(1-x / x_{r}\right)^{2}+\left(h / \Delta h_{r}-h_{s} / \Delta h_{r}\right)^{2}=1 \tag{-}
\end{equation*}
$$

Diagram 4.6 Coupling of the HMP-model and the SLAB-model


For dispersion calculations of non-buoyant or positively buoyant releases it is preferred to use the simple Gaussian plume model (Section 4.5.3), possibly in combination with Briggs plume rise formulae (Section 4.5.4), instead of the algorithms in the SLAB model.

The equations for a continuous release
The cross-wind-averaged plume properties are calculated in the SLAB model by numerical integration of the governing equations.
T he set of equations consists of:

- Cross-wind-averaged conservation equations of the total mass, the mass of the released chemical compound material, the momentum vector and the energy.
- Equations for the width and height of the plume.
- The equation of state, and other thermodynamic equations.

The equations are solved by an integration in discrete steps in the down-wind coordinate. Since the temperature, the density and the vapour/liquid fraction in the plume are highly coupled quantities, the conservation equation of energy and the thermodynamic equations are solved together. This is done using $N$ ewton's iteration method for each step of the integration in space. The other conservation equations and the equations for the plume dimensions are ordinary differential equations. They can be solved by numerical integration using the Runge-Kutta method. The evaluation of averaged quantities such as the average wind speed acting on the plume can be done with Simpson's rule.

The cross-wind-averaged conservation equations
F or a plume the conservation equations of chemical compound material, total mass and energy are:

$$
\begin{align*}
& d(m \rho u A) / d x=0  \tag{4.113}\\
& d(\rho u A) / d x=2 \rho_{a}\left(b_{y} w_{e, t}+b_{z} w_{e, e}\right)  \tag{4.114}\\
& \left.d\left(\rho u A c_{p} T\right) / d x=2 \rho_{a}\left(b_{y} w_{e, t}+b_{z} w_{e, e}\right) c_{p, a} T_{a}+E_{p c}+E_{g h} \sum_{\left(\mathrm{kg} \mathrm{~m}^{-1} s^{-1}\right)} \mathrm{m}^{-1} \mathrm{~s}^{-1}\right) \tag{4.115}
\end{align*}
$$

The conservation equations of momentum are the equation for the down-wind plume velocity u:

$$
\begin{equation*}
d\left(\rho u^{2} A\right) / d x=-\rho_{a} d\left(g^{\prime} A b_{z}\right) / d x+2 \rho_{a} u_{a}\left(b_{y} w_{e, t}+b_{z} w_{e, e}\right)+f_{x} \tag{-1}
\end{equation*}
$$

and the equation for lateral gravity slumping $u_{y}$ :

$$
\begin{equation*}
d\left(\rho u u_{y} A\right) / d x=2 g^{\prime} \rho_{a} b_{z}^{2}+f_{y} \quad\left(N ~ m^{-1}\right) \tag{4.117}
\end{equation*}
$$

F or a lofted plume, the descent of plume height h is described with the momentum equation

$$
\begin{equation*}
d\left(\rho u u_{z} A\right) / d x=-g^{\prime} \rho_{a} A+f_{z} \quad\left(N^{-1}\right) \tag{4.118}
\end{equation*}
$$

The equation for gravity slumping in the $y$-direction is not needed in the lofted plume calculation; then $u_{y}=0$. A lofted plume becomes grounded when $h \leq b_{z} / 2$.
The symbols for physical quantities and expressions used in 4.114-4.119 are summarised in T able 4.11, which also includes the reference to the formulae where the expressions are evaluated.

Table 4.11 Symbols in the conservation equations

|  |  | Equation |
| :---: | :---: | :---: |
| $x, y, z$ | Spatial coordinates in down-wind direction and the horizontal and vertical cross-wind directions. |  |
| $\rho, \rho_{\mathrm{a}}$ | The densities in the plume and in ambient air. | 4.138 |
| T, $\mathrm{T}_{\mathrm{a}}$ | The temperatures in the plume and in ambient air. | $\begin{aligned} & 4.115,4.136, \\ & 4.144 b \end{aligned}$ |
| m | The mass concentration of the chemical compound. | 4.113 |
| u | The down-wind plume velocity. | 4.116 |
| $u_{y}, u_{x}{ }^{1)}$ | The velocities of plume spreading in the cross-wind directions. | 4.117 |
| $\mathrm{u}_{\mathrm{z}}$ | Vertical velocity of the lofted plume | 4.118 |
| $\mathrm{b}_{\mathrm{y}}, \mathrm{b}_{\mathrm{z}}, \mathrm{A}$ | The half-width, height and area ( $=2 b_{y} \mathrm{~b}_{\mathrm{z}}$ ) of the plume. | $\begin{aligned} & 4.114,4.117, \\ & 4.152 \end{aligned}$ |
| $c_{p}, c_{p, a}$ | The specific heats of the gas in the plume and of ambient air. |  |
| $\mathrm{w}_{\mathrm{e}, \mathrm{e}}, \mathrm{w}_{\mathrm{e}, \mathrm{t}}$ | The entrainment velocities at the edges and at the upper surface of the plume. | 4.124-4.131 |
| $\mathrm{E}_{\mathrm{pc}}$ | The phase change energy per unit plume length. | 4.144b |
| $\mathrm{E}_{\mathrm{gh}}$ | The ground heat flux per unit plume length. | 4.136-4.137 |
| $f_{x}, f_{y}, f_{z}$ | The friction terms in the 3 spatial directions. | 4.132-4.135 |
| g' | The effective gravity $\mathrm{g}^{\prime}=\mathrm{g}\left\{\left(\rho_{\mathrm{o}}-\rho_{\mathrm{a}}\right) / \rho_{\mathrm{a}}\right\}$. |  |

1) $u_{x}$ appears in the instantaneous release model (4.163).

N ote that for the range of x -values that covers the source area, an additional term, the source flux, must be included on the right-hand side of the mass and energy equations. For a surface source, when the chemical compound is released with a vertical velocity $u_{0}$, the surface flux term in the mass equations is given by $2 \rho_{0} u_{0} b_{0}$. If the temperature and the specific heat of the chemical compound at the source are denoted by, respectively, $T_{0}$ and $c_{p, o}$, then the surface flux term in the energy equation is given by $2 \rho_{0} u_{0} b_{0} c_{p, 0}{ }_{0}$.

A mbient wind velocity profile
The entrainment velocities and the flux terms (friction terms, ground heat flux) are functions of the ambient wind. In the SLAB model the ambient wind velocity profile is derived from the gradient:

$$
\begin{equation*}
d u_{a} / d z=\left(u_{*} /(\kappa z)\right) f_{m}(z / L) f_{i}\left(z / h_{i}\right) \tag{-1}
\end{equation*}
$$

$u_{\mathrm{a}}$ is the ambient wind velocity, $\mathrm{u}_{*}$ is the ambient friction velocity, $\mathrm{\kappa}=0.41$ is Von K arman's constant, $z$ is the height, $L$ is the $M$ onin-O bukhov length, $h_{i}$ is the height of the mixing layer, $\mathrm{f}_{\mathrm{m}}$ is the momentum M onin-O bukhov function and $\mathrm{f}_{\mathrm{i}}\left(\mathrm{z} / \mathrm{h}_{\mathrm{i}}\right)$ is a mixing layer function. The mixing layer function in SLAB is

$$
\begin{align*}
f_{i}\left(z / h_{i}\right) & =1-z / h_{i}  \tag{-}\\
\begin{cases}f_{m}(z / L) & =1+5 \frac{z}{L} \\
f_{m}(z / L) & =1 /\left(1-16 \frac{z}{L}\right)^{1 / 2}\end{cases} & (L \geq 0)
\end{align*}
$$

The substitution of the expressions for $f_{m}$ and $f_{i}$, followed by an integration of equation 4.119 , yields

$$
\begin{equation*}
u_{a}=\left(u_{*} / \kappa\right)\left[\ln \left(z / z_{0}\right)+f\left(z / z_{0}, z / L, z / h_{i}\right)\right] \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right) \tag{4.121}
\end{equation*}
$$

f is a complicated function of its parameters. Section 4.5.2.1 provides a detailed description of the variation of $u_{a}$ with height. The computerised SLAB code uses a somewhat different but more complex function, which leads to only small differences in $u_{a}$ above 100 m height. $N$ ear the ground, equation 4.119 gives meaningless results, so for small heights $\left(z<2.72 z_{0}\right) u_{a}$ is approximated by a polynomial:

$$
\begin{equation*}
u_{a}=C_{1} z+C_{2} z^{2} \quad\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \tag{4.122}
\end{equation*}
$$

The constants $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are obtained by requiring that $\mathrm{u}_{\mathrm{a}}$ and $\mathrm{d} u_{\mathrm{a}} / \mathrm{dz}$ are continuous at the transition point $z=2.72 . z_{0}$.

The average ambient wind velocity experienced by the dense gas cloud is

$$
\begin{equation*}
<u_{a}>=1 / b_{z} \int_{0}^{b_{z}} u_{a}(z) d z \tag{4.123}
\end{equation*}
$$

The integral can be calculated with Simpson's rule.

## Entrainment rates

While the entrainment concept is essential for the SLAB model, the choice of a particular entrainment (sub)model is not an essential aspect of the model. D ifferent submodels could be used without changing the whole model. In the past years, the entrainment algorithms in SLAB have undergone several improvements. T he version which is discussed here [Ermak, 1990], distinguishes between vertical entrainment at the top, and cross-wind and down-wind entrainment at the sides of the cloud (or plume).
The vertical entrainment rate is defined to be

$$
\begin{equation*}
w_{e, t}=1.5 \sqrt{3} \kappa\left(u_{*}\right)_{\mathrm{ic}} \mathrm{f}_{\mathrm{i}}\left(\mathrm{~b}_{\mathrm{z}} / \mathrm{h}_{\mathrm{i}}\right) / \mathrm{f}_{\mathrm{h}}\left(\mathrm{~b}_{\mathrm{z}} / \mathrm{L}\right) \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right) \tag{4.124}
\end{equation*}
$$

$\left(u_{*}\right)_{i c}$ is the in-cloud value of the friction velocity, $f_{i}$ is the mixing layer function (4.120a) and $f_{h}$ is a $M$ onin-O bukhov profile function. It is defined likewise as $f_{m}$ as

$$
\begin{cases}f_{h}\left(b_{z} / L\right)=1+5 b_{z} / L & (L \geq 0)  \tag{-}\\ f_{h}\left(b_{z} / L\right)=1 /\left(1-16 b_{z} / L\right)^{1 / 2} & (L<0)\end{cases}
$$

The friction velocity $\left(\mathrm{u}_{*}\right)_{\mathrm{ic}}$ is calculated from a complicated mathematical expression, which is summarised in D iagram 4.7

Diagram 4.7 Calculation of the incloud friction velocity $\left(u_{*}\right)_{\text {ic }}$


The horizontal cross-wind and down-wind entrainment rates are in the form (for continuous plumes only cross-wind entrainment is needed)

$$
\begin{equation*}
\mathrm{w}_{\mathrm{e}, \mathrm{e}}=\left(3\left(\mathrm{w}_{\mathrm{e}, \mathrm{e}, \mathrm{~s}}^{2}+\mathrm{w}_{\mathrm{e}, \mathrm{e}, \mathrm{t}}^{2}\right)\right)^{1 / 2} \tag{4.126}
\end{equation*}
$$

$$
\left(\mathrm{m} \mathrm{~s}^{-1}\right)
$$

The term $\mathrm{w}_{\mathrm{e}, \mathrm{e}, \mathrm{s}}$ is a shear term. F or cross-wind entrainment it is due to shear between the cloud and the ambient atmosphere, and given by
$\mathrm{w}_{\mathrm{e}, \mathrm{e}, \mathrm{s}}=0.209 \kappa \Delta \mathrm{u}$
$\left(\mathrm{m} \mathrm{s}^{-1}\right)$
(4.127).

Here $\Delta u$ is the velocity difference between plume and ambient air as defined in Diagram 4.7.

F or down-wind entrainment the shear term is due to the increase in ambient velocity with height. It is calculated from a complicated mathematical expression

$$
\begin{equation*}
w_{e, e, s}=0.6 \frac{u_{*}}{\kappa} f_{m}\left(\frac{h+0.5 \sigma_{z}}{L_{a}}\right) f_{i}\left(\frac{h+0.5 \sigma_{z}}{h_{i}}\right) \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right) \tag{4.128}
\end{equation*}
$$

The functions $f_{m}$ and $f_{i}$ have been defined in the discussion on the ambient wind profile (4.120a and 4.120b).
The term $\mathrm{w}_{\mathrm{e}, \mathrm{e}, \mathrm{t}}$ describes the entrainment due to atmospheric turbulence and is identical for the cross-wind and down-wind direction. It is given by

$$
\begin{equation*}
w_{e, e, t}=0.08 u\left(f_{s}(L) f_{p}\left(t_{a v}\right)\right)^{2} /\left(f_{s}(L) f_{p}\left(t_{a v}\right)+0.00144 b\right) \quad\left(\mathrm{m} \mathrm{~s}^{-1}\right) \tag{4.129}
\end{equation*}
$$

$t_{a v}$ is the averaging-time and $b$ is either equal to $b_{x}$ (down-wind case for timedependent cloud) or $b_{y}$ (cross-wind case). The functions are

$$
\begin{cases}\mathrm{f}_{\mathrm{s}}(\mathrm{~L})=1-\frac{\mathrm{C}_{3}}{\mathrm{~L}} \sqrt{\frac{\mathrm{u}_{*}}{<\mathrm{u}_{\mathrm{a}}>}} & \mathrm{L}<0  \tag{4.130}\\ \mathrm{f}_{\mathrm{s}}(\mathrm{~L})=1 /\left(1+\frac{\mathrm{C}_{3}}{\mathrm{~L}} \sqrt{\frac{\mathrm{u}_{*}}{<\mathrm{u}_{\mathrm{a}}>}}\right) & \mathrm{L}>0\end{cases}
$$

Here, $C_{3}=34.1 \mathrm{~m}$.

$$
\begin{equation*}
\mathrm{f}_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{av}}\right)=\left(\left(\mathrm{t}_{\mathrm{av}}+\mathrm{t}_{\min } \exp \left(-\mathrm{t}_{\mathrm{av}} / \mathrm{t}_{\min }\right)\right) / \mathrm{t}_{\mathrm{i}}\right)^{0.2} \tag{-}
\end{equation*}
$$

The minimum averaging-time $t_{\text {min }}$ is 10 seconds. The normalisation time $t_{i}$ is taken to be 900 seconds, which is the averaging-time that is assumed to apply to the standard dispersion curves for passive gas.

In the limiting case of a passive gas release where all dense gas effects are negligible, SLAB yields a cloud concentration and size that correspond to the values from standard dispersion calculations.

M omentum flux terms
The velocity flux terms (or drag terms) that appear in the momentum equations of the SLAB model are adapted from the work of Zeman [1982]. They are needed in order to determine the velocities and gravity currents $u, u_{x}$ (in an instanteous cloud only), $u_{y}$ and $u_{z}$ in the dispersing rel ease. The horizontal velocity fluxes $f_{x}$ and $f_{y}$ are both composed of a term due to friction with the ground and a drag term at the top of the release. T hey are calculated from the equations:

$$
\begin{equation*}
f_{x}=-2 \rho b_{y}\left(\left(u_{*} /<u_{a}>\right)^{2}\left[(u-\Delta u)^{2}-<u_{a}>^{2}\right]+0.0195 \Delta u^{2}\right) \quad\left(N ~ m^{-1}\right) \tag{4.132}
\end{equation*}
$$

$$
\begin{equation*}
f_{y}=-0.5 \rho b_{y} u_{y}^{2}\left[\left(u_{*} /<u_{a}>\right)^{2}+0.0195\left(\rho_{a} / \rho\right)^{2}\right] \quad\left(\mathrm{N} \mathrm{~m}^{-1}\right) \tag{4.133}
\end{equation*}
$$

The use of the equations is slightly different for plumes and clouds. F or a plume, the velocity flux term $f_{x}$ applies to down-wind movement of the dense gas in the plume, and the $f_{y}$ term determines the horizontal cross-wind gravity spreading. For a cloud, the $f_{x}$ term determines the average down-wind velocity $u$ of the cloud as a whole, and the $f_{y}$ term determines the gravity spreading with respect to the moving cloud centre, both in down-wind and cross-wind direction. $T$ he term $f_{z}$ due to vertical movement is not relevant for grounded releases, because the vertical velocity can be calculated directly from other quantities, without solving the vertical momentum equation. The SLAB model can also be applied to lofted plumes and clouds, but then there is no gravity spreading in the horizontal plane, so $u_{x}$ (in an instantaneous cloud) and $u_{y}$ are equal to zero. The movement of the cloud centre is affected only by drag due to shear with the surrounding air, so equation 4.130 applies without the ground friction term:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{x}}=-0.039 \rho\left(2 \mathrm{~b}_{\mathrm{y}}+\mathrm{b}_{\mathrm{z}}\right)\left(\mathrm{u}_{*} /<\mathrm{u}_{\mathrm{a}}>\right)^{2} \Delta \mathrm{u}^{2} \quad\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \tag{4.134}
\end{equation*}
$$

The vertical movement $u_{z}$ of the lofted plume or cloud is calculated by solving the momentum equation, with a drag term given by

$$
\begin{equation*}
f_{z}=0.039 \rho b_{z} u_{z}^{2} \quad\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \tag{4.135}
\end{equation*}
$$

As explained before, $\mathrm{f}_{\mathrm{y}}$ is not needed for lofted plumes.
H eat flux term
The heat flux term is also obtained from the work of Zeman [1982]. T he heat transfer between the dense gas and the ground is represented in the energy equation by a term

$$
\begin{equation*}
E_{g h}=2 \rho b_{y} w_{H} c_{p} \cdot\left(T_{a}-T\right) \tag{4.136}
\end{equation*}
$$

$$
\left(\mathrm{J} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)
$$

The effective heat transfer velocity $w_{H}$ is an empirical velocity, which also appears in other quantities such as the in-cloud friction velocity $\left(u_{*}\right)_{i c}$. It is given by

$$
\begin{equation*}
\mathrm{w}_{\mathrm{H}}=\frac{\mathrm{u}_{*}}{\left\langle\mathrm{u}_{\mathrm{a}}\right\rangle}\left(\mathrm{u}_{*}\right)_{\mathrm{mg}} \tag{4.137}
\end{equation*}
$$

$\left(u_{*}\right)_{m g}$ is defined in D iagram 4.7. F or a lofted cloud $E_{g h}$ is, of course, equal to zero.
The thermodynamic model
The SLAB computer model contains a submodel for the thermodynamic processes which occur during the dispersion of a mixture of liquids and vapours in the atmosphere. The submodel is restricted in the sense that it allows only phase changes of the released chemical compound and of ambient water vapour that enters the release. The inclusion of moist air effects into the SLAB model requires that additional mass conservation equations are added for dry air and water. T he equation of state for the complete system is

$$
\begin{equation*}
\rho=\rho_{\mathrm{a}} \mathrm{~T}_{\mathrm{a}} /\left(\alpha_{\mathrm{l}} \mathrm{~T}+\gamma_{\mathrm{l}} \mathrm{~T}_{\mathrm{a}}\right) \tag{-3}
\end{equation*}
$$

The coefficients $\alpha_{1}$ and $\gamma_{1}$ are determined by the equations

$$
\begin{align*}
& \alpha_{I}=\mu_{\text {moist }}\left(m_{a} / \mu_{a}+m_{w, v} / \mu_{w}+m_{s, v} / \mu_{s}\right)  \tag{-}\\
& \mu_{\text {moist }}=1 /\left(\left(1-m_{w, v}{ }^{a}\right) / \mu_{a}+m_{w, v}{ }^{a} / \mu_{w}\right)  \tag{4.139}\\
& \gamma_{I}=\left(\rho_{a} / \rho_{w, I}\right) m_{w, I}+\left(\rho_{a} / \rho_{\mathrm{s}, I}\right) m_{\mathrm{s}, 1}
\end{align*}
$$

$\left(\mathrm{kg} \mathrm{mol}^{-1}\right)$
$m$ is the mass concentration and $\mu$ is the molecular weight. T he quantities are labeled with 2 subscripts. T he first subscript is either ' $a$ ', ' $w$ ' or ' $s$ ', and indicates whether the material is dry air, water or the chemical compound. The second subscript, separated by the first subscript with a comma, is ' $v$ ' or ' $I$ ' and indicates the phase of the material, i.e. whether it is a vapour or a liquid. A superscript labels the material of the environment. Example: $m_{w, v}{ }^{a}$ is the mass concentration of water vapour in ambient air. T he vapour concentration is calculated separately for the chemical compound and for water by using the condition of local equilibrium. T his means that the partial pressure of the vapour phase of each material is equal to the smaller of 2 pressures: (1) the saturation pressure, or (2) the partial pressure when the total mass fraction is in the vapour phase.

F or a single material the partial pressure after complete vaporisation $\left(m_{1}=0\right)$ is

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{m}}{\mu} \rho \mathrm{RT} /\left(1-\frac{\rho}{\rho_{\mathrm{a}}} \gamma_{\mathrm{l}}\right) \tag{-2}
\end{equation*}
$$

$R$ is the gas constant. The saturation pressure is expressed in the form

$$
\begin{equation*}
p_{s}=p_{a} \exp \left(C_{A}-\frac{C_{B}}{T+C_{C}}\right) \tag{-2}
\end{equation*}
$$

$\mathrm{p}_{\mathrm{a}}$ is ambient pressure. $\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}}$ and $\mathrm{C}_{\mathrm{C}}$ are saturation pressure constants, which are basic properties of the material. $T$ he constants $C_{B}$ and $C_{C}$ are required as input parameters of the SLAB computer model. Then $C_{A}$ is calculated from 4.144 and the boiling temperature (input to SLAB).

If the total mass concentration is denoted by m , then the local equilibrium condition expresses the vapour concentration as

$$
\begin{cases}m_{v}=m & \left(p<p_{s}\right)  \tag{4.144}\\ m_{v}=m \cdot \frac{p_{s}}{\bar{p}} & \left(p>p_{s}\right)\end{cases}
$$

The procedure to evaluate the equation of state is summarised in Diagram 4.8.

T hrough the dependence of $p_{s}$ on the cloud temperature $T$, there is a strong coupling between the energy balance equation (4.115) and the thermodynamic state equations (4.138-4.144). The linking term is the phase change energy $\mathrm{E}_{\mathrm{pc}}$, which depends on the change of liquid material in the plume per down-wind distance (for the continuous release) or time (for the instantaneous release) integration step. F or the continuous release $E_{p c}$ is described by:

$$
\begin{equation*}
E_{p c}=\rho u A\left(\Delta H_{w} \cdot d\left(m_{w, I}\right) / d x+\Delta H_{s} \cdot d\left(m_{s, 1}\right) / d x\right) \quad\left(J m^{-1} s^{-1}\right) \tag{4.144b}
\end{equation*}
$$

here $\Delta H_{w}$ and $\Delta H_{s}$, are the latent heat of water and released material, respectively.
The solution of the thermodynamic state which fulfils both (4.138-4.144) and (4.115 using 4.144b) is performed for each integration time step by Newton's iteration method.

Diagram 4.8 Evaluation of the equation of state


## Plume meandering

The random oscillations of the plume centre-line about the mean wind direction are ignored in the numerical solution to the set of conservation equations, plume structure equations and thermodynamic equations.

This effect, called plume meandering, increases the effective half-width $b_{y, m}$ of the plume as $\mathrm{t}_{\mathrm{av}}$ is increased. The SLAB model corrects for the increase (see also D iagram 4.4).

$$
\begin{equation*}
\mathrm{b}_{\mathrm{y}, \mathrm{~m}}^{2}=\mathrm{b}_{\mathrm{y}}^{2}+3\left(\mathrm{r}^{2}\left(\mathrm{C}_{\mathrm{av}}\right)-1\right){\sigma_{\mathrm{y}}^{2}}^{2}\left(\mathrm{t}_{\mathrm{av}}\right) \tag{4.145}
\end{equation*}
$$

$\sigma_{y}$ is the standard deviation for a passive gas plume in the absence of plume meandering. $T$ he averaging parameter $\mathrm{C}_{\mathrm{av}}$ is defined as

$$
\begin{equation*}
C_{a v}=\left(t_{\mathrm{av}}+t_{\min } \exp \left(-\mathrm{t}_{\mathrm{av}} / \mathrm{t}_{\text {min }}\right) / \mathrm{t}_{\text {min }}\right)^{0.2} \tag{-}
\end{equation*}
$$

The exponential function exp is needed in order to guarantee that the averaging parameter becomes unity as $t_{a v}$ approaches zero, because in this limit $b_{y, m}$ and $b_{y}$ should become equal. T he exponent $k$ is set equal to 0.2 , in accordance with common conventions. The effective minimum averaging-time $t_{\text {min }}$ is set equal to 10 seconds, since this has proven to give good results [Ermak, 1990].

The spatial concentration distribution in 3 dimensions
The SLAB plume model calculates only cross-wind-averaged properties, and characterises the shape by the height $b_{z}$ and the cross-wind half-width $b_{y}$. The parameters $b_{y}$ and $b_{z}$ do not correspond to a particular concentration level, but describe a surface which encloses the bulk of the dense gas. T his means that the user can implement a submodel of the concentration distributions which best fits his purpose. In an early study of steady-state releases, Ermak et al. [1982] have used a quadratic distribution, but exponential or Gaussian distributions are other possibilities. The SLAB version, which is discussed here, assumes that the distribution is $G$ aussian in the horizontal and vertical cross-sections:

$$
\begin{equation*}
c(x, y, z)=2 b_{y} b_{z} c(x) F_{y}\left(y, y_{b}, C_{y}\right) F_{z}\left(z, h, \sigma_{z}\right) \quad \text { (parts per unit volume) } \tag{4.147}
\end{equation*}
$$

The average volume concentration $c(x)$ is related to the mass concentration by

$$
\begin{equation*}
\mathrm{c}(\mathrm{x})=\mu_{\mathrm{a}} \mathrm{~m}(\mathrm{x}) /\left(\mu_{\mathrm{s}}+\left(\mu_{\mathrm{a}}-\mu_{\mathrm{s}}\right) \mathrm{m}(\mathrm{x})\right) \quad \text { (parts per unit volume) } \tag{4.148}
\end{equation*}
$$

$\mu_{\mathrm{s}}$ and $\mu_{\mathrm{a}}$ are respectively the molecular weights of the chemical compound and ambient air. The function $F_{y}\left(y, y_{b}, C_{y}\right)$ is defined as

$$
F_{y}\left(y, y_{b}, C_{y}\right)=\left(\operatorname{erf}\left(\left(y+y_{b}\right) /\left(\sqrt{2} C_{y}\right)\right)-\operatorname{erf}\left(\left(y-y_{b}\right) /\left(\sqrt{2} C_{y}\right)\right)\right) /\left(4 y_{b}\right)
$$

$$
\begin{equation*}
\left(\mathrm{m}^{-1}\right) \tag{4.149}
\end{equation*}
$$

erf denotes the error function, and $y_{b}$ and $C_{y}$ are shape parameters. The shape parameters are related: $C_{y}^{2}=\frac{1}{3}\left(b_{y}^{2}-y_{b}^{2}\right)$. $y_{b}$ follows from (4.153) below. The function $F_{z}\left(z, h, \sigma_{z}\right)$ is defined as

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{z}}\left(\mathrm{z}, \mathrm{~h}, \sigma_{\mathrm{z}}\right)=\left(\exp \left(-(\mathrm{z}-\mathrm{h})^{2} /\left(2 \sigma_{z}^{2}\right)\right)+\exp \left(-(\mathrm{z}+\mathrm{h})^{2} /\left(2 \sigma_{z}^{2}\right)\right)\right) / \sqrt{\left(2 \pi \sigma_{z}^{2}\right)} \\
\left(\mathrm{m}^{-1}\right) \tag{4.150}
\end{array}
$$

h is the height parameter and $\sigma_{\mathrm{z}}$ is the vertical half-width parameter. The vertical profile function allows for both grounded releases ( $h \leq 0.5 b_{z}$ ) and elevated releases ( $h>0.5 b_{z}$ ), with a width defined as

$$
\begin{cases}\sigma_{z}=\left(b_{z}-h\right) / \sqrt{3} & \text { (grounded) }  \tag{m}\\ \sigma_{z}=0.5 b_{z} / \sqrt{3} & \text { (lofted) }\end{cases}
$$

A number of additional cloud structure equations are needed in order to obtain a complete description of the concentration distribution. They are, for a dispersing plume,

$$
\begin{array}{ll}
\mathrm{udb} / \mathrm{dx}=\left(\rho_{\mathrm{a}} / \rho\right) \mathrm{w}_{\mathrm{e}, \mathrm{e}}+\mathrm{u}_{\mathrm{y}} & \left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
\mathrm{udy}_{\mathrm{b}} / \mathrm{dx}=\mathrm{u}_{\mathrm{y}} \mathrm{y}_{\mathrm{b}} / \mathrm{b}_{\mathrm{y}} & \left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
\mathrm{udh} / \mathrm{dx}=-\mathrm{u}_{\mathrm{y}} \mathrm{~h} / \mathrm{b}_{\mathrm{y}} & \left(\mathrm{~m} \mathrm{~s}^{-1}\right) \tag{4.154}
\end{array}
$$

The initial conditions of $b_{y}$ and $h$ follow from the source dimensions $b_{0}$ and $h_{s}$ or the plume rise functions ((4.84) and (4.111)). The initial condition for $y_{b}$ is 0.9 times the initial condition of $b_{y}$ (to avoid $C_{y}$ to become zero).

T he equations can be solved with the R unge-K utta method.

The effect of time averaging
The last step in the F low diagram 4.4 is to take a time-average at locations ( $x, y, z$ ) over a duration of time $t_{a v}$. The averaging-time $t_{a v}$ is an input parameter, in order to allow the performance of calculations of the average concentration level for different times of exposure. T he time-averaged volume concentration $\mathrm{c}_{\mathrm{av}}$ is determined by averaging the volume concentration $c(x, y, z, t)$ over time:

$$
\begin{equation*}
\mathrm{C}_{\text {mean }}(\mathrm{x}, \mathrm{y}, \mathrm{z})=1 / \mathrm{t}_{\mathrm{av}} \int \mathrm{c}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \mathrm{dt} \quad \text { (parts per unit volume) } \tag{4.155}
\end{equation*}
$$

The integration boundaries are $t_{p k} \pm 0.5 t_{a v}$, where $t_{p k}$ is the time of peak concentration. F or a steady-state calculation, time-averaging has no effect.

This completes the description of the SLAB model in steady-state mode.

## Finite-duration sources with a constant emission rate

The released gas of a finite-duration source is eventually advected down-wind as a cloud instead of a plume, and this imposes different requirements on the dispersion algorithms. The most important difference is that the governing equations are spatially averaged over the cloud volume instead of cross-wind-averaged. F or a finiteduration release, SLAB starts in the plume submodel, and makes a transition to the puff submodel at the time $t_{r}$ when the release is terminated. Thus, the calculation is performed in 2 steps:

1. A calculation with the plume model is done, and the location $x_{c}(t)$ of the corresponding cloud centre-of-mass at a time $t$ is obtained by travelling downwind until a location $x_{c}$ is reached where the plume contains half of the total amount of dense gas, released during this timet. The cloud half-length is obtained by a linear interpolation:
$b_{x}(t)=b_{x}(0)+\left(b_{x}\left(t_{r}\right)-b_{x}(0)\right)\left(x_{c}(t)-x_{c}(0)\right) /\left(x_{c}\left(t_{r}\right)-x_{c}(0)\right) \quad(m)$
$x_{c}(0)$ and $b_{x}(0)$ are the initial location of the centre-of-mass and the initial cloud half-length, which are determined by the source geometry. The half-width $b_{x}\left(t_{r}\right)$ at the point of transition is calculated in step 2.
2. At the time $t_{r}$ the volume-averaged (puff) cloud properties are calculated from the cross-wind-averaged plume properties at the location $x_{c}\left(t_{r}\right)$. It is assumed that the mass fraction and the density are continuous at the transition, and then the cloud half-length is

$$
\begin{equation*}
\mathrm{b}_{\mathrm{x}}\left(\mathrm{t}_{\mathrm{r}}\right)=0.5 \mathrm{u}\left(\mathrm{x}_{\mathrm{c}}\right) \mathrm{t}_{\mathrm{r}} \tag{m}
\end{equation*}
$$

where $u\left(x_{c}\right)$ is the down-wind cloud velocity at location $x_{c}$.
The cloud properties ( $u, T, b_{y}, b_{z}$ etc.) are required to be equal to the plume properties at $x=x_{c}$.
The procedure is summarised in F low diagram 4.9. The transformation is needed to start the cloud calculation at $t=t_{r}$, and it can also be applied to obtain cloud parameters for $t<t_{r}$.

## Diagram 4.9 Transformation of plume parameters to cloud parameters



## Instantaneous releases

The SLAB model treats sources which inject a dense gas into the atmoshere at a steady rate, but during a finite time, as a cloud. T he limiting case is an instantaneous release, for instance due to a tank failure. T he calculation is performed with the puff
submodel, using a procedure consisting of 5 steps (see F low diagram 4.10). T he steps differ from the procedure of the plume submodel (see F low diagram 4.4) in a number of aspects, which are discussed in the remainder of this Section.

Diagram 4.10 The dispersion calculation for an instantaneous release in the SLAB model


The instantaneous or short-duration evaporating pool: Although the source is of the ground-level area type, it differs from the previous types in that the release occurs instantaneously or in a very short time. The amount of released chemical compound is not characterised by the mass rate $q$, but by the total mass $Q$. T his type of release is usually accompanied by compressibility effects (see chapter 2 ), but the source term model in SLAB assumes that the cloud is fully expanded and that the pressure has been reduced to the ambient atmospheric level. T he source material consists of pure vapour.

The equations for an instantaneous release
The conservation equations, the cloud structure equations and the thermodynamic equations are solved by an integration in discrete steps in the time coordinate. The numerical techniques which were indicated in the discussion of the plume model, are equally applicable to the puff model.

The volume-averaged conservation equations
For a cloud the conservation equations of species, mass and energy are:

$$
d(m \rho V) / d t=0
$$

$\left(\mathrm{kg} \mathrm{s}^{-1}\right)$
(4.158),

$$
\begin{array}{ll}
d(\rho V) / d t=\rho_{a} v_{e} & \left(k g ~ s^{-1}\right) \\
d\left(\rho V c_{p} T\right) / d t=\rho_{a} v_{e} c_{p a} T_{a}+2 b_{x}\left(E_{p c}+E_{g h}\right) & \left(\mathrm{J} \mathrm{~s}^{-1}\right) \\
v_{e}=4\left(b_{y} b_{z} w_{e, x}+b_{x} b_{z} w_{e, y}+b_{x} b_{y} w_{e, t}\right) & \left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \tag{4.161}
\end{array}
$$

The down-wind entrainment velocity $\mathrm{w}_{\mathrm{e}, \mathrm{x}}$ and the cross-wind entrainment velocity $\mathrm{w}_{\mathrm{e}, \mathrm{y}}$ are obtained from equation 4.126 . The vertical entainment velocity $\mathrm{w}_{\mathrm{e}, \mathrm{t}}$ is obtained from equation 4.124.

The momentum equation for the centre-of-mass of the cloud is

$$
\begin{equation*}
d(\rho u V) / d t=\rho_{a} v_{e} u_{a}+2 b_{x} f_{x} \tag{N}
\end{equation*}
$$

The gravity slumping equations for a grounded cloud are

$$
\begin{align*}
& d\left(\rho u_{x} V\right) / d t=g^{\prime} \rho_{a} b_{x} b_{z}^{2}+2 b_{x} f_{y}  \tag{N}\\
& d\left(\rho u_{y} V\right) / d t=g^{\prime} \rho_{a} b_{y} b_{z}^{2}+2 b_{x} f_{y} \tag{N}
\end{align*}
$$

For a lofted cloud, the equations 4.163-4.164 are replaced by the momentum equation of vertical momentum:

$$
\begin{equation*}
d\left(\rho u_{z} V\right) / d t=-g^{\prime} \rho_{a} V+2 b_{x} f_{z} \tag{N}
\end{equation*}
$$

The spatial concentration distribution in 3 dimensions
The characterisation of the cloud shape requires a third parameter, the down-wind half-length $b_{x}$, in addition to $b_{y}$ and $b_{z}$.
They are obtained by solving the cloud structure equations:

$$
\begin{align*}
& d b_{y} / d t=\left(\rho_{a} / \rho\right) w_{e, y}+u_{y}  \tag{4.166}\\
& d y_{b} / d t=u_{y} y_{b} / b_{y} \tag{4.167}
\end{align*}
$$

Since a cloud has a finite extension at each location $x$ in the down-wind direction, the term $c(x)$ in the 3-dimensional concentration distribution $c(x, y, z, t)$ contains a downwind profile function. It is defined as

$$
\begin{equation*}
c(x)=2 b_{x} c(t) F_{x}\left(x-x_{c}, x_{b}, C_{x}\right) \quad \text { (parts per unit volume) } \tag{4.168}
\end{equation*}
$$

where the average volume concentration $\mathrm{c}(\mathrm{t})$ is related to $\mathrm{m}(\mathrm{t})$ through equation 4.148, and the profile function $F_{x}$ is equal to $F_{y}$ as defined in equation 4.149, the position of the centre-of-mass of the cloud, $x_{c}$ is calculated by integrating $u$ from (4.162) to timet. $C_{x}$ follows from $C_{x}^{2}=\frac{1}{3}\left(b_{x}^{2}-x_{b}^{2}\right)$. The cloud structure equations for $b_{x}$ and $x_{b}$ are

$$
\begin{equation*}
\mathrm{db}_{\mathrm{x}} / \mathrm{dt}=\left(\rho_{\mathrm{a}} / \rho\right) \mathrm{w}_{\mathrm{e}, \mathrm{x}}+\mathrm{u}_{\mathrm{x}} \tag{4.169}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{dx}_{\mathrm{b}} / \mathrm{dt}=\mathrm{u}_{\mathrm{x}} \mathrm{x}_{\mathrm{b}} / \mathrm{b}_{\mathrm{x}} \tag{4.170}
\end{equation*}
$$

$$
\left(\mathrm{m} \mathrm{~s}^{-1}\right)
$$

The equations can be solved with the Runga-K utta method.
The initial conditions for $b_{x}$ follow from the source dimensions or equation 4.157. The initial condition for $x_{b}$ is 0.9 times the initial condition of $b_{x}$.

The effect of time-averaging
The calculation of the time-averaged volume concentration $c_{a v}(x, y, z)$ requires the evaluation of the time-integral.
An analytical expression can be derived:

$$
\begin{equation*}
c_{a v}(x, y, z)=4 b_{x} b_{y} b_{z} c\left(t_{p k}\right) f_{a v}\left(x_{b}, C_{x}, t_{a v}\right) F_{y}\left(y, y_{b}, C_{y}\right) F_{z}\left(z, h, \sigma_{z}\right) \tag{4.171}
\end{equation*}
$$

(parts per unit volume)

$$
f_{a v}\left(x_{b}, C_{x}, t_{a v}\right)=\frac{C_{x}}{\sqrt{2} x_{b} u t_{a v}}\left(x_{1} \operatorname{erf}\left(x_{1}\right)-x_{2} \operatorname{erf}\left(x_{2}\right)+\frac{1}{\sqrt{\pi}}\left(e^{-x_{1}^{2}}-e^{-x_{2}^{2}}\right)\right)
$$

$$
\begin{equation*}
\mathrm{x}_{1}=\left(\mathrm{x}_{\mathrm{b}}+\frac{1}{2} \mathrm{ur}_{\mathrm{av}}\right) /\left(\sqrt{2} \mathrm{C}_{\mathrm{x}}\right) \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}_{2}=\left(\mathrm{x}_{\mathrm{b}}-\frac{1}{2} \mathrm{ut}_{\mathrm{av}}\right) /\left(\sqrt{2} \mathrm{C}_{\mathrm{x}}\right) \tag{-}
\end{equation*}
$$

$t_{p k}$ is the time of peak concentration. The terms $F_{y}$ and $F_{z}$ are spatial distribution functions, which were defined in the discussion of continuous releases.

This ends the discussion of instantaneous releases in the SLAB model.

### 4.6 Application of selected models: calculation examples

### 4.6.1 Introduction to Section 4.6

Section 4.6 provides examples on the use of models described in Section 4.5.
Section 4.6.2 provides examples on stability calculations using the H oltslag scheme as presented in Section 4.5.2.
Section 4.6.3 considers the use of the Gaussian plume model for continuous and instantaneous releases as described in Section 4.5.3.
Section 4.6.4 provides examples on the calculation of free jets, plume rise and the plume trajectory model (H M P-model) as described in Section 4.5.4.
Section 4.6.5 provides examples on the use of the SLAB model as described in Section 4.5.5.

### 4.6.2 Examples of stability calculations

T his section provides examples on the use of the H oltslag scheme, Section 4.5.2. In Section 4.6.2.1 the application of the day-time scheme and in Section 4.6.2.2 the application of the night-time scheme is presented.

### 4.6.2.1 Application of the day-time scheme

The site for which the stability is to be established is somewhere in The $N$ etherlands: $51^{\circ} \mathrm{N},-5^{\circ} \mathrm{W}$.
The day is the $20^{\text {st }}$ of June (in a non-leap year), the time 9.40 UT C locally before noon.
The weather is overcast with broken clouds, $N=6 / 8$, and the air temperature is about $20^{\circ} \mathrm{C}$.
The wind speed at 10 m height is $4 \mathrm{~m} / \mathrm{s}$. The terrain is flat, grass-covered, without obstacles; the roughness length $z_{0}$ is estimated to be 0.01 m , see T able 4.3.
The albedo is estimated from T able 4.4 and found to be 0.2 ; the moisture availability is set at 1 .
F rom Appendix I, we calculate the Julian day to be 171, and the solar elevation $48.6^{\circ}$; (the solar longitude $S L=7.87$, the solar declination $S D=0.409$, and $\alpha=-0.704$ ). By use of formulae (4.36) to (4.38) the sensible heat flux is calculated to be $72.9 \mathrm{~W} / \mathrm{m}^{2}$. Iteratively we calculate $L$ and $u_{*}: L=-21.7 \mathrm{~m}$ and $u_{*}=0.260 \mathrm{~m} / \mathrm{s}$ by use of (4.35). Observing G older's graph (Figure 4.11) we find that the unstable situation is to be classified as Pasquill C , so the mixing height is set at 1000 m .

F or these calculations we have used $c_{p, a}=1000 \mathrm{~W} / \mathrm{kg} \mathrm{K}, \rho_{\mathrm{a}}$ at $293 \mathrm{~K}=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\gamma=0.45$ (T able 4.5).

The input, output and intermediate results are summarised in the following table:

Table 4.12 Day-time stability calculation

| Input | position <br> day <br> time <br> cloud cover <br> wind speed <br> roughness length <br> albedo <br> moisture availability | N $U_{a}(10)$ <br> $\mathrm{z}_{0}$ <br> e <br> $\alpha$ | $51^{\circ} \mathrm{N}$ $-5^{\circ} \mathrm{W}$ <br> June 20 st <br> 9.40 UTC <br> $6 / 8$  <br> 4 $\mathrm{~m} / \mathrm{s}$ <br> 0.01 m <br> 0.2  <br> 1  |
| :---: | :---: | :---: | :---: |
| Intermediate results | solar radiation <br> Net radiation | $\begin{aligned} & \mathrm{H}_{\mathrm{rs}} \\ & \mathrm{H}_{\mathrm{r}} \end{aligned}$ | $511.9 \mathrm{~W} / \mathrm{m}^{2}$ <br> $332.7 \mathrm{~W} / \mathrm{m}^{2}$ |
| Output | sensible heat flux <br> Monin-Obukhov length <br> friction velocity <br> Pasquill class <br> mixing height | $\mathrm{H}_{0}$ <br> L <br> u* <br> $h_{i}$ | $\begin{array}{ll} 72.9 & \mathrm{~W} / \mathrm{m}^{2} \\ -21.7 \mathrm{~m} \\ 0.260 \mathrm{~m} / \mathrm{s} \\ \mathrm{C} & \\ 1000 \mathrm{~m} \end{array}$ |

### 4.6.2.2 Application of the night-time scheme

F or this example the same site as used in Section 4.6.2.1 is selected. The sky is clear ( $\mathrm{N}=0$ ); the wind speed is now $4.5 \mathrm{~m} / \mathrm{s}$ at 10 m height. The temperature is $20{ }^{\circ} \mathrm{C}(293 \mathrm{~K})$ and the wet bulb temperature is $18{ }^{\circ} \mathrm{C}(291 \mathrm{~K})$.
By use of formulae (4.40) to (4.46) we iteratively find the sum of heat fluxes minimised by using a $M$ onin-Obukhov length $L=17.3 \mathrm{~m}$. The friction velocity $u_{*}=0.184 \mathrm{~m} / \mathrm{s}$. F or this situation we find the following heat fluxes:


This situation can be classified as Pasquill E, see Figure 4.11.
For the mixing height we need to calculate the C oriolis parameter $f$ for conditions in The $N$ etherlands: Iatitude $51^{\circ}$. This leads to $f=1.13 .10^{-4} \mathrm{~s}^{-1}$. By use of Table 4.7 the mixing height is calculated to be 291 m . Input and output are summarised in T able 4.13.

Table 4.13 Night-time stability calculation

| Input | cloud cover <br> wind speed <br> roughness length <br> $\mathrm{T}_{\mathrm{a}}(2 \mathrm{~m})$ <br> $\mathrm{T}_{\mathrm{w}}(2 \mathrm{~m})$ | $\begin{aligned} & \mathrm{N} \\ & \mathrm{u}_{\mathrm{a}}(10) \\ & \mathrm{z}_{\mathrm{o}} \end{aligned}$ | $\begin{array}{\|ll} \hline 0 & \\ 4.5 & \mathrm{~m} / \mathrm{s} \\ 0,01 & \mathrm{~m} \\ 293 & \mathrm{~K} \\ 291 & \mathrm{~K} \end{array}$ |
| :---: | :---: | :---: | :---: |
| Intermediate results | T* $\begin{aligned} & \mathrm{T}_{\mathrm{r}}(50 \mathrm{~m}) \\ & \mathrm{T}_{\mathrm{o}}\left(\mathrm{z}_{\mathrm{o}}\right) \\ & \mathrm{T}_{\mathrm{s}} \\ & \mathrm{H}_{\mathrm{ri}} \\ & \mathrm{H}_{\mathrm{r}} \\ & \mathrm{H}_{\mathrm{o}} \\ & \mathrm{H}_{\mathrm{g}} \\ & \mathrm{~K}_{\mathrm{s}} \\ & \mathrm{H}_{\mathrm{I}} \end{aligned}$ |  | 0.086 K 294.4 K 291.8 K 289.3 K $-80.7 \mathrm{~W} / \mathrm{m}^{2}$ $-51.3 \mathrm{~W} / \mathrm{m}^{2}$ $-23.2 \mathrm{~W} / \mathrm{m}^{2}$ $-25.3 \mathrm{~W} / \mathrm{m}^{2}$ 0.0236 $-2.8 \mathrm{~W} / \mathrm{m}^{2}$ |
| Output | sensible heat flux <br> Monin-Obukhov length <br> friction velocity <br> Pasquill class <br> mixing height | $\mathrm{H}_{0}$ <br> L <br> u* <br> $h_{i}$ | $\begin{array}{\|ll} -23.2 & \mathrm{~W} / \mathrm{m}^{2} \\ 43 & \mathrm{~m} \\ 0.223 & \mathrm{~m} / \mathrm{s} \\ \mathrm{E} & \\ 291 & \mathrm{~m} \end{array}$ |

### 4.6.3 Application of the Gaussian plume model

In this section two examples are discussed. The concentration below an elevated plume and the LEL contour is calculated for a continuous release and the calculation of the time series and explosive content for an instantaneous release of finite dimensions are shown.

### 4.6.3.1 Calculations of a plume

In this example the meteorological situation is described using Pasquill stability class, with a neutral atmosphere (class D) and the surroundings of the site can be described as "habitated land".
$N$ atural gas (methane) is released continuously at a release rate of $20 \mathrm{~kg} / \mathrm{s}$ and we want to know the 10-minute averaged concentration at 1.5 m height below the plume centerline and the contour defined by the LEL concentration.

The input is summarized in the following table:

Table 4.14 Passive flammable plume example

| Chemical name | Methane |  |
| :--- | :--- | :--- |
| LEL concentration | 33353 | $\mathrm{mg} / \mathrm{m}^{3}$ |
| Release type | Continuous |  |
| Mass flow rate of the source | 20 | $\mathrm{~kg} / \mathrm{s}$ |
| X-coordinate of release | 0 | M |
| Y-coordinate of release | 0 | M |
| Z-coordinate (height) of release | 4 | M |
| Length source in wind (x) direction | 0 | M |
| Length of source in crosswind (y) direction | 2.5 | M |
| Length source in vertical (z) direction | 2.5 | M |
| Ambient temperature | 15 | ${ }^{\circ} \mathrm{C}$ |
| Pasquill stability class | $\mathrm{D} \mathrm{(Neutral)}$ |  |
| Latitude | 51 | Deg |
| Wind speed at 10 m height | 3.5 | $\mathrm{~m} / \mathrm{s}$ |
| Roughness length description | Habitated land |  |
| Concentration averaging time | 600 | s |

As atmospheric description is done with pasquill stability class and wind speed at 10 m height, M ounin-Obukhov length $\left(0 \mathrm{~m}^{-1}\right), \sigma_{V}(1.18 \mathrm{~m} / \mathrm{s}), \sigma_{W}(0.81 \mathrm{~m} / \mathrm{s})$ and mixing height ( 500 m ) are obtained using formulae 4.47, 4.49 and 4.50 and table 4.7.

Reflection against the mixing height is to be included as in formulae (4.57a to 4.57d)

The resulting concentrations as function of down-wind distance and contour plot are shown in Figures 4.19 and 4.20.

CPR 14E
Chapter 4 of the ' $Y$ ellow B ook'


Figure 4.19 Concentration $\left[\mathrm{mg} / \mathrm{m}^{3}\right]$ as function of down-wind distance $[\mathrm{m}]$ at $y=0 \mathrm{~m}$ and $\mathrm{z}=1.5 \mathrm{~m}$


Figure 4.20 Concentration contour plot for LEL $\left[33353 \mathrm{mg} / \mathrm{m}^{3}\right]$ at 1.5 m heightt

### 4.6.3.2 Calculation of explosive mass of an instantaneous puff

F or this example use is made of the same meteorological and site conditions as for the previous one: pasquill class D, wind speed of $3.5 \mathrm{~m} / \mathrm{s}$ and habitated land.

The source is assumed to be a cube with sides of 21 m , originating from e.g. an initially expanding cloud. This initial cube contains 6000 kg of natural gas (methane) at normal ambient conditions ( $1 \mathrm{~atm}, 15^{\circ} \mathrm{C}$ ). F or the calculation, the source parameters are represented by $b_{0 x}=b_{0 y}=b_{0 z}=10.5 \mathrm{~m} ; h=10.5 \mathrm{~m}$.

The input is summarized in T able 4.15

Table 4.15 Input for instantaneous release example

| Chemical name | Methane |  |
| :--- | :--- | :--- |
| Release type | Instantaneous |  |
| Total mass released | 6000 | Kg |
| Length source in wind ( x ) direction | 21 | M |
| Length of source in crosswind (y) direction | 21 | M |
| Length source in vertical (z) direction | 21 | M |
| Ambient temperature | 15 | ${ }^{\circ} \mathrm{C}$ |
| Pasquill stability class | D (Neutral) |  |
| Latitude | 51 | Deg |
| Wind speed at 10 m height | 3.5 | $\mathrm{~m} / \mathrm{s}$ |
| Roughness length description | Habitated land |  |

The resulting concentration as function of time at a position and explosive mass evolution are shown in Figures 4.21 and 4.22.

The explosive contents are calculated with a numerical 3D integration of one of the halves of the cloud, as this one is symmetric with respect of the xz plane at 0 crosswind distance.

CPR 14E
Chapter 4 of the 'Y ellow B ook'


Figure 4.21 Concentration [ $\mathrm{mg} / \mathrm{m}^{3}$ ] time [ s ] series due to an instantaneous release at (50m, Om, 1.5m)


Figure 4.22 Explosive mass [kg] in the surroundings of the release as a function of time [s]

There is a quick dilution of the cloud even in neutral atmospheric conditions due to a relative high wind speed and to the type of land (habitated), which increases the turbulence at ground level; the maximum explosive mass is 5.35 kg just 8.35 s after the release.

### 4.6.4 The application of models for jets and plumes

### 4.6.4.1 The free jet model

T he example calculation to illustrate the use of the free jet formalism is a positively buoyant jet in vertical, upward direction, in a homogeneous atmosphere with zero wind speed. A release of this type could occur due to:

- A punctured vessel or a ruptured pipeline, at a small containment overpressure, since the outflow is subsonic.
- A sonic release from a punctured or ruptured container at a high pressure, when the source parameters are derived in the region after the initial expansion to ambient pressure. The procedures which allow to obtain subsonic source parameters from a sonic source configuration are discussed in chapter 2.
The input data for a typical case, a natural gas (NG) jet, are summarised in T able 4.17, although, it must be mentioned that the exit velocity is about one third of the speed of sound. T he calculation consists of 3 steps:
- Calculate the F roude number of the source to determine at what range of downstream distances the jet model can be applied, and where the release should be treated as a plume (4.71-4.72).
- Evaluate the axial concentration decay, and correct for density effects (4.76, 4.78).
- C alculate isocontours and the N G contents in the flammable part (4.81, 4.82).

The numbers in parentheses indicate the relevant equations. The results of the calculations are presented in Figure 4.23. T he N G flammable contents is 7.5 kg .


Figure 4.23 Example of concentration contours (UFL and LFL) of a free jet, see Section 4.5.4.1

Table 4.16 Input data for the free jet model

| source diameter | $[\mathrm{m}]$ | $2 \mathrm{~b}_{\circ}$ | 0.2 |
| :--- | :--- | :---: | :---: |
| exit velocity | $[\mathrm{m} / \mathrm{s}]$ | $\mathrm{u}_{\mathrm{o}}$ | 150 |
| NG density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ | $\rho_{\circ}$ | 0.78 |
| ambient density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ | $\rho_{\mathrm{a}}$ | 1.21 |
| UFL | $[\%]$ | - | 15 |
| LFL | $[\%]$ | - | 5.3 |

### 4.6.4.2 The application B riggs plume rise formulae

The Briggs formulae are intended for plume rise predictions of the hot gases, which are emitted from tall stacks. In such cases the temperature difference between the pollutant and the surrounding air is large, and the dispersing plume has a large buoyancy flux factor. Within the framework of the Y ellow Book, a possible application of the Briggs formulae is the dispersion of smoke plumes from fires. The example to illustrate the formalism is a vertical upward plume of hot air, which is released from a circular source in a neutral atmosphere.
The input data of the example are summarised in Table 4.18. The calculation consists of 3 steps:

- Calculate the buoyancy flux factor and the distance to final plume rise (4.884.91). N ote that the plume rise is limited by (4.91).
- Calculate the contributions of initial momentum and buoyancy to the total plume rise $(4.88,4.92)$.
- C alculate the total plume rise by adding the third powers of the 2 contributions. In general the release of large sources is buoyancy-dominated due to the $x^{2 / 3}$-dependency, as opposed to the $x^{1 / 3}$-dependency of the momentumcontribution (4.93).
According to the Briggs formulae the down-wind distance to final plume rise is 348 m . The contributions of initial momentum and buoyancy to the plume rise are, respectively, 30 m and 97 m . So the total plume rise is equal to 98 m .

Table 4.17 Input data for Briggs plume rise formulae

| source diameter | $[\mathrm{m}]$ | $2 \mathrm{~b}_{\mathrm{o}}$ | 4 |
| :--- | :--- | :---: | :---: |
| exit velocity | $[\mathrm{m} / \mathrm{s}]$ | $u_{o}$ | 10 |
| density of air $\left(150^{\circ} \mathrm{C}\right)$ | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ | $\rho_{\circ}$ | 0.84 |
| ambient density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ | $\rho_{a}$ | 1.20 |
| wind velocity | $\mathrm{m} / \mathrm{s}]$ | $u_{a}$ | 4 |

### 4.6.4.3 The integral model of Hoot, Meroney and Peterka

This section contains an example to illustrate the use of the 1-dimensional integral model of Hoot, M eroney and Peterka [HMP, 1973]. The release is a negatively buoyant jet in vertical, upward direction, and the environment is a homogeneous atmosphere. The input data of the example, a release of chlorine at ambient conditions, are summarised in T able 4.19.

Table 4.18 Input data for the HMP model

| source diameter | $[\mathrm{m}]$ | $2 \mathrm{~b}_{\mathrm{o}}$ | 1 |
| :--- | :--- | :---: | :---: |
| exit velocity | $[\mathrm{m} / \mathrm{s}]$ | $\mathrm{u}_{\mathrm{o}}$ | 25 |
| source height | $[\mathrm{m}]$ | $\mathrm{h}_{\mathrm{s}}$ | 20 |
| chlorine density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ | $\rho_{\mathrm{o}}$ | 3.00 |
| ambient density | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ | $\rho_{\mathrm{a}}$ | 1.21 |
| wind velocity | $\mathrm{m} / \mathrm{s}]$ | $\mathrm{u}_{\mathrm{a}}$ | 4 |

It can be calculated from the equations in Section 4.5.4 (4.83 and 4.84, using $g=$ $9.81 \mathrm{~m} / \mathrm{s}^{2}$ ) that the plume rise is at its maximum ( $\Delta \mathrm{h}_{\mathrm{r}}=11.6 \mathrm{~m}$ ) at a down-wind distance $x_{r}$ of 6.9 m . The peak concentration of chlorine at maximum plume rise is 11.4\% (formula 4.86).

The plume starts to descend from the point of maximal plume rise, because the plume material is still heavier than air. T he H M P model contains formulae to calculate the down-wind distance of plume touch-down and the approximate concentration at that point (roughly $7 \%$ at $x_{g}=49 \mathrm{~m}$ ), but the user of the Yellow Book is advised to perform the calculations of the plume sinking, touch-down and possiby slumping with the SLAB computer model (see the Section 4.5.5.2), or with the simple

Gaussian plume model. The SLAB model contains the H M P model as a submodel, so the whole calculation, including initial plume rise, can be done with SLAB.

### 4.6.5 The application of dense gas dispersion models

The SLAB computer model can be applied to dense gas releases from longduration pool evaporation, from horizontal and vertical two-phase jets, and from short-duration or instantaneous pool releases. The present section contains an example calculation for each of these four source term submodels, in order to illustrate the use of the SLAB model. The examples of the long- and short-duration pool evaporation are also used to illustrate the use of Britter and McQuaid's nomograms.

### 4.6.5.1 Long-duration pool evaporation

T he example to illustrate the pool evaporation source type is a liquid pool of chlorine, caused by a leaking storage drum. T he source characteristics were already discussed as an example in Chapter 3. The release disperses as a plume over an area, which is overgrown with low crops. T he input data for the SLAB computer model are summarised in Table 4.20. The values for the chlorine source material have been obtained from the table of material properties in the SLAB user manual [Ermak, 1990]. T he duration of 200 seconds is sufficient to obtain, for the present range of down-wind distances ( 1 km ), a steady-state solution with the SLAB computer model.

Table 4.19 SLAB input for a long-duration evaporating pool of chlorine

| Definition of source term: | evaporating pool, long-duration | IDSPL = 1 |
| :---: | :---: | :---: |
| Definition of numerical step: | largest step size | NCALC $=1$ |
| Molecular weight of source material [kg]: | 0.070906 (chlorine) | WMS $=0.070906$ |
| Vapor heat capacity of source material at constant pressure [J/kg K]: | 498.1 (chlorine) | CPS $=498.1$ |
| Boiling point temperature of source gas [K]: | 239.1 (chlorine) | TBP = 239.10 |
| Initial liquid mass fraction of source material: | 1.0 (liquid) | CMEDO $=1.0$ |
| Heat of vaporisation of the source material at the boiling point temperature [ $\mathrm{J} / \mathrm{kg}$ ]: | 287840.0 (chlorine) | DHE $=287840$. |
| Liquid specific heat of the source material [ $\mathrm{J} / \mathrm{kg} \mathrm{K}]$ : | 962.35 (chlorine) | CPSL $=962.35$ |
| Liquid density of the source material $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ : | 1574.0 (chlorine) | RHOSL $=1574.0$ |
| First saturation constant of source material [-]: | 1978.34 (chlorine) | SPB $=1978.34$ |
| Second saturation constant of source material [K]: | -27.01 (chlorine) | SPC $=-27.01$ |
| Temperature of the source material [K]: | 239.1 | TS $=239.1$ |
| Mass flow rate of the source [kg/s]: | 5.0 | QS $=5.0$ |
| Area of the source [ $\mathrm{m}^{2}$ ]: | 100.0 | AS $=100.0$ |
| Duration of the release, for a finite-duration source [s]: | 200. | TSD $=200$. |
| Source mass, for an instantaneous release [kg]: | 0 | QTIS $=0$ |
| Height of the source [m]: | 0. | HS $=0$ |
| Concentration averaging-time [s]: | 60. | TAV $=60$ |
| Maximum down-wind distance in the calculation [m]: | 1000. | XFFM $=10000$ |
| First height where the concentration is calculated [m]: | 1.5 | $\mathrm{ZP}(1)=1.5$ |
| Second height where the concentration is calculated (is used only when $\mathrm{ZP}(1)>0)[\mathrm{m}]$ : | 0. | $Z P(2)=0$ |
| Third height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 2)>0$ ) [m]: | 0. | $Z \mathrm{P}(3)=0$ |
| Fourth height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 3)>0)[\mathrm{m}]$ : | 0. | $Z P(4)=0$ |
| Surface roughness height [m]: | 0.1 (low crops) | $Z 0=0.1$ |
| Measurement height of ambient parameters [m]: | 10. | $Z A=10$ |
| Ambient wind speed [ $\mathrm{m} / \mathrm{s}$ ]: | 5. | $U A=5$ |
| Temperature of ambient air [K]: | 288.15 | $\mathrm{TA}=288.15$ |
| Relative humidity of ambient air [\%]: | 70. | $\mathrm{RH}=70$ |
| Stability class: | 4 (Pasquill class D) | STAB $=4$ |

An isocontour of the chlorine concentration of $15 \mathrm{~g} / \mathrm{m}^{3}$, corresponding to a molar fraction of $0.5 \%$, at a height of 1.5 m above ground-level (i.e. at inhalation level) at $t=200 \mathrm{~s}$ after the start of the evaporation, has been calculated with SLAB, and the results are shown in Figure 4.24.


Figure 4.24 Contour of a concentration of $15 \mathrm{~g} / \mathrm{m}^{3}$ chlorine due to an evaporating pool

The chlorine concentration was also estimated with the model of Britter and M cQuaid. The nomogram for continuous releases should be read with the parameter $\left(\left(g_{0}^{\prime}\right)^{2} v_{0} / u_{a}\right)^{1 / 5}=0.697$ along the horizontal axis, and $x / \sqrt{\left(v_{0} / u_{a}\right)}=1.9 \mathrm{x}$ along the vertical axis (see Section 4.5.4.1, the density of chlorine at boiling point is $3.61 \mathrm{~kg} / \mathrm{m}^{3}$ ). The largest distance to $\mathrm{c}=0.5 \%$ is about 210 m . The difference with SLAB might be due to heat transfer effects.

### 4.6.5.2 Horizontal jet

T he example to illustrate the horizontal jet source type is a jet of propane, of pure vapour, emerging from a ruptured pipeline of a railway tank wagon. The source characteristics were al ready discussed as an example in C hapter 2. The release disperses as a plume over an area, which is overgrown with low crops. T he input data for the SLAB computer model are summarised in Table 4.21. The values for the propane source material have been obtained from the table of material properties in the SLAB user manual.

Table 4.20 SLAB input for a horizontal propane jet

| Definition of source term: | horizontal jet | IDSPL = 2 |
| :---: | :---: | :---: |
| Definition of numerical step: | largest step size | NCALC $=1$ |
| Molecular weight of source material [kg/mol]: | 0.044097 (propane) | WMS $=0.044097$ |
| Vapor heat capacity of source material at constant pressure [J/kg K]: | 1678. (propane) | $C P S=1678$. |
| Boiling point temperature of source gas [K]: | 231.09 (propane) | TBP $=231.09$ |
| Initial liquid mass fraction of source material: | 0 (pure vapour) | CMEDO $=0$ |
| Heat of vaporisation of the source material at the boiling point temperature [ $\mathrm{J} / \mathrm{kg}$ ]: | 425740. (propane) | DHE $=425740$. |
| Liquid specific heat of the source material [J/kg K]: | 2520. (propane) | CPSL $=2520$. |
| Liquid density of the source material [ $\left.\mathrm{kg} / \mathrm{m}^{3}\right]$ : | 500.5 (propane) | RHOSL $=500.5$ |
| First saturation constant of source material [-]: | 1872.46 (propane) | SPB $=1872.46$ |
| Second saturation constant of source material [K]: | -25.16 (propane) | SPC $=-25.16$ |
| Temperature of the source material [K]: | 231.1 | TS = 231.1 |
| Mass flow rate of the source [kg/s]: | 7.85 | QS $=7.85$ |
| Area of the source [ $\mathrm{m}^{2}$ ]: | 3.14 | AS $=3.14$ |
| Duration of the release, for a finite-duration source [s]: | 1500 | TSD $=1500$ |
| Source mass, for an instantaneous release [kg]: | 0. | QTIS $=0$ |
| Height of the source [m]: | 3.0 | $\mathrm{HS}=3$ |
| Concentration averaging-time [s]: | 0.1 | TAV $=0.1$ |
| Maximum down-wind distance in the calculation [m]: | 500. | XFFM $=1000$ |
| First height where the concentration is calculated [m]: | 0. | $Z P(1)=0$. |
| Second height where the concentration is calculated (is used only when $\mathrm{ZP}(1)>0)[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(2)=0$ |
| Third height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 2)>0$ ) $[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(3)=0$ |
| Fourth height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 3)>0)[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(4)=0$ |
| Surface roughness height [m]: | 0.1 (low crops) | $Z 0=0.1$ |
| Measurement height of ambient parameters [m]: | 10. | $Z A=10$ |
| Ambient wind speed [m/s]: | 2. | $U A=2$ |
| Temperature of ambient air [K]: | 288.15 | $\mathrm{TA}=288.15$ |
| Relative humidity of ambient air [\%]: | 70. | $\mathrm{RH}=70$ |
| Stability class: | 6 (Pasquill class F) | STAB $=6$ |

The isocontour of the propane concentration of $9.3 \mathrm{~g} / \mathrm{m}^{3}$ (molar fraction $0.5 \%$ ) at a height of 1.5 m above ground-level at $\mathrm{t}=1500 \mathrm{~s}$ after the start of the release, has been calculated with SLAB, and the results are shown in Figure 4.25.

CPR 14E
C hapter 4 of the 'Y ellow B ook'


Figure 4.25 Contour of a concentration of $9.3 \mathrm{~g} / \mathrm{m}^{3}$ propane due to a horizontal jet

### 4.6.5.3 Vertical jet

T he example for this case is identical to the example in Section 4.6.3, which illustrates the model of H oot, M eroney and Peterka. Since SLAB includes the H M P model as a submodel, it gives similar results for the initial plume rise as obtained in Section 4.6.4. It is recalled that the release is a jet of chlorine vapour in vertical, upward direction, and the environment is a homogeneous atmosphere. The input data for the SLAB computer model are summarised in Table 4.22. The input data that describe the physical properties of chlorine are omitted from this table; they are given in T able 4.20. T he uniform vertical wind profile in the example is simulated by taking a small surface roughness height in the SLAB model calculation.

Table 4.21 SLAB input for a vertical chlorine jet

| Definition of source term: | vertical jet | IDSPL = 3 |
| :---: | :---: | :---: |
| Definition of numerical step: | largest step size | NCALC $=1$ |
| Temperature of the source material [K]: | 293.1 | TS = 293.1 |
| Mass flow rate of the source [ $\mathrm{kg} / \mathrm{s}$ ]: | 58.9 | QS $=58.9$ |
| Area of the source [ $\mathrm{m}^{2}$ ]: | 0.785 | AS $=0.785$ |
| Duration of the release, for a finite-duration source [s]: | 600. | TSD $=600$ |
| Source mass, for an instantaneous release [kg]: | 0 | QTIS $=0$ |
| Height of the source [m]: | 20. | HS $=20$ |
| Concentration averaging-time [s]: | 0.1 | TAV $=0.1$ |
| Maximum down-wind distance in the calculation [m]: | 500. | XFFM $=1000$ |
| First height where the concentration is calculated [m]: | 0. | $\mathrm{ZP}(1)=0$ |
| Second height where the concentration is calculated (is used only when $\mathrm{ZP}(1)>0$ ) $[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(2)=0$ |
| Third height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 2)>0$ ) $[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(3)=0$ |
| Fourth height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 3)>0$ ) $[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(4)=0$ |
| Surface roughness height [m]: | 0.03 (smooth) | $Z 0=0.03$ |
| Measurement height of ambient parameters [m]: | 10. | $\mathrm{ZA}=10$ |
| Ambient wind speed [ $\mathrm{m} / \mathrm{s}$ ]: | 4. | $U A=4$ |
| Temperature of ambient air [K]: | 293.1 | TA $=293.1$ |
| Relative humidity of ambient air [\%]: | 0. | $\mathrm{RH}=0$ |
| Stability class: | 4 (neutral) | STAB $=4$ |

The output results show that the region of maximal plume rise appears at down-wind distances between 6.1 and 7.6 m , with a final rise of 9.7 m and a cross-wind-averaged concentration of $8.3 \%$. It is noted that these results are slightly different from the calculation in Section 4.6.3, because the surface roughness in SLAB introduces a non-constant vertical wind profile. In the SLAB model simulation, the plume touchdown occurs at a down-wind distance of 43 m , with a cross-wind-averaged concentration of $4.6 \%$. U pon touch-down of the plume, a transition occurs from an airborne plume with a diameter of 8 m to a slumped plume with a height of 2.8 m only. Pressure forces develop during the transition which are converted into horizontal momentum, mainly in the cross-wind direction, resulting in a rapid broadening of the slumped plume. Ultimately differences in velocity between the plume and ambient atmosphere become negligible, and the dispersion process resembles that of a steady plume. Figure 4.26 shows an isocontour of the chlorine concentration ( $15 \mathrm{~g} / \mathrm{m}^{3}$ corresponding to a molar fraction of $0.5 \%$ ) at ground level, at $\mathrm{t}=600 \mathrm{~s}$ after the start of the release calculated with SLAB.

CPR 14E
Chapter 4 of the ' $Y$ ellow B ook'


Figure 4.26 Isocontour of $15 \mathrm{~g} / \mathrm{m}^{3}$ due to a vertical jet release of chlorine

### 4.6.5.4 Short-duration or instantaneous pool release

The example to illustrate this source type is an instantaneous release of propane, possibly by a BLEVE accident. The release forms a cloud of pure propane gas at ambient conditions. The input data for the SLAB computer model are summarised in Table 4.23, with the exception of the physical properties of propane, which are already given in T able 4.21.

Table 4.22 SLAB input for an instantaneous release

| Definition of source term: | instantaneous release | IDSPL $=4$ |
| :---: | :---: | :---: |
| Definition of numerical step: | largest step size | NCALC $=1$ |
| Temperature of the source material [K]: | 288.15 | TS $=230.9$ |
| Mass flow rate of the source [ $\mathrm{kg} / \mathrm{s}]$ : | 0. | QS $=0$. |
| Area of the source [ $\mathrm{m}^{2}$ ]: | 400. | AS $=652.8$ |
| Duration of the release, for a finite-duration source [s]: | 0. | TSD $=0$ |
| Source mass, for an instantaneous release [kg]: | 14.600 | QTIS $=14.600$ |
| Height of the source [m]: | 0. | HS $=9.61$ |
| Concentration averaging-time [s]: | 3600 | TAV $=3600$ |
| Maximum down-wind distance in the calculation [m]: | 500. | XFFM $=10.000$ |
| First height where the concentration is calculated [m]: | 0. | $\mathrm{ZP}(1)=0$ |
| Second height where the concentration is calculated (is used only when $\mathrm{ZP}(1)>0$ ) $[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(2)=0$ |
| Third height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 2)>0$ ) $[\mathrm{m}]$ : | 0. | $Z P(3)=0$ |
| Fourth height where the concentration is calculated (is used only when $\mathrm{ZP}(1: 3)>0$ ) $[\mathrm{m}]$ : | 0. | $\mathrm{ZP}(4)=0$ |
| Surface roughness height [m]: | 0.03 (grass) | $Z 0=0.03$ |
| Measurement height of ambient parameters [m]: | 10. | $Z A=10$ |
| Ambient wind speed [ $\mathrm{m} / \mathrm{s}$ ]: | 4. | $U A=4$ |
| Temperature of ambient air [K]: | 288.15 | $\mathrm{TA}=288.15$ |
| Relative humidity of ambient air [\%]: | 0. | $\mathrm{RH}=0.7$ |
| Stability class: | 6 (Pasquill class F) | STAB $=6$ |



Figure 4.27 Isocontour of $9.3 \mathrm{~g} / \mathrm{m}^{3}$ at 240 s after a release of propane.

At 240 s after release the isocontour of $9.3 \mathrm{~g} / \mathrm{m}^{3}$ (molar fraction $0.5 \%$ ) has been calculated with SLAB at a height of 0 m , and the results are plotted in Figure 4.27.

The largest extent to the $0.5 \%$ contour is 913 m at 410 s after release. T his distance is also estimated with the model of Britter and M cQuaid. The nomogram 4.14 for instantaneous releases should be read with the parameter $\left.\sqrt{\left(g_{0}{ }^{\prime} V_{0}^{1 / 3} / \mathrm{u}_{\mathrm{a}}^{2}\right.}\right)=6.36$ along the horizontal axis, which gives a value for $x / V_{0}{ }^{1 / 3}$ of 10 for the $0.05 \%$ contour on the horizontal axis, i.e. $x=184 \mathrm{~m}$, which is in reasonable agreement with the result from SLAB, although one should bear in mind that the Britter and M CQuaid model leads to the same result irrespective of the atmospheric stability.

### 4.7 Discussion

### 4.7.1 Introduction to Section 4.7

This section provides additional information on limitations of selected models, alternative solutions, and gaps of knowledge at present.

### 4.7.2 Changes in atmospheric conditions

B oth the G aussian plume model as the selected dense gas dispersion model describe dispersion for stationary atmospheric conditions. The models are not able to describe phenomena during changes in the boundary layer meteorology, such as passage of fronts, diurnal variation of wind speed and wind direction near coasts, etc. As the meteorological conditions change continuously, the total travel time for which the models are valid needs to be maximised to about 3 hours. The maximum travel distance is thus about $10^{4} . u_{a} \mathrm{~m}$. For larger distances use needs to be made of dedicated long range dispersion models.

### 4.7.3 Still air

Gaussian plume models are normally excluded for use in still air. By minimising $\sigma_{v}$ in formula (4.49) the range of applicability is extended compared to conventional Gaussian plume models. This minimum value of $\sigma_{v}$ is probably small, thus conservative from a point of view of maximum concentration.
For continuous releases during very low wind speed for which $u_{a}<2 . \sigma_{v}$, accumulation of plume material at the source will appear (upwind dispersion by wind fluctuations becomes of the same order of magnitude as down-wind convection by wind speed), and the source need to be treated as a series of instantaneous releases where $\sigma_{x}$ is calculated (also in the surface layer) by formula (4.61d), and the argument $u_{a} . t$ in the function $F_{z}\left(u_{a} . t, z\right)$ is replaced by $x$ for surface layer releases.

### 4.7.4 Accuracy of the Gaussian plume model

In Figure 4.6 regions of atmospheric conditions are indicated. T he use of the Gaussian plume model is well assessed for the 'near neutral upper layer'. As discussed in Section 4.3.2, vertical dispersion in the surface layer, although not strictly G aussian, is also well understood.
Dispersion in the 'mixed layer' and 'free convection layer' is proven to be not Gaussian in nature. For the 'local scaling layer', 'z-less scaling layer', and 'intermittency layer' no alternative for G aussian plume modelling has been suggested so far.
The Gaussian plume model will at best have an accuracy of a factor of 2 for the near neutral upper layer [O lesen et al., 1992].

### 4.7.5 Dispersion over obstacles

N either the Gaussian plume model, jet and plume models, nor the dense gas models as presented in the previous sections allow predictions to be made which take into account the effects of obstacles. It is not allowed to introduce obstacle effects by increasing the roughness length for the calculation: in effect, the height of the cloud should always exceed (except for very near to the source) the roughness length by an order of magnitude. As discussed in Section 4.2.7, effects of obstacles should be taken into account if the smaller value of height or width of the obstacle(s) is larger than the local cloud height.

Obstacle effects can be treated in a few ways. F or passive dispersion some simple models exist for dispersion in the wake of single buildings for which the ratio of width-to-height does not exceed about 5 [D uijm and W ebber, 1993]. T hese models assume a uniform distribution of concentration in the wake of a building. However, differences of a factor 10 are often observed.
Some progress is being made in developing simple models for (dense) gas dispersion over simple obstacle arrays, such as fences perpendicular to the wind, uniformly distributed blocks, and 'street-canyon' like situation [D uijm and W ebber, 1993; VD I, 1990].

F or situations for which no such specific 'simple’ model exists, one needs to use either physical modelling by means of atmospheric boundary-layer wind or water tunnels, or computational fluid dynamic codes (CFD). F or passive dispersion in near neutral conditions, for which plume rise or plume descent is not relevant, wind tunnel simulations are as yet unsurpassed for costs and accuracy.
F or buoyant or dense releases, additional scaling parameters need to be used in wind tunnels which lead to compromises between viscous effects and density effects. T hese effects need to be assessed carefully for each case.
CFD-modelling as yet needs approximations with respect to the representation of turbulence. H ere again these approximations should be assessed carefully for each case, the situations with stable stratification (either atmospheric or from the dense gas cloud) being the most critical.

### 4.7.6 Concentration fluctuations

The selected models account for different averaging-times and 'instantaneous' lateral plume widths. These plume widths need to be considered as so-called ensemble-averaged width and these calculations do not exclude fluctuations of plume width and concentrations to occur.
Thelast decade much attention has been paid to develop general models that describe concentration fluctuations (or at least statistics of concentration fluctuations) in passive and dense gas clouds and plumes.
As yet no generalised model for concentration fluctuations is available. There is evidence that quantities of instantaneous dense and passive releases, such as dose and maximum concentration, are log-normally distributed over the ensemble of realisations. For continuous releases less definite conclusions with respect to distribution functions can be given, partly because here intermittency masks part of the observations.

### 4.7.7 Removal processes

In Sections 4.2.8 and 4.2.9 some attention is paid to chemical reactions and deposition, respectively. T he selected models do not account for these processes. F or slow chemical reactions and wet deposition, one may write a first order decrease of material in the plume:

$$
\begin{equation*}
\frac{d q(x)}{d x}=-C q(x) \tag{4.175}
\end{equation*}
$$

$$
(\mathrm{kg} /(\mathrm{m} \cdot \mathrm{~s})) \diamond
$$

where $\mathrm{q}(\mathrm{x})$ is the source strength to be used in the (Gaussian) plume model at distance $x$, and $C$ some constant, depending on the chemical reaction or the washout rate.
For dry deposition at the ground one may calculate the total flux by integration of (4.5) over the plume width and decrease $q(x)$ in the plume model by this loss of material (source depletion model). However, dry deposition will affect the concentration near the ground, thus changing the vertical distribution of material. A model to describe this phenomenon was developed by Rao [1981]. Although not strictly correct, it provides sufficiently accurate predictions for practical values of deposition velocities and wind speeds [Bakkum, 1993].

### 4.8 Literature

Bakkum, E.A. (1993),
Een numeriek algoritme voor de berekening van droge depositie en uitwassing van emissies in de atmosfeer (in D utch),
TNO-IMET report 93-211.

Beals G.A., (1971)
Guide to local diffusion of air pollutants,
tech. report 214 W eather Services U SAF , NTIS, AD 726984.

Beljaars, A.C.M ., A.A.M . H oltslag (1990),
A software library for the calculation of surface fluxes over land and sea,
Environmental software, 5, pp 60-68.

Bianconi, R., M . T amponi (1993),
A mathematical model of diffusion from a steady source of short-duration in a finite mixing layer,
Atmospheric Environment 27A, pp 781-792,
Blackmore D.R. et al. (1982),
H eavy gas dispersion models,
Journal of H azardous M aterials 6 (1982) 107.

Briggs, G.A. (1969),
Plume rise,
U.S. Atomic Energy Commission Report TID-25075.

Britter, R.E. and M cQuaid, J. (1988),
W orkshop on the dispersion of dense gases, H SE Contract Research Report No 17.
A.J. Byrne, S.J. Jones, S.C. Rutherford, G .A. T ickle, D .M . W ebber (1992), Description of ambient atmospheric conditions for the computer code DRIFT, SRD/HSE R553, SRD, Culcheth, U.K.

C hatwin P.C. (1968),
The dispersion of a puff of passive contaminant in the constant stress region, Quart. J. R. M et. Soc., 94, pp. 350-360.

Chen, C.J. and Rodi, W. (1980),
Vertical turbulent buoyant jets,
Pergamon Press, Oxford.

C olenbrander, G.W. (1980),
A mathematical model for the transient behaviour of dense vapour clouds, 3rd Int. Symp. on Loss Prevention and Safety Promotion in the Process Industry (B asle).

Commissie TN O voor het onderzoek ten dienste van het M ilieubeheer (1976) M odellen voor de berekening van de Verspreiding van Luchtverontreiniging, Staatsuitgeverij 1976.

Cox, R.A., and Carpenter, R.J. (1979),
Further developments of a dense vapour cloud dispersion model for hazard analysis, Proceedings of the symposium on heavy gas dispersion, F rankfurt.

D avidson, G.A. (1989),
Simultaneous trajectory and dilution predictions from
a simple integral plume model,
Atmospheric Environment 23, 341.

D eaves, D.M. (1992),
D ense gas dispersion modelling,
Journal of loss prevention in the process industry 4 (1992) 219.
Drivas P.J. and Shair F.H. (1974),
D ispersion of an instantaneous crosswind line source of tracer released from an U rban highway,
Atm. Env. 8, pp. 475-485.

D uijm, N.J., W ebber, D.M (1993 or 1994),
Dispersion in the presence of buildings, Problem Clouds - II, A pril 15/16, 1993,
A msterdam, T he N etherlands and accepted for publication in J. of L os Prevention in the Process Industries, 1993 or 1994.

Eidsvik, K.J. (1980),
A model for heavy gas dispersion in the atmosphere,
Atmospheric E nvironment 14, 769.

Erbrink, J.J. (1991),
A practical model for the calculation of $\sigma_{y}$ and $\sigma_{z}$ for use in an on-line $G$ aussian dispersion model for tall stacks, based on wind fluctuations,
Atm. Env., 25A, 2, pp 277-283.
Ermak, D.L. et al. (1982),
A comparison of dense gas dispersion model simulations with Burro series LN G spill test results,
Journal of H azardous M aterials 6 (1982) 129.
Ermak, D.L., Rodean, H.C., L ange, R. and Chan, S.T . (1988),
A survey of denser-than-air atmospheric dispersion models,
LLNL Report under contract W-7405-EN G-48.
Ermak, D.L. (1990),
U ser's manual for SLAB: an atmospheric dispersion model for denser-than-air releases, L awrence Livermore N ational Laboratory, C alifornia 94550.

F ryer, L.S. and K aiser, G.D. (1979),
DEN Z, a computer program for the calculation of the dispersion of dense toxic or explosive gases in the atmosphere,
Report UKAEA SRD R/52.

G older, D. (1972),
Relations among stability parameters in the surface layer,
Boundary-L ayer M et., 3, pp 47-58.

G ryning, S.E., A.A.M. H oltslag, J.S. Irwin, B. Sivertsen (1987),
Applied D ispersion modelling based on meteorological scaling parameters, Atmospheric Environment 21/1, pp 79-89.

Guinnup, D. (1992),
N on-buoyant Puff and Plume Dispersion M odelling Issues, Plant/O perations Progress 11/1, pp 12-15.

H anna S.R., Briggs G.A. en H osker Jr. R.P. (1982),
$H$ andbook of Atmospheric Diffusion,
DOE/TIC-11223 (DE 82002045), 1982.

H anna, S.R. and Drivas, P.J. (1987),
G uidelines for the use of vapor cloud dispersion models,
CCPS American Institute of Chemical Engineers N ew Y ork.

H anna, S.R., Strimaitis, D.G., and C hang, J.C. (1991),
Evaluation of commonly-used hazardous gas dispersion models,
Final Report under contract F O 8635-89-C-0136,
Sigma Research C orporation, C oncord.

H anna, S.R. (1990),
L ateral D ispersion in Light W ind Stable C onditions, Proceedings of the EU RASAP M eeting and GNFAO/CNR W orkshop on Atmospheric Dispersion in Low Wind speeds and F oggy C onditions, T orino, Sept. 5-7, 1989, ed. D. Anfossi \&
A. L onghetto, II N uova Cimento della società italiana di fisica vol. 13 C , num. 6, pp. 889-894.

H anna, S.R. and Chang, J.C. (1992),
Evaluation of commonly-used hazardous gas dispersion models,
Addition of the HGSYSTEM model,
Final Report A232-300, Sigma R esearch C orporation, C oncord.

H avens, J. (1989),
D E nse G As D ISpersion version 2.1.

H avens, J. and Spicer, T. (1990),
TECJET: An atmospheric dispersion model,
Risk Analysis 10 (1990) 459.

H avens, J. (1992),
Review of dense gas dispersion field experiments,
Journal of loss prevention in the process industry 1 (1992) 28.

H oltslag, A.A.M. (1984),
Estimates of diabatic wind speed profiles from near-surface weather observations,
Boundary-L ayer M eteorology 29, pp 225-250.

H oltslag, A.A.M ., and F .T .M . N ieuwstadt (1986),
Scaling the atmospheric boundary layer,
Boundary-L ayer M eteorology 36, pp 201-209.
H oltslag, A.A.M . (1987),

## Surface fluxes and boundary layer scaling - model and applications,

K N M I WR-no 87-2, De Bilt.

H oltslag, A.A.M., and H.A.R. de Bruin (1987),
A pplied modelling of the night-time surface energy balance over land, submitted to $J$. of C limate and Applied M eteor.

H oot, T.G., M eroney, R.N . and Peterka, J.A. (1973),
Wind tunnel tests of negatively buoyant plumes,
NTIS Report PB-231-590.

H su, S.A. (1992),
An overwater stability criterion for the offshore and coastal dispersion model (research note), B oundary-L ayer M et., 60, pp 397-402.

Jagger, S.F. (1983),
D evelopment of CRUNCH : a dispersion model for continuous releases of denser-than-air vapour into the atmosphere,
Report UKAEA SRD R 229.

Jones, S.J., M ercer, A., T ickle, G.A., W ebber, D .M . and W ren, T. (1991), Initial verification and validation of DRIFT, Report SRD/H SE/R 580.

K aiser, G.D. and Walker, B.C. (1978),
Releases of anhydrous ammonia from pressurised containers and the importance of denser than air mixtures,
Atmospheric Environment 12, 2289.

K N M I (1974),
L uchtverontreiniging en W eer,
Staatsuitgeverij, The H ague.

K N M I (1979),
Luchtverontreiniging en weer, 2e druk,
Staatsuitgeverij, 's G ravenhage.

Li, X ., Leijdens, H. and Ooms, G. (1986),
An experimental verification of a theoretical model for the dispersion of a stack plume heavier than air, Atmospheric Environment 20.

M cF arlane, K ., Prothero, A., Puttock, J.S., Roberts, P.T . and Witlox, H.W.M. (1990),
D evelopment and validation of atmospheric dispersion models for ideal gases and hydrogen fluoride,
T echnical Reference M anual Shell Reseach Report T NER.90.015.

M ercer, A. et al. (1993),
C omparison of heavy gas dispersion models for instantaneous releases, to be published in Journal of H azardous M aterials (1993).

Olesen, H.R., T. M ikkelsen, eds (1992),
Proceedings of the workshop Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models,
NERI, Roskilde, D enmark.

Ooms, G. (1972),
A new method for the calculation of the plume path of gases emitted by a stack, Atmospheric Environment 6, 899.

Ooms, G . and Duijm, N.J. (1984),
D ispersion of a stack plume heavier than air, IUTAM Symposium, Springer Verlag.

Panofsky, H.A., and J.A. D utton (1984),
Atmospheric Turbulence, John Wiley \& Sons, N ew Y ork.

Pasquill F. and Smith F.B., (1983)
Atmospheric D iffusion, Ellis H orwood Ltd., C hichester.

Pasquill, F. and F.B. Smith (1983),
Atmospheric Diffusion, 3rd ed., Ellis H orwood, C hichester.

Peterson, R.L. (1978),
Plume rise and dispersion for varying ambient turbulence, thermal stratification and stack exit conditions,
PhD Thesis, C olorado State U niversity.

Press, W.H . et al. (1986),
N umerical Recipes - T he Art of Scientific C omputing, C ambridge U niversity Press, C ambridge.

Puttock, J.S. et al. (1991),
D ispersion models and hydrogen fluoride predictions,
Journal of loss prevention in the process industry 4 (1991) 16.

Rao, K.S. (1981),
A nalytical solutions of a gradient-transfer model for plume deposition and sedimentation,
N OAA technical memorandum ERL-ARL-109, NTIS, U.S. D ept. of C ommerce. PB 82-215153.

Radian Corporation (1988),
D escription of the Radian complex hazardous air release model.

Saffman P.G. (1962),
The effect of wind shear on horizontal spread from an instantaneous ground source, Quart. J. R. M et. Soc., 88, pp. 382.

Seinfeld, J.H. (1986),
Atmospheric Chemistry and Physis of Air Pollution,
John Wiley \& Sons, N ew Y ork.
Slade D.H. (1968),
M eteorology and Atomic Energy, U.S. Atomic Energy Commission.

Singer, I.A., Smith, M .E. (1953),
J. M eteorol., 10, 2, pp 92-114.

Stern, A.C., R.W. Boubel, D.B. T urner, D.L. Fox (1984),
Fundamentals of Air Pollution,
2nd ed., A cademic Press, L ondon.

Stull, R.B. (1988),
An Introduction to Boundary Layer Meteorology,
Atmospheric Sciences Library, K luwer A cademic Publishers, D ordrecht.

T yldesley J.B. and W allington C.E. (1965),
The effect of wind shear and vertical diffusion on horizontal dispersion,
Quart. J. R. M et. Soc., 91, pp. 158-174 (1965).

U lden, A.P. van, and A.A.M. H oltslag (1985),
Estimation of Atmospheric Boundary L ayer Parameters for D iffusion Applications, Journal of Climate and Applied M eteorology, 24, pp 1196-1207.

U Iden, A.P. van (1991),
A surface-layer similarity model for the dispersion of a skewed passive puff near the ground, Atmospheric Environment 26A/4, pp 681-692.

VDI Richtlinie 3783 Blatt 2 (1990),
Ausbreitung von storfallbedingten F reisetzungen schwerer
G ase - Sicherheitsanalyse,
Beuth Verlag G mbH, Berlin.

W ebber, D.M. et al. (1992),
A model of a dispersing dense gas cloud, and the computer implementation DRIFT,
UKAEA Report SRD/H SE R586-587.
W erkgroep V erspreiding L uchtverontreiniging (1984),
Parameters in the long-term model of
air pollution Dispersion - N ew recommendations,
TNO-SCM O, P.O. Box 186, 600 AD D elft, The N etherlands.

Wheatley, C.J. and W ebber, D.M . (1984),
Aspects of the dispersion of denser-than-air vapours relevant to gas cloud explosions,
Final Report SR/007/80/U K/H UK Atomic Energy Authority.

Witlox, H.W.M. et al. (1990),
HGSYSTEM user/technical manuals,
References to chapter 4, Vapour Cloud Dispersion.
Zeman, O. (1982),
The dynamics and modelling of heavier-than-air cold gas releases, Atmospheric Environment 16, 741.

## Appendix 4.1 A method for estimating the solar elevation

## A4. 1 The Julian day number

The Julian day number, $J_{n}$, can be defined as the number of days elapsed since the first of January.

F or a date of the form DD-M M-YYYY, YYYY is first examined to see if it is a leap year.

The following table is used for the calculation

| MM | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| X | 031 | 059 | 090 | 120 | 151 | 181 | 212 | 243 | 273 | 304 | 334 | 365 |

$$
\begin{equation*}
J_{n}=D D+X_{M M-1} \tag{al.1}
\end{equation*}
$$

in non-leap years, and up to February in all years, and

$$
\begin{equation*}
J_{n}=D D+X_{M M-1}+1 \tag{al.2}
\end{equation*}
$$

in leap years after F ebruary.

## A4. 2 The solar elevation

In this section, all arguments of goniometrical functions are in radians.
F rom $\mathrm{J}_{\mathrm{n}}$ the solar longitude (SL) can be evaluated by,

$$
\begin{equation*}
S L=4.871+0.0175 \mathrm{~J}_{\mathrm{n}}+0.033 \sin \left(0.0175 \mathrm{~J}_{\mathrm{n}}\right)(\mathrm{rad}) \tag{al.3}
\end{equation*}
$$

where SL is in radians. T he solar declination (SD ) follows from

$$
\begin{equation*}
S D=\operatorname{arc} \sin (0.398 \sin (S L))(r a d) \tag{al.4}
\end{equation*}
$$

These three quantities are used to compute the smallest angle through which the earth must turn to bring the meridian of the given location directly under the sun

$$
\begin{equation*}
\alpha=\psi_{w} \cdot \frac{\pi}{180}+0.043 \sin (2 \cdot \mathrm{SL})-0.033 \sin \left(0.0175 J_{\mathrm{n}}\right)+\pi \cdot\left(\mathrm{t}_{\mathrm{u}} / 12-1\right) \tag{al.5}
\end{equation*}
$$

where $\psi_{w}$ is the western longitude ( ${ }^{\circ} \mathrm{W}$ ) of the location and $t_{u}$ is the universal time in hours.
the solar elevation, $\chi$, is given in radians by:

$$
\begin{equation*}
\chi=\arcsin \left\{\sin (S D) \cdot \sin \left(\varphi \frac{\pi}{180}\right)+\cos (S D) \cdot \cos \left(\varphi \frac{\pi}{180}\right) \cdot \cos (\alpha)\right\} \tag{al.6}
\end{equation*}
$$

where $\varphi$ is the latitude of the location ( ${ }^{\circ} \mathrm{N}$ ). This scheme provides an estimate for $\chi$ with an accuracy of within 0.05 rad.

Chapter 5
Vapour cloud explosions
W.P.M. M ercx, A.C. van den Berg

## Modifications to Chapter 5 (Vapour cloud explosions) with respect to the first print (1997)

N umerous modifications were made concerning typographical errors. A list is given below for the pages on which errors have been corrected.

At page 5.24: the declaration of variable EmTNT (TNT blast energy) is corrected, and values currently in use for this variable are added.

In the calculation examples of the application of selected methods: calculation examples
A lot of numbers are refined, and values are more accurately read from plots and figures. The values of $T$ ables 5.6, 5.7A, 5.7B have been replaced by refined values.

## List of symbols Chapter 5

$\mathrm{A}_{\mathrm{f} \text {, rainout }}$ Jet cross-section after flashing and rainout (5.10)
$a_{a} \quad$ Speed of sound in ambient air (5.4)
$\mathrm{b}_{\mathrm{f}, \text { rainout }}$ Jet radius after flashing and rainout (5.10)
$b_{i} \quad$ D imension of a box
$c_{p} \quad$ Specific heat at constant pressure
$C_{s} \quad$ Stoichiometric concentration (5.7)
$D_{1} \quad$ Smallest dimension of obstacle perpendicular to flame propagation direction
$\mathrm{m}^{2}$
$\mathrm{m} \cdot \mathrm{s}^{-1}$
m
m
$\mathrm{J} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1}$
\%
$D_{2} \quad$ D imension of obstacle parallel to flame propagation direction
m
$d_{c} \quad$ D iameter of a cylinder
m
$d_{s} \quad$ D iameter of a sphere m
E T otal combustion energy (5.2)
$\mathrm{E}_{\mathrm{m}} \quad$ C ombustion energy per unit mass (5.1)
$\mathrm{E}_{\mathrm{mf}} \quad$ C ombustion energy of fuel per unit mass (5.1)
$\mathrm{E}_{\text {mTNT }} \quad$ C ombustion energy of T N T per unit mass (5.1)
$E_{V} \quad$ C ombustion energy per unit volume (5.9)
$\mathrm{i}_{\mathrm{s}} \quad$ Positive side-on impulse of blast-wave (5.6)
$P_{s c} \quad$ O verpressure in vapour cloud
$\mathrm{P}_{\mathrm{s}} \quad$ Peak side-on overpressure of blast-wave (5.3)
m
$p_{a} \quad$ Ambient pressure (5.2)
Pa
$\mathrm{p}_{\text {dyn }} \quad$ Peak dynamic pressure in blast-wave (5.5) Pa
$\mathrm{p}_{\mathrm{dyn}}{ }^{\prime} \quad$ Scaled dynamic pressure in blast-wave (5.5)
$\mathrm{p}_{\mathrm{CJ}} \quad$ 'C hapman-Jouguet' peak detonation pressure
$\mathrm{p}_{\mathrm{vN}} \quad$ 'Von N eumann' peak detonation pressure
$Q_{\text {ex }} \quad M$ ass quantity of flammable part of the cloud (5.7)
$Q_{f} \quad M$ ass of fuel involved (5.1)
J

TNT Equivalent mass of TNT (5.1)
Jg
$J \cdot \mathrm{~kg}^{-1}$
$\mathrm{J} \cdot \mathrm{kg}^{-1}$
$\mathrm{J} \cdot \mathrm{m}^{3}$
Pa.s
Pa
Pa
-
$-\quad \mathrm{kg}$
$r$ D istance to explosion centre (5.2) m
$r^{\prime} \quad$ Scaled distance (5.2)
$r_{0} \quad$ Radius of flammable cloud (5.9) m
$r_{0}{ }^{\prime} \quad$ Scaled radius of flammable cloud -
$\mathrm{T}_{\mathrm{e}} \quad \mathrm{T}$ emperature of combustion products K
$\mathrm{T}_{\mathrm{i}} \quad \mathrm{T}$ emperature at start of combustion K
$\mathrm{T}_{\mathrm{a}}$ Ambient temperature K
$t_{p} \quad$ Positive phase duration of blast-wave (5.4)
$t_{p}{ }^{\prime} \quad$ Scaled positive phase duration of blast-wave (5.4)
$V$ Volume
Pa
Pa
kg
kg
c Volume of vapour cloud at stoichiometric concentration (5.8)
$\mathrm{m}^{3}$
$\mathrm{V}_{\mathrm{gr}} \quad$ V olume of vapour within obstructed region (5.8)
$V_{0} \quad$ Volume of unobstructed part of the cloud (5.8)
$\mathrm{m}^{3}$
$V_{r} \quad$ F ree volume of the obstructed region
$\mathrm{m}^{3}$
$\alpha_{e} \quad$ TNT equivalency based on energy (5.1)
$\alpha_{m} \quad$ TNT equivalency based on mass (5.1)
$\rho \quad$ D ensity (5.7)
$\mathrm{kg} / \mathrm{m}^{3}$
$N$ ote: the numbers between brackets refer to equations.

## Glossary of terms

| blast (wave) | a rapidly propagating pressure or shock-wave in <br> atmosphere with high pressure, high density and <br> high particle velocity |
| :--- | :--- |
| burning velocity | the velocity of a propagating flame, measured <br> relative to the unburnt gases immediately ahead <br> of the flame front |
| deflagration |  |
| a propagating chemical reaction of a substance in |  |
| which the propagation of the reaction front is |  |
| determined by conduction and molecular |  |
| diffusion |  |


| stoichiometric ratio | the ratio characterised by, or being, a proportion <br> of chemicals exactly right for a combustion with <br> no excess of flammable material or oxygen |
| :--- | :--- |
| T NT -equivalence | the amount of T N T (trinitrotoluene) that would <br> produce observed damage levels similar to those <br> of the explosion under consideration |
| turbulent flame propagation | propagation of a flame in a turbulent flow, <br> characterised by a rough combustion zone rather <br> than by a thin and smooth flame front |
| vapour cloud explosion | the explosion resulting from an ignition of a <br> premixed cloud of flammable vapour, gas or <br> spray with air, in which flames accelerate to <br> sufficiently high velocities to produce significant <br> overpressure |
| volume blockage fraction | the ratio of the volume of the obstructed area <br> occupied by obstacles to the total volume of the <br> obstructed area itself |

## Table of contents Chapter 5

Modifications to Chapter 5, Vapour cloud explosions ..... 3
List of symbols Chapter 5 ..... 5
Glossary of terms ..... 7
5 Vapour cloud explosions. ..... 11
5.1 Introduction ..... 11
5.2 The phenomenon of a vapour cloud explosion ..... 13
5.2.1 Introduction to vapour cloud explosions ..... 13
5.2.2 Combustion modes ..... 15
5.2.3 Ignition ..... 19
5.2.4 Gas explosion mechanism ..... 19
5.2.5 D eflagration to detonation transition (DDT) ..... 20
5.2.6 Blast ..... 21
5.3 G eneral overview of existing vapour cloud explosion blast models. ..... 23
5.3.1 Introduction to section 5.3 ..... 23
5.3.2 M ethods based on T NT charge blast ..... 23
5.3.3 M ethods based on fuel-air charge blast ..... 26
5.4 Selection of a model ..... 29
5.5 D escription of model ..... 33
5.5.1 Introduction to the M ulti-E nergy concept ..... 33
5.5.2 Discussion ..... 39
5.5.3 Procedure for the division of an area into obstructed and unobstructed regions ..... 44
5.5.4 Procedure for the application of the M ulti-E nergy method ..... 46
5.6 Application of selected models: calculation examples. ..... 53
5.6.1 Introduction to section 5.6 ..... 53
5.6.2 D efinition of an obstructed region ..... 53
5.6.3 Vapour cloud explosion ..... 60
5.6.4 D etermination of obstructed region ..... 65
5.7 Interfacing to other models ..... 75
5.8 Literature. ..... 77

## 5 Vapour cloud explosions

### 5.1 Introduction

O ne of the physical phenomena that may occur after the accidental release of dangerous goods is a vapour cloud explosion. A vapour cloud can be created by either the release of a gas from a containment or by the evaporation of a liquid that was released from a containment. A 'Source Term' calculation, in most cases followed by a 'Dispersion' calculation, will be performed usually prior to a 'Vapour Cloud Explosion' calculation.

N ot all gases or vapours are flammable and if they are, they are not flammable under all circumstances. If however, the vapour cloud is flammable, or part of the cloud is flammable, a vapour cloud explosion may occur. At least, the cloud will burn after it is ignited. Other conditions described in this chapter are required to turn the burn of a cloud into a devastating explosion.

The phenomenon of a 'V apour C loud Explosion' (VCE) is described in this chapter. An 'effect' model for the determination of the 'blast' resulting from a VC E is selected, described and elucidated with some examples. Results of this vapour cloud explosion blast model can be used as input to subsequent consequence models for the determination of damage to structures and injury to people. These models can be found in CPR-16E [1990].

The phenomenon of a vapour cloud explosion is presented in section 5.2. There, also basic features of vapour cloud explosions are explained.
K nowledge of the basic features and the explosion phenomenon is necessary to select a model for blast prediction.

Section 5.3 describes the existing models for vapour cloud explosion blast prediction and a discussion is presented regarding advantages and disadvantages of groups of models. After having motivated the preference for a specific group of models, one model out of this group is selected in section 5.4.

The model is presented by discussing the underlying physical features in section 5.5. There, also model deficiencies and available guidance to cover these deficiencies are discussed. Recommendations are made to cover deficiencies in a safe and conservative approach. T wo procedures are presented, one for the determination of obstructed regions and one for the application of the M ulti-E nergy method.

T he concept of the M ulti-E nergy method is generally accepted as the practical model representing best the mechanics of an unconfined vapour cloud explosion. The application in practice though is hampered due to the lack of appropriate guidance for application as some aspects are still not yet fully described due to the lack of experimental data.
C urrent internationally performed research aims at, amongst other things, improving practical prediction models and derivation of guidance for application. Additional information will become available from the EU sponsored projects MERGE (M odelling and Experimental Research into $G$ as Explosions) and EMERGE
(Extended MERGE). The project GAME (Guidance for the Application of the Multi-Energy method) and its successor GAMES (GAME Second phase) will provide valuable information for estimating the class of the source strength. Additional research should however be initiated to obtain knowledge on separation distances between obstructed regions.

As this information is not available presently it is advised to choose a source strength class number 10. T he result will be conservative as the class number is lower in almost all cases. The result will be better in comparison with the TNT equivalency method as the basic mechanism of a gas explosion is recognised, to wit: pressure is generated only in those areas where the flame is accelerated by turbulence generated by the interaction of the expansion flow ahead of the flame and obstacles present in the flame path.

Examples for becoming familiarised with the procedures are presented in section 5.6.
The last section deals with interfacing to other models (section 5.7).

### 5.2 The phenomenon of a vapour cloud explosion

### 5.2.1 Introduction to vapour cloud explosions

$M$ ajor industrial accidents like the explosion at the caprolactam plant of N ypro Ltd in Flixborough (U nited K ingdom) on June 1, 1974 and the explosion at the naphtha cracking unit of DSM in Beek (The N etherlands) on September 15, 1975 demonstrate the enormous impact VCE's can have.
These two examples are often quoted to give an impression of a typical VCE as they are well-known and well-documented. Although these two major accidents occurred several years ago, this does not imply that VCE's are ruled out due to the enormous amount of safety precautions that have been developed and implemented since then. M ore recent accidents include Celanese (1987), Shell (1988), Phillips (1989) and Exxon (1989) in the USA and Total (1991) near M arseille in France. The last causing window pane breakage at a distance of more than four kilometres.

All VCE's result from the ignition of a flammable cloud which was formed due to the release of a large quantity of flammable vaporising liquid or gas from a storage tank, a process or transport vessel, or a pipeline.
H owever, not all of these releases will necessarily lead to a VCE.
Generally speaking, several conditions need to be present for a vapour cloud explosion with damaging overpressure to occur.

First, the released material must be flammable and at suitable conditions of pressure or temperature. Examples of suitable materials are liquefied gases under pressure (propane, butane), ordinary flammable liquids particularly at high temperatures and/ or pressures (cyclohexane, naphtha), and non-liquefied flammable gases (methane, ethene, acetylene).

Secondly, a cloud must be formed prior to ignition (dispersion phase). Should ignition occur instantly at the release, a flare - in itself causing extensive localised heat radiation damage - will occur. H owever, significant blast pressures causing widespread damage are not likely to occur. Should the cloud be allowed to form over a period of time within a process area and subsequently ignite, blast pressures propagating away from the cloud centre can result in extensive damage over a wide area. Ignition delays from one to five minutes are considered the most probable of generating a vapour cloud explosion, although major incidents with ignition delays as low as a few seconds and higher than 30 minutes have been documented.

Thirdly, a part of the cloud must be within the flammable range of the material. A vapour cloud will generally have three regions - a rich region near the point of release, a lean region at the edge of the cloud and a region in between that is within the flammable range. The percentage of the vapour cloud in each region varies, depending on a great deal of different factors, including type and amount of the material released, pressure at release, size of release opening (all of them source terms), degree of confinement of the cloud, and wind, humidity and other environmental effects [H anna and D rivas, 1987].

F ourthly, the blast effects produced by vapour cloud explosions are determined by the speed of flame propagation. The faster the flame propagates through the flammable
cloud, the higher the overpressure in the cloud will be, which will increase the blast effects outside the cloud. This implies that the mode of flame propagation is very important. In general, the mode of flame propagation will be a deflagration. U nder extraordinary conditions a detonation might occur.
Section 5.2.2 discusses the modes of combustion in more detail.
When ignition occurs in a flammable cloud at rest, the flame will start to propagate away from the ignition point. The combustion products expand causing flow ahead of the flame. Initially this flow will be laminar. Under laminar or near-laminar conditions the flame speeds for normal hydrocarbons are in the order of 5 to $30 \mathrm{~m} / \mathrm{s}$ which is too low to produce any significant blast overpressure. Under these conditions, that is, should the combustion rate not be intensified, the vapour cloud will simply burn and the event is described as a large flash fire.

Therefore, an additional condition is necessary for vapour cloud explosions with pressure development: the presence of turbulence. Research testing has shown that turbulence will significantly enhance the combustion rate in deflagrations.

T urbulence may arise in a vapour cloud explosion accident scenario in various ways, namely:

- by the release of flammable material itself, for instance a jet release or a catastrophic failure of a vessel resulting in a explosively dispersed cloud,
- by the interaction of the expansion flow ahead of the flame with obstacles present in a congested area, for instance, in industrial installations.

Both mechanisms may cause very high flame speeds and, as a result, strong blast pressures.
The generation of high combustion rates is limited to the release area or to congested areas respectively. As soon as the flame enters an area without turbulence due to the release, or enters an area without obstruction, the combustion rate will drop as well as the pressure generation.
Of course, both mechanisms may also occur simultaneously, as with a jet release within a congested area.

In the extreme, the turbulence can cause the flame propagation mode to change suddenly from deflagration into detonation. This mode of flame propagation is attended by propagation speeds in excess of the speed of sound (twice to 5 times the speed of sound) and maximum overpressures of about 18 bar ( $18 \times 10^{5} \mathrm{~Pa}$ ). To maintain its speed of propagation, turbulence is no longer necessary, which means that unobstructed and/or quiescent flammable parts of a cloud may also participate in the production of blast. It should, however, be emphasised that for a detonation to propagate, experimental indications suggest that the flammable part of the cloud must be rather homogeneously mixed. F or this reason a vapour cloud detonation of the cloud as a whole, is a most unlikely phenomenon to occur.

The likelihood of occurrence of deflagration and a detonation is also influenced by the ignition process. Hydrocarbon-air mixtures need a high-explosive charge as the ignition source for direct initiation of a detonation. Therefore, deflagrations are the most common combustion mode and detonations arise from a D eflagration to Detonation $T$ ransition (DDT).

Historically, the phenomenon described in this chapter was referred to as 'U nconfined Vapour Cloud Explosions' (UVCE), but with respect to the extent of influence of (partial) confinement and obstructions, the term 'unconfined' is a misnomer in general. It is more accurate to call this type of explosion a 'Vapour Cloud Explosion'.

The various aspects of ignition, deflagration, detonation, explosion mechanism and the subsequent blast will be described in greater detail in the following sections.

### 5.2.2 Combustion modes

T he overpressure in a VCE is directly coupled to the speed at which the combustion front runs through the flammable cloud. Higher overpressures result from higher flame speeds. There are two basic mechanisms of flame propagation: a deflagration and a detonation. Both mechanisms are explained next.

D eflagration

The mechanism of flame propagation in a deflagration is determined largely by heat conduction and molecular diffusion of heat and species. F or deflagrations, laminar and turbulent combustion can be distinguished.
Figure 5.1 shows the change in temperature across a laminar flame, whose thickness is approximately of one millimetre.


Figure 5.1 Temperature distribution across a laminar flame

Heat is produced by chemical reaction in a reaction zone. T he heat is transported ahead of the reaction zone into a preheating zone in which the mixture is heated, that is to say, preheated for reaction. Since molecular diffusion is a relatively slow process,
laminar flame propagation is slow. T able 5.1 gives an overview of laminar burning velocities and other basic properties of some of the most common hydrocarbons and hydrogen.

The laminar burning velocity is the velocity at which a laminar flame propagates relative to the reactive mixture.
In general, the velocity of the mixture is not zero. The hot combustion products expand, thereby creating a flow field ahead of the flame. The flame speed is the velocity of the flame relative to the combustion products. The ratio between the densities of the unburnt mixture and the combustion products is called the expansion ratio.

Table 5.1 Explosion properties of flammable gases and vapours in air at atmospheric conditions

| gas or vapour | flammability limits ${ }^{1)}$ (vol.\%) | auto-ignition temperature <br> (C) | maximum laminarburning velocity ( $\mathrm{m} / \mathrm{s}$ ) | heat of combustion ${ }^{2)}$ <br> ( $\mathrm{MJ} / \mathrm{m}^{3}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| methane | 5.0-( 9.5)-15.0 | 595 | 0.448 | 3.23 |
| ethane | 3.0-( 5.6)-15.5 | 515 | 0.476 | 3.39 |
| propane | 2.1-( 4.0)- 9.5 | 470 | 0.464 | 3.46 |
| ethene | 2.8-( 6.5)-28.6 | 425 | 0.735 | 3.64 |
| butane | 1.3-( 3.1)-8.5 | 365 | 0.449 | 3.48 |
| propene | 2.0-( 4.4)-11.0 | 455 | 0.512 | 3.59 |
| hydrogen | 4.0-(29.5)-75.6 | 560 | 3.25 | 3.01 |
| cyclohexane | 1.2-( 2.3)- 8.3 | 260 | 0.440 | 3.85 |

1) between brackets: the stoichiometric concentration with air
2) for stoichiometrically mixtures with air

The difference between burning velocity and flame speed can be elucidated by regarding the propagation of a flame in a tube open at one end and closed at the other. In case ignition occurs in the open end, the flame burns into the stagnant reactive mixture. The combustion products vent directly through the open end. In this situation the velocity of the mixture is zero and the flame propagates at the laminar burning velocity.
If ignition occurs at the closed end, the expanding combustion products create a flow field in the reactive mixture. Consequently, the actual flame speed equals the expansion ratio times the laminar burning velocity.
For stoichiometric hydrocarbon-air mixtures this ratio is about eight.

The expansion induced flow velocity of the unburnt mixture can be such that the flow is turbulent. No thin and smooth flame front can be recognised in that case. C onversion of reactants into combustion burnt products now occurs in a combustion zone. At the geometrical level of the turbulence eddies, the concept of a thin combustion zone propagating at a (laminar) burning velocity is still valid and determines, together with the total flame area, the combustion rate. T his combustion rate determines the speed of the combustion zone.

Without change in the basic mechanism of a deflagration, flame speeds can have all values between very low (a few metres per second) and high (more than 1000 metres per second) with accompanying increasing overpressures from a few to more than a thousand kiloPascals.

## D etonation

In detonative combustion the reaction front is propagated by a shock-wave which compresses the mixture beyond its auto-ignition temperature. At the same time, the shock is maintained by the heat released from the combustion reaction.
Some basic features must be understood to understand the behaviour of a detonation. Surprisingly accurate values of overall properties of a detonation, including wave speed and pressure, may be computed from the Chapman-Jouguet (CJ) model [ $N$ ettleton, 1987]. In this model, a detonation wave is simplified as a reactive shock in which instantaneous shock compression and the instantaneous reaction at the combustion front coincide. For stoichiometric hydrocarbon-air mixtures, the detonation wave speed is in the range of $1700-2100 \mathrm{~m} / \mathrm{s}$ and corresponding detonation wave overpressures are in the range of 18-22 bars ( $18 \times 10^{5}-22 \times 10^{5} \mathrm{~Pa}$ ). A slightly more realistic concept from the point of view that it reflects more than what is actually occurring in the detonation, is the Zel'dovich-Von N eumann-D öhring (ZND) model. In this model, the fuel-air mixture does not react on shock compression beyond auto-ignition conditions before a certain induction period has elapsed (Figure 5.2).


Figure 5.2 The ZND model for a detonation

The pressure behind the non-reactive shock is much higher than the CJ detonation pressure. The CJ pressure is attained on reaction after the induction time. The induction period lasts only some microseconds and, as a consequence, the 'Van Neumann spike' $\left(\mathrm{p}_{\mathrm{vN}}\right)$ is difficult to detect experimentally.
The one-dimensional representation described above is too simple to describe the behaviour of a detonation in response to boundary conditions. Denisov et al. [1962] showed that a detonation is not a stable process, but a highly fluctuating one. Figure 5.3 shows how a plane configuration of a shock and a reaction front breaks up into a cellular structure. At a smaller scale, a multi-dimensional cyclic character is determined by a process of continuous decay and reinitiation. The collision of transverse waves plays a key role in the structure of a detonation wave.
The cellular structure can be visualised in experiments. A characteristic dimension of the structure or cell size can then be distinguished. The cell size depends strongly on the fuel and mixture composition; more reactive mixtures result in smaller cell sizes. The cell size is also a measure for the minimal dimensions of a geometry for sustaining the detonation. Therefore, the cell size reflects the susceptibility of a fuel-air mixture to detonation. T able 5.2 shows that a stoichiometric mixture of methane and air has a low susceptibility to detonation compared to other hydrocarbon-air mixtures.



Figure 5.3 Instability of ZND-concept of a detonation wave
1: non-reacted zone
2: induction zone
3: reacted zone

The obvious difference between detonations and deflagrations is that flame speed and overpressure are higher in a detonation. A characteristic difference is that flame speed and overpressure in a detonation are typical for a given mixture whilst flame speed and overpressure in a deflagration can have a wide range of values depending on the geometrical boundary conditions.

### 5.2.3 Ignition

Ignition can lead to either of the two combustion modes, deflagration or detonation, depending on source properties. I gnition energies leading to deflagrations are in the order of $10^{-4} \mathrm{~J}$, whereas direct initiation of detonation requires an energy of approximately $10^{6} \mathrm{~J}$. T able 5.2 gives minimum ignition energies for deflagration and detonation for some fuel-air mixtures. Considering the high energy required for detonation, a direct initiation of a detonation is a very unlikely occurrence.
In practice, vapour cloud ignition can be the result of a sparking electric apparatus or hot surfaces present in a chemical plant, such as extruders, hot steam lines or friction between moving parts of a machine. A nother common source of ignition is open fire and flame, for instance, in furnaces and heaters. M echanical sparks, for example, from the friction from moving parts of a machine and falling objects, are also frequent sources of ignition. M any metal-to-metal combinations result in mechanical sparks that are capable of igniting gas or vapour-air mixtures.
In general, ignition sources must be assumed to be present in industrial installations.

Table 5.2 Characteristic detonation cell size and ignition energies for deflagration and detonation for some stoichiometric fuel-air mixtures

| fuel | cell size | minimum ignition energy for |  |
| :--- | :---: | :---: | :---: |
|  |  | deflagration | detonation |
|  |  | $(\mathbf{m J})$ | (mJ) |
| methane | 300 | 0.28 | $2.3 \times 10^{11}$ |
|  | 55 | 0.25 | $2.5 \times 10^{9}$ |
| propene | 55 | 0.28 | $7.6 \times 10^{8}$ |
| ethene | 25 | 0.07 | $1.2 \times 10^{8}$ |
| acetylene | 10 | 0.007 | $1.29 \times 10^{5}$ |

### 5.2.4 Gas explosion mechanism

Research during the last twenty-five years has revealed the mechanism by which a slow-burning flame is transformed into an intense blast generating process like a vapour cloud explosion.
When a flammable vapour cloud is ignited, initially a thin laminar flame with a smooth surface will start to propagate away from the ignition location. Due to the intrinsic unstable nature of a flame, flame instabilities will wrinkle the flame surface, thereby enlarging the flame surface and thus the combustion rate. T his results in an increased expansion which pushes the flame to a larger speed. Effective burning velocities are not much higher than the laminar burning velocity, and overpressures generated are in the order of some hundreds of Pascals.

Due to the expansion of the reacted products, a flow field is created ahead of the flame. If this field is disturbed, for instance due to shear layers occurring in the flow at solid boundaries or, more important, if the flow pattern is changed by the presence
of obstacles, the shape of the flame is changed. The flame will be stretched and wrinkled, as a result its surface is enlarged and the combustion rate is increased.
As more fuel is converted into combustion products per unit of volume and time, expansion flow becomes stronger. Again, the flame surface area is enlarged and the whole process is accelerated. At a certain velocity the flow becomes turbulent and the combustion front breaks up in a combustion zone. In a turbulent mixture combustion takes place in an extended zone in which combustion products and unreacted mixture are intensely mixed. High combustion rates can result because, within the combustion zone, the reacting interface between combustion products and reactants can become very large.
Higher combustion rates produce stronger expansion, i.e. higher flow velocities with an increased level of turbulence. This process feeds on itself, a positive feedback coupling comes into action (Figure 5.4).


Figure 5.4 Positive feedback, the basic mechanism of a gas explosion

The obstacles and structures present in the vapour cloud, acting as turbulence generators, play a very important role in the development of the process. A change of the obstacle configuration in the flow path changes the acceleration process. An absence of turbulence generators will lead to a reduction in flow speed and will decelerate the flame. Acceleration of the flame is influenced also by the measure of obstruction and confinement of the expansion flow. D ue to the restricted expansion possibilities of the combustion products a one-dimensional flow (in a pipe) causes more acceleration than a two-dimensional (between parallel plates) or a threedimensional flow with no confinement at all.

### 5.2.5 Deflagration to detonation transition (DDT)

If the positive feedback process described in the previous paragraph continues to accelerate the flame, the combustion mode may suddenly change drastically. The reactive mixture just in front of the turbulent combustion zone is preconditioned for reaction by a combination of compression and heating by turbulent mixing with combustion products. If turbulent mixing becomes too intense, the combustion reaction may quench locally as the chemical process of combustion can not cope with the physical process of turbulence. A very local, non-reacting but highly reactive mixture of reactants and hot products is the result. The intensity of
heating by compression can raise temperatures of fractions of the mixture to levels above the auto-ignition temperature. These highly reactive 'hot spots' react very rapidly, resulting in localised, constant volume sub-explosions [U rtiew and O ppenheim, 1966, L ee and M oen, 1980]. If the surrounding mixture is sufficiently close to auto-ignition (as a result of blast compression from one of these subexplosions), a detonation wave results. This wave engulfs the entire process of flame propagation.

Although continuous research revealed much of the DDT process, the exact conditions are still hard to predict and it is very difficult to make quantitative predictions in general. M uch research has studied DDT in gas explosions in pipes. T his has resulted in values for the so-called run-up distances expressed in a number of pipe diameters for the flame to travel before DDT occurs. Internals and obstructions reduce these run-up distances considerably.
DDT in unconfined three-dimensional obstructed geometries with hydro-carbon-air mixtures have seldom been reported. An example of the onset of a D DT was reported recently [M ercx et al., 1994].

### 5.2.6 Blast

A characteristic feature of explosions is blast. Vapour cloud explosions are characterised by rapid combustion in which high-temperature combustion products expand and affect the surroundings. In this fashion, the heat of combustion of a fuelair mixture (chemical energy) is partially converted into expansion (mechanical energy). M echanical energy is transmitted into the surrounding atmosphere in the form of a blast-wave. This process of energy conversion is very similar to that occurring in internal combustion engines. Such a process can be characterised by its thermodynamic efficiency. At atmospheric conditions, the theoretical maximum thermodynamic efficiency for conversion of chemical energy into mechanical energy in gas explosions is approximately $40 \%$. Thus, less than half of the total heat of combustion produced in explosive combustion can be transmitted as blast-wave energy.

A blast-wave is experienced in the surrounding atmosphere as a transient change in the gas-dynamic-state parameters: pressure, density and particle velocity. In a blastwave, these parameters increase rapidly, then decrease less rapidly to sub-ambient values (i.e. develop a negative phase). Subsequently parameters slowly return to atmospheric values (Figure 5.5).
The shape of the blast-wave is highly dependent on the nature of the explosion process. If the combustion process within a gas explosion is relatively slow, then expansion is slow and the blast consists of a low-amplitude pressure wave characterised by a gradual increase in gas-dynamic-state variables (F igure 5.5A). If, on the other hand, combustion is rapid, the blast is characterised by a sudden increase in gas-dynamic-state variables and a shock-wave results (Figure 5.5B).
The shape of the blast-wave changes during propagation. In a two- or threedimensional expansion the magnitude of the peak overpressure will decrease with increasing distance from the origin. Initial pressure waves tend to steepen to shockwaves during propagation and wave 'durations' tend to increase during propagation because the gas velocity is related to the overpressure.


Figure 5.5 Blast-waves overpressure histories
A: pressure wave
B: shock-wave

The loading of a structure due to blast depends on the interaction between the blastwave and the structure itself as the interaction changes the blast-wave parameters. This phenomenon of explosion blast is not the subject of this chapter but is described in detail in, for instance, CPR-16E [1990].

### 5.3 General overview of existing vapour cloud explosion blast models

### 5.3.1 Introduction to section 5.3

Basically there are two groups of models for describing explosion blast. The first group of models quantifies the source as an equivalent quantity of high explosives, generally TNT, in order to be able to apply known TNT blast characteristics. H istorically, these types of models are widely-used and well-accepted. During the last decade, the process of pressure development in a vapour cloud explosion has been the subject of intense international research after discovering the impossibility to describe some major vapour cloud explosion incidents with available methods at that time. This research effort resulted in methods which take into account the different behaviour of a vapour cloud explosion with respect to a highexplosives detonation. This second group of models will be referred to as fuel-air charge blast models. This type of models is being applied more and more, although some lack of data hinders a general acceptation.
T he differences between the models in a group result from the differences in guidance in the application the concept and from differences in the used blast distance relations.

The two groups of models are discussed in the next two sections.

### 5.3.2 Methods based on TNT charge blast

The military have always been interested in the destructive potential of high-explosives. C onsequently, the relationship between damage and high-explosives has been available for many years [e.g. R obinson 1944, Schardin 1954, G lasstone and D olan 1977 and Jarrett 1968]. Therefore, it is an understandable approach to relate the explosive power of an accidental explosion to an equivalent TNT-charge. In this way, damage patterns observed in many major vapour cloud explosion incidents were related to equivalent T NT-charge weights.
Because the need to quantify the potential explosive power of fuels arose long before the mechanisms of blast generation in vapour cloud explosions were fully understood, the T NT-equivalency concept was also utilised to make predictive estimates, i.e. to assess the potential damage effects from a given amount of fuel. B asically, the use of TNT -equivalency methods for blast predictive purposes is very simple. The available combustion energy in a vapour cloud is converted into an equivalent charge weight of TNT according to:

$$
\begin{equation*}
Q_{T N T}=\alpha_{e} \times \frac{Q_{f} \times E_{m f}}{E_{m T N T}}=\alpha_{m} \times Q_{f} \tag{kg}
\end{equation*}
$$

in which:

| $\alpha_{e}$ | $=$ TNT equivalency based on energy |
| :--- | :--- |
| $\alpha_{m}$ | $=$ TNT equivalency based on mass |
| $E_{m f}$ | $=$ Combustion energy of fuel per unit mass |
| $E_{m T N T}$ | $=$ TNT blast energy per unit mass |
| $Q_{f}$ | $=$ M ass of fuel involved |
| $Q_{T N T}$ | $=$ Equivalent mass of TNT |

[-]
[-]
$\left[J \cdot \mathrm{~kg}^{-1}\right]$
[J. $\mathrm{kg}^{-1}$ ]
[kg]
[kg]


Figure 5.6 Peak side-on overpressure due to a surface TNT explosion according to
Marshall [1976]

Values of $\mathrm{E}_{\text {mTNT }}$ currently in use range from 4.19 to $4.65 \mathrm{M} \mathrm{J/kg} \mathrm{[Brasie} \mathrm{and} \mathrm{Simpson}$, 1968].
The T NT-equivalency is also indicated in literature as the equivalency factor, yield factor, efficiency factor or efficiency.
K nowing the T N T -charge weight, the blast characteristics in terms of the peak sideon overpressure of the blast-wave dependent on the distance to the charge and the corresponding damage pattern, are known. T hey can be read from a chart containing a scaled graphical representation of experimental data. F or this purpose various data sets are available, Figure 5.6 gives an example.

Strictly speaking, TNT-equivalency methods reduce the problem of vapour cloud explosion blast modelling to the determination of an appropriate value for the T N T equivalency.

Reported values for the TNT-equivalency, deduced from the damage observed in many vapour cloud explosion incidents, range from a fraction of one per cent up to some tens of per cent. This is reflected in the TNT-equivalence factors adopted in TNT blast charge methods.
A brief overview of these methods is given next. It should to be kept in mind that T NT-equivalence factors given have to be used with particular methods to quantify the amount of fuel involved and with particularly mentioned TNT blast charts.
All T NT-equivalence factors given are based on energy.

Brasie and Simpson [1968] and Brasie[1976]

They recommend T N T equivalencies of 2\% for near-field and 5\% for far-field effects in combination with a method to quantify the amount of fuel released.

E ichler and N apadensky [1977]

Because of the distance dependency of the T NT-equivalence factor they recommend 20\% for the 1 psi ( 6.9 kPa ) overpressure level only.

H ealth Safety Executive[1979 and 1986]

They recommend a value of 3\% for gases with average reactivity (methane), 6\% for above average gases (propene oxide) and $10 \%$ for very reactive gases (ethene oxide). The mass of fuel in the cloud is taken as twice the theoretical flash of the amount released, in order to account for spray and aerosol formation.
The maximum overpressure in the cloud is taken as 1 bar ( 100 kPa ). T he duration of the blast-wave should be chosen between 100 and 300 ms .

Exxon [CCPS, 1994]

Exxon provides guidance to determining the quantity of material in the cloud and advises TNT-equivalencies of 3\% for a vapour cloud covering an open terrain and $10 \%$ for a vapour cloud that is partially confined or obstructed.

Industrial Risk Insurers [1990]

IRI present two credible incidents to determine the quantity of fuel in the cloud and uses a T NT-equivalence factor of $2 \%$.

F actory M utual Research [1990]

FM R notes that history shows T N T -equivalence factors as high as $50 \%$ but most fall in a range between 10\%. Like HSE they recommend factors depending on the reactivity of the fuel involved. F actors are assigned to three classes: low-reactive 5\%, average-reactive $10 \%$ and high-reactive 15\%.

CPR-14E [1988]

One of the two models given in this version of the 'Y ellow Book' relates the available explosion energy directly to damage circles (correlation model). In fact, this is a TNT-equivalence model. A ‘yield’ (T NT-equivalence factor) of $10 \%$ is used.

British G as [H arris and W ickens, 1989]

Their method is intended for a non-detonating cloud of natural gas (mostly methane). T heir approach is not based on the total amount of fuel released but on the mass of the material which can be contained in stoichiometric proportions in any severely congested region in the cloud. An overpressure of four bars $\left(4 \cdot 10^{6} \mathrm{~Pa}\right)$ is assumed within the confined part. A T NT-equivalence factor of $20 \%$ should be used for the total congested mass. T hey state that the method predicts significantly lower far-field overpressures in cases where there is little obstruction and that in many circumstances the possibility of VCE's with significant overpressures can be discounted.

Direction des etudes et Recherches, F rance [V an den B erg and Lannoy, 1993]

The value of the T N T equivalence factor [V an den Berg and L annoy, 1993] has been discussed by Lannoy. He refers to a statistical analysis of 120 damage points of 23 accidents showing a wide distribution of T N T equivalencies ( $0.02 \%-15.9 \%$ ) with a medium of $3 \%$. Of the cases $97 \%$ was covered by a T N T equivalence lower than or equal to $10 \%$ while the mean value observed was an equivalency of $4 \%$ covering $60 \%$ of the cases. He states that T NT equivalence methods for VCEs should only be used for the assessment of far-field blast effects where the levels are less than 30 kPa . Otherwise the methods lead to overdesigned structures. Attention is drawn to the French situation where the French Authority Safety Rule [1982] recommends the 10\% equivalency for safety factors and that the F rench Chemical Industry [1986] recommends the 4\% equivalency, both based on the full amount of fuel released.

### 5.3.3 Methods based on fuel-air charge blast

So far, vapour cloud explosion blast has been modelled without considering a major feature of gas and vapour explosions, namely, that their strength is a variable. In addition, TNT blast characteristics do not correspond properly to vapour cloud explosion blast characteristics. This is demonstrated by the distance dependent TNT-equivalency observed in vapour cloud explosion blast. In particular, the blast
from relatively mild (low strength) vapour cloud explosions can not be represented by T N T -blast in a satisfactory way. T herefore, the need for a blast model which reflects more basic gas explosion blast characteristics, was felt.

M unday [1976] developed a method to match the gas dynamics produced by spherical flame propagation to far-field T NT-blast characteristics.
Baker et al. [1983] recommended the use of computational data on gas explosion blast for vapour cloud explosion blast modelling. The data were generated with the CLOUD-code. Spherical steady flame speed gas explosions were numerically simulated [Luckritz, 1977 and Strehlow et al. 1979]. The blast effects were condensed in a graphical representation of the distribution of the most important blast parameters in the vicinity of a spherical fuel-air charge. The above references, however, did not give suggestions for using these tools for a predictive estimate of a vapour cloud's explosive potential. V apour cloud explosion blast prediction methods, using fuel-air blast data, are presented next.

W iekema [1980]

W iekema [1980] used the gas dynamics induced by a spherical expanding piston as a model for vapour cloud explosion blast [CPR-14E, 1988]. A piston blast model offers the possibility to introduce a variable initial strength of the blast.
T his approach enables modelling vapour cloud explosion blast by considering the two major characteristics of gas explosion blast:

- the scale, determined by the combustion energy of the total cloud inventory, and
- the initial strength, determined largely by the combustion rate in the explosion process for which three reactivity classes are defined. Some influence of obstruction is taken into account.

Output parameters are peak overpressure and positive phase duration.

The M ulti-E nergy method [V an den B erg, 1985]

Experimental research during the last decade showed clearly that deflagrative combustion generates blast only in those parts of a quiescent vapour cloud which are sufficiently obstructed and/or partially confined [Zeeuwen et al., 1983, H arrison and Eyre, 1987, H arris and Wickens, 1989 and Van Wingerden, 1989].
This feature is the basis of the M ulti-E nergy method and underlies the method of blast modelling.
C ontrary to the T N T -blast models (except the one from H arris and W ickens) and the model of Wiekema [1980], in which the contributing energy is based on the total energy content of the cloud, the M ulti-E nergy method takes into account the total combustion energy of those parts of the cloud that are located in obstructed and/or partly confined areas. An obstructed area is an area where obstacles are present in a configuration suited to accelerate a flame if the area is engulfed by a flammable gas mixture. E ach obstructed area should be treated separately as a blast source in case their relative separation distance is large enough. Otherwise, all the individual source energies should be added and the explosion manifests itself as a single event.

An idealised gas explosion blast model was generated by computation and presented in three non-dimensionalised graphs from which the most important parameters can be determined (peak overpressure, positive phase duration, shape of the blast-wave and dynamic peak pressure). Steady flame speed gas explosions were numerically
simulated with the BLAST -code [V an den Berg, 1980] and their blast effects were registered.
These blast charts should be used for calculating the blast from each explosion source.

Although in the M ulti-E nergy method a fuel-air charge blast model is recommended for the representation of blast effects, a T N T-blast model may be used as well. It can be demonstrated that the blast resulting from a TNT explosion with a $20 \%$ TNT equivalency of the energy will correspond closely to the blast as predicted with the M ulti-Energy severest blast curve in the overpressure range of 10 to 100 kPa . O verpressure according to the M ulti-E nergy method will be higher in the far field due to the specific nature of a VCE.
This T NT-equivalency approach within the M ulti-Energy framework, however, lacks the basic possibilities for a further refinement in the specification of an initial blast strength.

## Shell [Cates, 1991]

Cates [1991] has proposed a methodology comparable with the M ulti-Energy method.
He claims that, due to the pressure decay law used, in the M ulti-E nergy method, overpressures in the far-field are underpredicted by the M ulti-Energy used, although still higher predictions are made compared to the TNT equivalence methods. Healso claims that, from a comparison with experiments, the Multi-Energy method overestimates the near field overpressure, even if the overpressure measured in the cloud is used.
As a number of questions are still unanswered a simple acoustic law is preferred to determine peak overpressure.
A nother adaptation is that the volume of the cloud to be taken into account should be extended to 2 m outside the obstructed region. T he reason is that due to venting of unburnt gases out of the obstructed area during combustion, part of the unobstructed volume near to the obstructed part will be very turbulent and thus contribute to overpressure generation.
A decision tree is presented to estimate a source overpressure.
M obil R esearch/B aker E ngineering [B aker et al., 1994]

The method of Baker et al. [1994] consists of a combination of the M ulti-Energy method and the blast curves of Strehlow [1979], with peak overpressures and impulse as output parameters. T he blast curves of Strehlow were appreciated more than those of the Multi-Energy method because Strehlow gives a graph with curves for the impulse. A more basic reason to choose for the Strehlow curves is that each curve is based on a certain flame speed reached in the VCE.
Based on an extensive survey of all available experimental investigations on VCE, guidance has been derived for a proper choice of the maximum flame speed to be expected.
Although a method is given to determine the source strength in terms of flame speed, still judgements and assumptions have to be made to determine the obstacle density, reactivity and flame diversion.
Baker et al. [1994] provide some guidance.

### 5.4 Selection of a model

## TN T charge blast models

The basic assumption in TNT charge blast models, a proportional relation between the amount of fuel available in the cloud and the T NT-charge weight expressing the cloud's explosive potential, is most questionable. This is reflected by the wide range of equivalencies found if a large number of vapour cloud explosion incidents, involving only fuels whose heats of combustion are of the same magnitude as those of hydrocarbons, is analysed.
Nevertheless, the TNT-equivalency concept makes it possible to model the blast effects of a vapour cloud explosion in a very simple and practical way. The attractiveness of these methods is the very direct, empirical relation between a charge weight of T NT and the resulting structural damage. Therefore, the T NT-equivalency seems to be a useful tool if the property damage potential of vapour cloud explosion is the major concern.

Values for the TNT-equivalency are deduced by statistical analysis from the damage observed in a limited number of major vapour cloud explosion incidents. F or the wide range of equivalencies observed, characteristic values such as an average (4\%) and an approximate upper limit (10\%) were recommended to be used for predictive purposes. The average value is very near the TNT equivalency in the distribution where the majority of cases are found, i.e. an equivalency of $4 \%$ corresponds to 'an average major incident'. Undoubtedly, 'an average major incident' represents a situation in which an accidental release of fuel is most likely such as, for instance, the site of a refinery or chemical plant or the site of a crowded marshalling yard during operations. Strictly speaking, by using an average value of the TNT-equivalency, 'average major incident conditions' are extrapolated to an actual situation. T herefore, T NT -equivalency methods give a reasonable estimate of far-field blast effects only if the actual conditions correspond more or less to 'average major incident conditions'.

TNT blast is a poor model for vapour cloud explosion blast. While a TNT charge produces a shock-wave of a very high amplitude and a short duration, a vapour cloud explosion produces a blast-wave, often shocks, of lower amplitude and longer duration. If the blast modelling is the starting point for the computation of structural response, for instance, the design of blast resistant structures like control rooms, TNT blast will be a less satisfactorily model. Then, the shape and the positive phase duration of the blast-wave are important parameters which should be considered and the use of a more appropriate blast model is recommended.
A practical value for TNT-equivalency is an average, based on a wide statistical distribution found in practice. As a consequence, a predictive estimate with TNTequivalency on the basis of an average value has a very limited statistical reliability. A more deterministic estimate of blast effects is possible if a parameter could be found which correlates with the process of blast generation in vapour cloud explosions.
In the alternative group of models, the fuel-air charge blast models, such a parameter is introduced.

In summary, T N T equivalency models:

- state a proportional relationship between charge weight and cloud energy content,
- use a TNT equivalence factor(proportionality) based on incident statistics which shows very wide and flat distribution. This bad correlation contradicts the basic assumption of proportionality,
- have therefore a poor statistical reliability,
- do not take into account the variability of explosion strengths,
- do not match with vapour cloud explosion blast characteristics (distance dependant efficiency factor),
- overpredict near-by pressure effects,
- predict only overpressures (not duration and blast-wave shape),
- are simple and easy to apply,
- are commonly used although there is common dissatisfaction.

F uel-air charge blast models

The fuel-air charge blast model in CPR-14E [1988] takes reactivity of the cloud as the parameter determining overpressure in the cloud. Furthermore the model bases the combustion energy on the total inventory of the cloud. A large amount of experimental data became available after the release of the model and proved this concept wrong. Reactivity plays a role, certainly, but turbulence is the key parameter determining overpressure generation. As the interaction of the expanding flow ahead of the flame with obstacles is a very effective turbulence generator, overpressure is mainly produced in partially confined and obstructed regions in the vapour cloud. This basic mechanism is underlying the M ulti-E nergy concept.

The blast characteristics, peak overpressure, duration, impulse and wave shape depend on the 'source strength' of each explosion centre. The blast charts of the M ulti-Energy method as well as the blast charts of Strehlow (M obil/Baker method) cover this basic feature of a vapour cloud explosion.
Selection of the 'source strength' is based on overpressure with the M ulti-Energy method and on flame speed with the M obil/Baker method. As both parameters can be coupled there is no reason to select between both models regarding this aspect. Preference could be given to the M ulti-E nergy blast charts as the curves are smoothed for practical application and extend to larger scaled distances than the Strehlow blast curves. F urthermore, the M ulti-E nergy blast charts provide the shape of the blastwave, which is important when the results are coupled to consequence models for calculation of damage to structures and injury to people [CPR-16E, 1990].

Conservative application of both models in a sense that always the most severe overpressure is selected will result in overpressure distance relations comparable to those predicted with TNT-equivalence models, with equivalence factors as high as $20 \%$, for the intermediate field, if the combustion energy of the partially confined areas is taken into account.
In fact, this is exactly the concept of the TNT charge blast method of H arris and Wickens [1989].
Even in these cases, the set blast parameters of the fuel charge blast models will be in better compliance with actual vapour cloud explosion blast.
From a comparison with experiments it appeared that even if the measured overpressure in the cloud is taken as the source strength, the blast overpressures resulting from the appropriate curve results in overpredictions of the actual measured values for most cases.

Guidance to selecting less conservative estimates for the source strength is increasing [K insella, 1993, Baker et al., 1994, C ates, 1991] but is still incomplete, and still user judgement is required. Furthermore, validation with experimental data is acknowledged but not published. This guidance should therefore be applied with care.

In summary, fuel-air charge blast models:

- acknowledge the basic gas explosion mechanism,
- are based on boundary conditions rather than on cloud volume,
- are deterministic, not statistical,
- do not use statistics but actual conditions to determine blast,
- take into account a variety of explosion strengths,
- all combinations of overpressure, duration and blast-wave shapes are possible,
- give all input variables requested by 'G reen Book' damage models,
- are rather easy to apply if used in a conservative manner,
- are widely accepted as a better alternative,
- application in a less conservative manner is hindered by lack of guidance,
- available guidance is not properly supported,
- have all possibilities for further refinement.

It will be obvious from the discussion of the various models that preference is given to fuel-air charge blast models.

Within the group of fuel-air charge blast models the Multi-Energy method is preferred because:

- the fuel-air charge blast model of CPR 14-E [1988] is not acceptable as it uses reactivity as the basic parameter rather than boundary conditions,
- the M obil/Baker method is even more a concept and less worked out than the M ulti-E nergy method.


### 5.5 Description of model

### 5.5.1 Introduction to the Multi-E nergy concept

Experimental research during the last decade showed clearly that deflagrative combustion generates blast only in those parts of a quiescent vapour cloud which are sufficiently obstructed and/or partially confined [Zeeuwen et al., 1983, Harrison and Eyre, 1987, Harris and Wickens, 1989 and Van Wingerden, 1989]. The conclusion that a partially confined and/or obstructed environment offers appropriate conditions for deflagrative explosive combustion has found general acceptance today [T weeddale, 1989]. H owever, other parts of the cloud - parts which are already in turbulent motion at the moment of ignition - may develop explosive, blast generating combustion as well. T herefore, high-velocity intensely turbulent jets, for instance, which may be the result of fuel release from under high pressure, should be considered as possible sources of blast in a flammable vapour cloud. The remaining parts of the flammable vapour-air mixture in the cloud burn out slowly, without significant contribution to the blast. T his idea is called the M ulti-E nergy concept and underlies the method of blast modelling.

Contradictory to conventional modelling methods in which a vapour cloud explosion is regarded as an entity, in this concept a vapour cloud explosion is rather defined as a number of sub-explosions corresponding to the various sources of blast in the cloud. This concept is illustrated in Figure 5.7.


Figure 5.7 Vapour cloud containing two blast generating obstructed regions

Here, two of the most notorious blast generators from the vapour cloud explosion record [Baker et al., 1983] are blanketed in a large vapour cloud. Their blast effects should be considered separately.

Blast effects are represented by using a blast model. Generally, blast effects from vapour cloud explosions are directional. Such an effect, however, cannot be modelled without a detailed numerical simulation of phenomena.
An easy-to-apply method, on the other hand, requires a simplified approach according to which blast effects are represented in an idealised, symmetric way. An
idealised gas explosion blast model was generated by computation and is represented in Figures $5.8 \mathrm{~A}, \mathrm{~B}$ and C . Steady flame speed gas explosions were numerically simulated with the BLAST-code [Van den Berg, 1980] and their blast effects were registered.
The blast charts were composed for vapour cloud explosions having a combustion energy $E_{v}$ of $3.5 \mathrm{MJ} / \mathrm{m}^{3}$ which is the combustion energy for most hydrocarbon mixtures at stoichiometric concentration with air.

Only the most significant blast-wave parameters such as the side-on peak overpressure, peak dynamic pressure and positive phase duration of the blast-wave, are represented dependent on the distance to the blast centre for a hemi-spherical fuel-air charge of radius $r_{0}$ on the earth's surface. T he data are reproduced in a fully non-dimensional (Sach's-scaled) representation so that the blast parameters can be read off in any consistent set of units.

The initial strength of the blast is indicated by a number ranging from 1 , for very low, up to 10, for detonative strength. The initial blast strength is defined as a corresponding set of blast-wave parameters at the location of the charge radius $r_{0}$. In addition, a rough indication for the shape of the blast-wave is given. D etonative blast consists of a shock-wave which is represented by solid lines. Pressure waves of low initial strength are indicated by dotted lines. Pressure waves may steepen to shockwaves in the far-field. In between, there is a state of transition indicated by dashed lines. T he pictures show the characteristic behaviour of gas explosion blast. Pressure waves, produced by a fuel-air charge of low strength, show an acoustic overpressure decay behaviour and a constant duration in the positive phase. A much faster decay of the overpressure and a substantial increase of the positive phase duration is observed for shock-waves in the vicinity of a charge of high initial strength. Eventually, the high-strength blast develops a more or less acoustic decay in the far field.

Before the M ulti-E nergy method can be applied, the volume and the location of the flammable vapour cloud must be known or assumed. F or this, source term models and dispersion models may be applied. Furthermore, the lay-out, or at least a rough impression of the build-up area where the cloud is located, must be available in order to determine the location, the number and the volume of the obstructed regions within the cloud. T hen, the blast charts belonging to the M ulti-E nergy method can be applied to obtain values for the most important blast parameters.


Figure 5.8A Multi-Energy method blast chart: peak side-on overpressure


Figure 5.8B Multi-Energy method blast chart: peak dynamic pressure


Figure 5.8C Multi-Energy method blast chart: positive phase duration and blast-wave shape

The blast parameters are read off the blast charts (Figures 5.8):

- calculate the scaled distance $r^{\prime}$ which is the distance $r$ of the location under consideration to the centre of the explosion divided by the energy available E and the ambient pressure $\mathrm{p}_{\mathrm{a}}$ :

$$
\begin{equation*}
r^{\prime}=r /\left(E / p_{a}\right)^{1 / 3} \tag{-}
\end{equation*}
$$

- assume an explosion strength (class 1 to 10) and read off the charts the scaled peak side-on overpressure $P_{s}{ }^{\prime}$, the scaled peak dynamic pressure $p_{\text {dyn }}$ ' and the scaled positive phase duration $t_{p}{ }^{\prime}$
- calculate the peak overpressure $P_{\text {s }}$ from:
$P_{s}=P_{s}{ }^{\prime} \times p_{a}$
- calculate the positive phase duration $t_{p}$ from:

$$
\begin{equation*}
t_{p}=t_{p}^{\prime} \times\left(E / p_{a}\right)^{1 / 3 / a_{a}} \tag{s}
\end{equation*}
$$

- calculate the peak dynamic pressure $\mathrm{p}_{\text {dyn }}$ from:
$p_{d y n}=p_{d y n}{ }^{\prime} \times p_{a}$
- determine the shape of the blast-wave from Figure 5.8C
- calculate the positive impulse $i_{5}$ by integrating the overpressure variation during the positive phase resulting in multiplying the side-on overpressure with the positive phase duration and with a factor $1 / 2$ :

$$
\begin{equation*}
i_{s}=1 / 2 \times P_{s} \times t_{p} \tag{Pa•s}
\end{equation*}
$$

An interesting feature is that at a distance larger than about 10 charge radii from the centre, the blast is independent on whether the explosion was a strong deflagration (higher than, or equal to, number 6) or a detonation (see Figure 5.8). U sing this hemi-spherical fuel-air charge blast model, the blast produced by the various sources in the cloud can be modelled.

C ontrary to more conventional methods, in the M ulti-Energy concept the explosion hazard is not primarily determined by the fuel-air mixture itself, but above all by the environment in which the vapour disperses - the boundary conditions to the combustion process. If somewhere a release of fuel is anticipated, the explosion hazard assessment can be limited to an investigation of the environment on potential blast generative capabilities.

Today, it is recognised more and more that it is very unlikely to have a detonation in a fuel-air cloud originating from an accidental release in the open. The point is that the inhomogeneity of the fuel-air mixture in the cloud, which is inherent to the process of atmospheric turbulent dispersion, generally prevents a possible detonation from propagating [Van den Berg et al., 1987]. The heavy explosion on December 7, 1970 at Port H udson, M O., where almost all of a large unconfined vapour cloud detonated, should be blamed on an exceptional coincidence of circumstances. Lingering in a shallow valley under calm atmospheric conditions, a dense propane-air cloud had the opportunity to homogenise sufficiently by molecular diffusion during an exceptionally long ignition delay [NTSB, 1972 and Burgess and Zabetakis, 1973]. This incident is unprecedented, to our knowledge.
Therefore, in a vast majority of cases the assumption of deflagrative combustion is a sufficiently safe approach in a vapour cloud explosion hazard assessment. D eflagrative overpressures in a confined area, however, can lead to blast comparable to blast from a detonation.

### 5.5.2 Discussion

D eficiencies of the model

T he M ulti-Energy method is expected to reasonably match reality, wearing the ability to predict high, respectively low, overpressures in cases where they may be expected. N evertheless, some deficiencies still exist and these should be covered before a solid procedure for the application method is possible.
T hese deficiencies concern:

- the overpressure in an obstructed region (the 'source strength' or 'class number'),
- the definition of an obstructed region,
- the minimal distances between potential explosion sources for which these sources can be assumed to act independently (the 'separation distance').

A vailable guidance on the choice for the source strength

Since the introduction of the M ulti-E nergy method [Van den Berg, 1985], especially the lack of guidance in the choice of the source strength has been recognised and since then some guidance has become available. $T$ his is summarised next.

SRD, AEA Technology [K insella, 1993]
K insella [1993] provides guidance, based on a review of major accidents, to how to account, in the M ulti-E nergy method, for the influence of:

- degree of obstruction by obstacles inside the vapour cloud,
- ignition energy,
- degree of confinement.

These three blast source strength factors are defined as follows.

- Obstruction:
- High

Closely packed obstacles within gas cloud giving an overall volume blockage fraction (i.e. the ratio of the volume of the obstructed area occupied by the obstacles and the total volume of the obstructed area itself) in excess of $30 \%$ and with spacing between obstacles less than 3 m .

- Low

Obstacles in gas cloud but with overall blockage fraction less than 30\% and/or spacing between obstacles larger than 3 m .

- None

No obstacles within gas cloud.

- Parallel plane confinement:
- Yes

G as clouds, or parts of it, are confined by walls/barriers on two or three sides.

- No

G as cloud is not confined, other than by the ground.

- Ignition strength
- High

The ignition source is, for instance, a confined vented explosion. T his may be due to the ignition of part of the cloud by a low energy source, for example, inside a building.

- Low

The ignition source is a spark, flame, hot surface, etc.

The results of categorising are expressed in a matrix in T able 5.3 which gives the Multi-Energy method strength class numbers corresponding to the various combinations of the boundary and initial conditions.

Table 5.3 Initial blast strength index

| Blast strength category | Ignition energy |  | Obstruction |  |  | Parallel plane confinement <br> (C) | MultiEnergy Unconfined <br> (U) | Class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Low | High | High | Low | No |  |  |  |
|  | (L) | (H) | (H) | (L) | (N) |  |  |  |
| 1 |  | H | H |  |  | c |  | 7-10 |
| 2 |  | H | H |  |  |  | U | 7-10 |
| 3 | L |  | H |  |  | c |  | 5-7 |
| 4 |  | H |  | L |  | C |  | 5-7 |
| 5 |  | H |  | L |  |  | U | 4-6 |
| 6 |  | H |  |  | N | C |  | 4-6 |
| 7 | L |  | H |  |  |  | U | 4-5 |
| 8 |  | H |  |  | N |  |  | 4-5 |
| 9 | L |  |  | L |  | C |  | 3-5 |
| 10 | L |  |  | L |  |  | U | 2-3 |
| 11 | L |  |  |  | N | C |  | 1-2 |
| 12 | L |  |  |  | N |  | U | 1 |

Shell [Cates, 1991]

Although C ates [1991] does not apply the M ulti-E nergy blast charts, the decision tree presented can be used to estimate a source overpressure i.e. a M ulti-E nergy source strength class.
The decision tree is given in T able 5.4.

Table 5.4 Decision tree for determination of 'source strength' overpressure $P_{s c}$


M obil R esearch/B aker E ngineering [B aker et al., 1994]

Based on an extensive survey of all available experimental investigations on VCE, guidance has been derived to a proper choice of the maximum flame speed to be expected. T he guidance has been condensed in a table with three variables: obstacle density, flame expansion and reactivity. Three levels for each variable are available: high, medium and low obstacle density and reactivity and one-, two and three-
dimensional flame expansion. The table given by Baker et al. is presented here in Table 5.5. The flame speeds have been replaced by source overpressures according to the blast charts used by Baker et al.

Table 5.5 Source overpressures $P_{s c}$ for soft ignition sources

| 1-dimensional flame expansion |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| reactivity | high medium low | Obstacle density |  |  |
|  |  | $\begin{aligned} & \text { high } \\ & (\mathrm{kPa}) \end{aligned}$ | medium <br> ( kPa ) | $\begin{aligned} & \text { low } \\ & (\mathrm{kPa}) \end{aligned}$ |
|  |  | >1000 | >1000 | >1000 |
|  |  | 800 | 400 | 200 |
|  |  | 800 | 200 | 40 |
| 2-dimensional flame expansion |  |  |  |  |
| reactivity | high medium low | Obstacle density |  |  |
|  |  | $\begin{aligned} & \text { high } \\ & (\mathrm{kPa}) \end{aligned}$ | medium (kPa) | $\begin{aligned} & \text { low } \\ & \text { (kPa) } \end{aligned}$ |
|  |  | 400 | 200 | 100 |
|  |  | 300 | 120 | 7 |
|  |  | 120 | 70 | 4 |
| 3-dimensional flame expansion |  |  |  |  |
| reactivity | high medium low | Obstacle density |  |  |
|  |  | high $(\mathrm{kPa})$ | $\begin{aligned} & \text { low } \\ & (\mathrm{kPa}) \end{aligned}$ | $\begin{aligned} & \text { low } \\ & \text { (kPa) } \end{aligned}$ |
|  |  | 100 | 15 | 4 |
|  |  | 20 | 7 | 1 |
|  |  | 15 | 7 | 1 |

The reactivity is chosen according to the 'Y ellow Book', edition 1988, procedure [CPR-14E, 1988]. M ethane and carbon monoxide have low reactivity. The laminar burning velocities of high reactivity fuels are, in excess of $0.8 \mathrm{~m} / \mathrm{s}$ : hydrogen, acetylene, ethene oxide and propene oxide. All other fuels have medium reactivity.

Obstacle density is the most difficult to quantify. Low obstacle density is defined for situations in which there are few obstacles in the flame path, or the obstacles are widely spaced (less than $10 \%$ blockage ratio, i.e. the ratio of the area perpendicular to the flame direction occupied by obstacles to the total area itself) and there are only one or two layers of obstacles. High obstacle density situations have three or more fairly closely spaced obstacle layers of obstacles with a blockage ratio of $40 \%$ or more, per layer.

D iscussion and recommendation

The information presented in the various publications gives some guidance to how to choose a source strength. The influence of the most important parameters
obstruction and confinement is shown. K insella [1993] takes into account the ignition strength while Baker [1994], and to some extent Cates [1991], adds reactivity.
Obstruction is characterised by either an obstacle volume blockage or an obstacle area blockage. Furthermore, the distance between obstacles for flame acceleration is maximised. This guidance demonstrates the influence of the most important parameters involved.

It should be emphasised though that application of this guidance is highly questionable. Still large uncertainties exist (as mentioned by the authors of these articles also) and absolute values for parameters should be distrusted. Results from experiments show that the actual overpressure can easily be underestimated by a factor 10 (or even up to a factor 30) when using this guidance [M ercx et. al., 1994].

It is therefore recommended to be conservative in the choice of a source strength for the initial blast and not to use this guidance at all.

The problems to quantify the influence of obstruction do not exist for the quantification of the reactivity. Based on scaling laws it is possible to predict the influence on the explosion effect if the type of gas is changed [M ercx et. al., 1994]. It is possible to obtain a relative rating with these laws. H owever, a reference is required for an absolute quantification and for that the influence of obstruction should be quantified too. One could decide on the maximum overpressure of methane for instance. British Gas assumes a maximum overpressure of four bars ( $4 \cdot 10^{5} \mathrm{~Pa}$ ) [H arris and W ickens, 1989], ( see 5.3.2). This value complies with an explosion class of almost nine. Starting with this reference excludes the possibility of reactivity classification as most gases are more reactive than methane. This would lead to explosion class nine and ten only.
Therefore, the lack of knowledge of how to classify obstructions prohibits the classification for reactivity.

As a result, a proper choice for the initial strength of the blast-wave from an obstructed region cannot be motivated presently. It is recommended:

- to differentiate between obstructed and non-obstructed regions,
- to choose a high initial blast strength for each obstructed region: number 10,
- to choose a low initial blast strength for the remaining unobstructed region: number 1 . In case initial low turbulence motion is expected in non-obstructed regions, for instance, due to the momentum of the fuel release, a number of 3 is advised,
- not to differentiate between reactivities.

If such a safe and conservative approach results in unacceptably high overpressures, a more accurate estimate for the initial blast strength may be found by consulting the growing body of experimental data on gas explosions, or by performing an experiment tailored to the situation in question.
Another possibility is numerical simulation with advanced computational fluid dynamic codes such as FLACS [H jertager, 1982 and 1989], PH OENIX [K jäldman and H uhtanen, 1985] or REAGAS [Van den Berg, 1989]. A way in which such codes could be utilised for vapour cloud explosion blast modelling has been demonstrated by Van den Berg et al. [1991].
The initial strength of the blast, however, is still a major issue of research.

It should be noted that applying the M ulti-Energy method with an explosion class number 10, the overpressures will be similar to those obtained by applying the TN T equivalence method with an efficiency factor of $20 \%$ to the obstructed part of the cloud (and not to the whole cloud).

### 5.5.3 Procedure for the division of an area into obstructed and unobstructed regions

A procedure to subdivide a region into obstructed and unobstructed parts is presented next.

The procedure given is thought to be safe and conservative in the sense that always too large a volume of the obstructed region will be selected. The procedure offers a possibility for optimisation, i.e. reduction, of the obstructed volume. This optimisation procedure can be followed but obviously requires more time. The optimisation procedure in itself will not lead to unsafe situations.

The procedure to build-up an obstructed region is based on the effect obstacles have on the generation of turbulence in the expansion flow ahead of the flame. A zone with obstacle induced turbulence will exist behind an obstacle. The length of this zone is related to a characteristic dimension of the obstacle. H owever, if the scale of an obstacle becomes larger, it is assumed that the length of the influenced zone is bounded by an upper value.

The procedure is as follows.

Step 1: break-down structures into basic geometrical structural shapes
Structures in a potential hazardous area like an industrial site may be considered as being composed of (or fairly well bounded by) basic geometrical shapes:

- cylinders with length $I_{c}$ and diameter $d_{c}$
- boxes with dimensions $b_{1}, b_{2}, b_{3}$
- spheres with diameter $d_{s}$

Step 2: assume an ignition location
After ignition of a flammable cloud in a congested area the flame will travel outward so the orientation with respect to the flame propagation direction of each obstacle is known.

Step 3: determine obstacle orientation
Take the smallest dimension oriented in a plane perpendicular to the flame propagation direction to be $D_{1}$, then:
$D_{1}=I_{c}$ or $d_{c}$ for a cylinder
$D_{1}=$ smallest of $b_{1}$ and $b_{2}, b_{2}$ and $b_{3}$, or $b_{1}$ and $b_{3}$ for a box
$D_{1}=d_{s}$ for a sphere

Take the obstacle dimension parallel to the flame propagation direction to be $\mathrm{D}_{2}$.

Step 4: build-up of obstructed region

An obstacle belongs to an obstructed region if the distance from its centre to the centre of any obstacle in the obstructed region is smaller than 10 times $\mathrm{D}_{1}$ or 1.5 times $D_{2}$ of the obstacle under consideration in the obstructed region ( $D_{1}$ and $D_{2}$ belonging to any obstacle in the obstructed region).
If the distance between the outer boundary of the obstructed region and the outer boundary of the obstacle is larger than 25 m , then the obstacle does not belong to that obstructed region.
$N$ ote there are values given to three factors. These are a factor times $\mathrm{D}_{1}$ and a factor times $D_{2}$ (respectively 10 and 1.5 ) for obstacle distances, and a value ( 25 m ) for the distance between obstructed region and obstacle to determine if the obstacle is part of that obstructed region. It is not yet possible to quantify these values accurately. T he values given are thought to be safe though.

Step 5: defining a box containing the obstructed region
The obstructed region is defined as a box that contains all the obstacles in the obstructed region,
including: the space between a confining surface and an obstructed region in case the distance between that surface and any obstacle in the obstructed region is less than 10 times $D_{1}$ or 1.5 times $D_{2}$ (for instance the earth's surface)
excluding: parts of cylinders or boxes that clearly do not belong to the obstructed region, such as upper parts of chimneys, distillation columns (vertically oriented cylinders) or pipes (horizontally oriented cylinders) connecting, for instance, chemical units, each potentially being an obstructed region, at a chemical plant. The excluded parts may form an obstructed region in themselves.

T he free volume of the obstructed region $V_{r}$ is de volume of the box minus the space occupied by the obstacles. In case it is not possible to calculate or estimate the volume occupied by the obstacles, assume $\mathrm{V}_{\mathrm{r}}$ equals the total volume of the box.

Step 6: subdivision into multiple boxes

The box containing the obstructed region smooths the outer boundary of the actual obstacle boundaries, thereby including additional space free of obstacles. In case this free space is not included in the obstructed region by the procedure for building-up the obstructed region but by drawing the box around the obstructed region, subdivision into multiple directly adjacent boxes is acceptable for reducing the volume of the obstructed region.

Step 7: define additional obstructed regions if appropriate

In case not all obstacles present are inside the obstructed region, possibly more obstructed regions within the cloud can be defined.
In that case, the region where ignition occurs is called the 'donor' region, the other regions are 'acceptor' regions.

T he direction of flame propagation, required for the orientation of the obstacles in the acceptor region, depends on the orientation of the acceptor region with respect to the donor region.

If separate obstructed regions are located close to each other, they may be initiated more or less at the same time. T he coincidence of their blasts in the far-field may not be ruled out and the respective blasts should be superposed.
Presently there is no guidance to the minimum distance between donor and acceptor regions at which they can be assumed to be separate explosions. D ue to this lack, a great possibility of reducing the hazards of a vapour cloud explosion can not be realised. T he procedure for applying the M ulti-E nergy method described in the next section contains a safe and conservative approach to cover this deficiency.

## Remarks

D ue to the choice of having a high initial blast strength for an obstructed region, the need for having a clear definition of an obstructed region grows.
The exact boundaries of an obstructed region are in fact not very important to the determination of blast. According to the blast charts (Figure 5.8), the energy E has to be raised to the power of $1 / 3$.

The subdivision of a hazardous site into obstructed and unobstructed regions and the attribution of a source strength to each region is a major issue in ongoing research. As a simplified Multi-Energy method is applied here, a simplified procedure for the subdivision into obstructed and unobstructed regions is adapted.

In order to obtain a rather straightforward, easy to apply and fully closed procedure, a number of influences which lead to reduction of the explosion severity, have been neglected. This indicates that further optimisation is possible but that this should be obtained through consultation of experts.

### 5.5.4 Procedure for the application of the Multi-E nergy method

The procedure of vapour cloud explosion blast modelling according to the M ulti-Energy concept can be subdivided into a number of steps. Figure 5.9 shows these successive steps.

CPR 14E
Chapter 5 of the ' $Y$ ellow B ook'


Figure 5.9 Flow diagram for application of the method

Step 1: application constraints

- Realise that the Multi-E nergy method is used for determination of the blast parameters from 'unconfined' vapour cloud explosions. Blast from vented vapour cloud explosions and from internal explosions should be assessed using other methods. T hese methods can be either semi-emperical like the methods of Bradley and M itcheson [Harris, 1983] or deterministic like the computational fluid dynamics (CFD) codes AutoR eaG as, FLACS, EXSIM and others.
- R ealise that the M ulti-E nergy method is a simplification of reality. It does not take into account directional blast effects due to the inhomogeneous distribution of confinement and obstruction of the vapour cloud or due to the non-pointsymmetrical shape of the vapour cloud. U se more sophisticated models, like the CFD codes mentioned above, to assess these aspects.
- Assume that blast modelling on the basis of deflagrative combustion is a sufficiently safe and conservative approach. K eep in mind that unconfined vapour cloud detonation is extremely unlikely and has only a single precedent, to our present knowledge.

Step 2: determination of cloud size

- D etermine the mass quantity after an accidental release that can contribute to the formation of a flammable cloud.

In general, a dispersion calculation will preceed the explosion calculation. See section 5.7 on how to calculate the flammable mass quantity within a cloud.
In case no dispersion calculation is made, the mass quantity has to be estimated. In a safe approach one could assume that the whole mass inventory contained within the process unit under consideration, contributes to the formation of a flammable cloud. In case of pool evaporation one could multiply the evaporation rate by a certain time period to come up with a mass quantity.

- C alculate the volume $\mathrm{V}_{\mathrm{c}}$ of a cloud with a density $\rho$ containing the flammable mass quantity $\mathrm{Q}_{\mathrm{ex}}$ at stoichiometric concentration $\mathrm{c}_{\mathrm{s}}\left(\mathrm{c}_{\mathrm{s}}\right.$ in vol. \%) with:

$$
\begin{equation*}
V_{c}=Q_{e x} /\left(\rho \times c_{s}\right) \tag{3}
\end{equation*}
$$

Step 3: recognition of potential blast sources

- Identify potential sources of blast in the vicinity of a postulated location of the centre of the cloud.

Potential sources of strong blast are, for example:

- extended spatial configuration of objects, e.g. process equipment at chemical plants or refineries piles of crates,
- the space between extended parallel planes, e.g.
- underneath groups of closely parked cars on parking lots or marshalling yards,
- open buildings, e.g. multi-story parking garages,
- the space in tubelike structures, e.g.
- tunnels, bridges, corridors,
- sewage systems, culverts,
- an intensely turbulent fuel-air mixture in a jet due to release at high pressure.


## Step 4: define obstructed regions

- D efine obstructed regions using the procedure given in the previous section or estimate boundaries of obstructed regions and determine the free volume $\mathrm{V}_{\mathrm{r}}$ of each obstructed region.
- Determine the maximum part of the cloud $\mathrm{V}_{\mathrm{gr}}$ that can be inside the obstructed regions.
- Calculate the volume $V_{0}$ of the unobstructed part of the vapour cloud with:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{gr}} \tag{3}
\end{equation*}
$$

- Calculate the energy $E$ of each region, obstructed as well as unobstructed, by multiplying $\mathrm{V}_{\mathrm{gr}}$ and $\mathrm{V}_{0}$ by the combustion energy per unit volume.

Step 5: estimate the source strength or class number for each region

As has been explained before, a conservative approach would be to choose a class number of 10 for each obstructed region. Other numbers may be chosen based on additionally obtained information if required. C hoose a low initial blast strength for the remaining unobstructed regions: number 1 . In case initial low turbulence motion is expected in unobstructed regions, for instance, due to the momentum of the fuel release, a number of 3 is advised.

Step 6: combination of obstructed regions
In case more than one obstructed region has to be considered:

- Define an additional blast source (obstructed region) by adding all energies of the separate blast sources together and by assuming a centre for the additional blast source. T his centre can be determined by considering the centres of the separate blast sources and their respective energies.

Step 7: location of unobstructed part of vapour cloud

- D etermine a centre for the unobstructed vapour cloud volume. T his centre can be determined by considering the centres of the separate unobstructed regions and their respective energies.

N ow, a certain number of explosion centres and their respective energies E have been determined. For each centre the blast parameters as a function of distance to its centre can be calculated using the blast charts given in Figure 5.8.

Step 8: calculate radius

- M odel the blast from each source by the blast from an equivalent hemi-spherical fuel-air charge of volume $E / E_{v} m^{3}\left(E_{v}=3.5 \mathrm{MJ} / \mathrm{m}^{3}\right.$ is an average value for most hydrocarbons at stoichiometric concentration). Form an impression of the scale by calculation the radius $r_{0}$ for each blast source from:

$$
\begin{equation*}
r_{0}=\left(3 / 2 \times E /\left(E_{v} \times \pi\right)\right)^{1 / 3} \tag{m}
\end{equation*}
$$

Step 9: calculate blast parameters

The blast parameters at a specific distancer from a blast source can be read off F igure 5.8 A, B and C after calculating the scaled distance $r^{\prime}$.

- C alculate the scaled distance $r^{\prime}$ with:

$$
\begin{equation*}
r^{\prime}=r /\left(E / p_{a}\right)^{1 / 3} \tag{-}
\end{equation*}
$$

- Depending on the class number 1, 3 or 10, read the scaled peak side-on overpressure $P_{s}{ }^{\prime}$, the scaled dynamic peak pressure $p_{d y n}$ ' and the scaled positive phase duration $t_{p}{ }^{\prime}$ off the respective blast charts in Figure 5.8.
- Calculate the peak side-on overpressure $P_{s}$, the peak dynamic pressure $p_{d y n}$ and the positive phase duration $t_{p}$ with:
$P_{S}=P_{s}{ }^{\prime} \times p_{a}$
$p_{d y n}=p_{d y n}{ }^{\prime} \times p_{a}$
$t_{p}=t_{p}{ }^{\prime} \times\left(E / p_{a}\right)^{1 / 3 / a_{a}}$
- D etermine the shape of the blast-wave from the Figure 5.8.
- Calculate the positive impulse $\mathrm{i}_{\mathrm{s}}$ by integrating the overpressure variation over the positive phase which can be approximated by multiplying the side-on overpressure with the positive phase duration and with a factor $1 / 2$ :

$$
\begin{equation*}
\mathrm{i}_{\mathrm{s}}=1 / 2 \times \mathrm{P}_{\mathrm{s}} \times \mathrm{t}_{\mathrm{p}} \tag{Pa•s}
\end{equation*}
$$

Step 10: handling of multiple obstructed regions
If separate blast sources are located close to each other, they may be initiated more or less at the same time. The coincidence of their blasts in the far-field may not be ruled out and the respective blasts should be superposed. This should be accomplished by taking the respective quantities of combustion energy of the sources in question together.
T o determine the parameters in the blast-wave at a specific distance, one should use the blast source as defined in step 6.

Step 11: construct the blast history at a specific location
C ombustion in the unobstructed region is considerably different from combustion in an obstructed region. Blast from an obstructed region will result in sharp and relatively short peaks (shock-waves). The relatively slow combustion in an unobstructed region will result in pressure waves of long duration. Due to the influence of the respective energies, however, either of the blast-waves can be of importance at a specific location.

CPR 14E
Chapter 5 of the ' $Y$ ellow B ook'

It may be assumed that the blast history at a specific location consists of the blast parameters and blast shape resulting from the obstructed region on which the blast parameters of the unobstructed region are superposed.

### 5.6 Application of selected models: calculation examples

### 5.6.1 Introduction to section 5.6

Examples are given to show how the procedures described in this chapter work.
In section 5.6.2 the procedure of defining and refining of an obstructed region is elucidated for a specific hazardous site.
In section 5.6.3 ignition of a specific vapour cloud located in the hazardous site of section 5.6 .2 is postulated and the blast parameters are determined.
T wo situations are considered in section 5.6.3. One in which the obstructed region is larger and one in which the obstructed region is smaller than the vapour cloud volume (respectively 5.6.3.1 and 5.6.3.2).
Section 5.6.4 gives the determination of the obstructed region for a more complex lay-out.

### 5.6.2 Definition of an obstructed region

The boundaries of obstructed regions can be chosen by carefully considering the lay-out of a hazardous site. In case of doubt or in case a more precise definition is required, the more time consuming procedure of section 5.5.3 can be followed. T his procedure will be followed here.

As an example for the build-up of obstructed regions on a hazardous site, an LPG storage and distribution centre is chosen. The picture in Figure 5.10 shows an overview. Figure 5.11 gives a map from which it becomes clear that the LPG installation at San Juan Ixhuatepec near M exico City was the basis for this example [Pietersen, 1985].

The facility comprises 6 spherical storage tanks, 4 with a volume of $1600 \mathrm{~m}^{3}$ and 2 with a volume of $2400 \mathrm{~m}^{3}$. An additional 48 horizontal cylindrical bullet tanks are situated near the large spheres.
The total storage capacity of about $16000 \mathrm{~m}^{3}$.
The storage is subdivided into 6 zones, see F igure 5.12.
H orizontal distances are given in Figure 5.13.

Additional dimensions are:

- the minimum height underneath the bullet tanks is 2 m ;
- the minimum height underneath the spheres is 2 m ;
- additional pipework on top of cylinders and spheres has a height of 0.5 m ;
- the storage area is surrounded by an open corridor of 30 m width;
- alongside the length of the outer cylinders, stairs with a width of 1.5 m are situated.

Figure 5.10 Picture of LPG storage facility

From the first glance it will be clear that any of the groups of cylinders or spheres are an obstructed region.

Step 1: break-down of structures into basic geometrical structural shapes

The structures exist of big spheres and cylinders. Other structures like stairs, walkways, supports, pipes will not be considered here. This is a valid approach: the dimensions of the large obstacles will dominate the process of building an obstructed region: 10 times $D_{1}$ of a big obstacle will override 10 times $D_{1}$ of a small obstacle located near the larger one (step 4). Figure 5.12 shows all major basic geometrical structural shapes.

Step 2: assume an ignition location
Assume ignition in the centre of the southern group of cylinders in zone 4 (figure 5.13).

The build-up of the obstructed region is started by taking the cylinder west of the ignition location as a start (marked as 1).

CPR 14E
Chapter 5 of the ' $Y$ ellow B ook'


Figure 5.11 Plan of LPG installation

Legenda:

| 1 | 2 spheres of $2400 \mathrm{~m}^{3}, \mathrm{ds}=16.5 \mathrm{~m}$ | 12 car loading |
| :--- | :--- | :--- |
| 2 | 4 spheres of $1600 \mathrm{~m}^{3}, \mathrm{ds}=14.5 \mathrm{~m}$ | 13 gas boille store |
| 3 | 4 cylinders of $270 \mathrm{~m}^{3}, \mathrm{dc}=3.5 \mathrm{~m}$, length $=32 \mathrm{~m}$ | 14 pipe/valve manifold |
| 4 | 14 cylinders of $180 \mathrm{~m}^{3}, \mathrm{dc}=3.5 \mathrm{~m}$, length $=21 \mathrm{~m}$ | 15 waterlower |
| 5 | 21 cylinders of $36 \mathrm{~m}^{3}, \mathrm{dc}=2 \mathrm{~m}$, length $=13 \mathrm{~m}$ | 16 LPG storage U nigas |
| 6 | 6 cylinders of $54 \mathrm{~m}^{3}, \mathrm{dc}=2 \mathrm{~m}$, length $=19 \mathrm{~m}$ | 17 Storage $G$ asomatico |
|  | 3 cylinders of $45 \mathrm{~m}^{3}, \mathrm{dc}=2 \mathrm{~m}$, length $=16 \mathrm{~m}$ | 18 battling terminal |
|  | 19 depot cars with boilles |  |
| 7 | flare pit | 20 entrance |
| 8 | pond | 21 rail car loading |
| 9 | control room | 22 store |
| 10 | pumphouse | 23 watertank |
| 11 fire pumps | 24 garrison |  |



Figure 5.12 Division into zones


Figure 5.13 Build-up of obstructed region

Step 3: determine obstacle orientation

In order to decide whether cylinder 2 is part of the obstructed region, values for $D_{1}$ and $D_{2}$ have to be determined. F ollowing the direction of flame propagation from the ignition location, via cylinder 1 towards cylinder 2 , the orientation of the axis of cylinder 1 is perpendicular to the direction of flame propagation. Therefore both $D_{1}$ and $D_{2}$ equal the diameter 3.5 m in this case.

Step 4: build-up of obstructed region

The distance between cylinder 1 and the adjacent, cylinder 2 is 1.5 m . T his distance is smaller than 10 times $D_{1}$ and also smaller than 1.5 times $D_{2}$. Thus, cylinder 2 is part of the obstructed region.

The obstructed region is enlarged to include now cylinder 1 and 2.

It is obvious that all seven cylinders of the southern group in zone 4 are within one obstructed region.

The distance between the east cylinder in zone 3 (number 5) and the west cylinder of the obstructed region (number 4) is $11.5 \mathrm{~m} . \mathrm{D}_{1}$ and $\mathrm{D}_{2}$ both equal still 3.5 m . T hus cylinder 5 belongs to the obstructed region too.
It is can be easily derived that all 4 cylinders of zone 3 belong to the obstructed region also.

T he distance between the northern and southern group of cylinders in zone 4 is 13 m . In this case $D_{1}=3.5 \mathrm{~m}$ and $D_{2}=21 \mathrm{~m}$. The distance of 13 m is smaller than 10 times $D_{1}$ and 1.5 times $D_{2}$. Thus, cylinder 6 and all other cylinders in that group are part of the obstructed region.

Repeating the procedure for the other cylinder groups as well as the spheres, results in one obstructed region covering all cylinders and spheres.
Additional pipework and stairs located within a distance of $D_{1}$ or $D_{2}$ from a sphere or cylinder belongs to the obstructed region too.

Step 5: define box containing the obstructed region

A box containing all obstacles in the obstructed region has the following dimensions length: 108.5 m , width 110 m , and height 19.5 m (Figure $5.14,19.5 \mathrm{~m}$ is the height of the highest cylinder including pipework on top).
The space underneath the obstacles is part of the obstructed region too, the distance of 2 m to a confining surface (the earth) is smaller than 10 times $D_{1}$ or $1.5 D_{2}$, or all big obstacles.

A single big box in this case includes large volumes of free space, due to the large variation in height between cylinders and spheres. A sub-division into multiple directly adjacent boxes is therefore beneficial.


Figure 5.14 Single box


Figure 5.15 Three boxes

Step 6: subdivision in multiple boxes

A first subdivision into 3 boxes is shown in Figure 5.15
Box 1: contains the cylinders in zones 3,4 and 5;
dimensions: length 108.5 m , width 65 m and height 6 m .
Box 2: contains the cylinders in zone 6;
dimensions: length 45 m , width 31.25 m and height 4.5 m .
Box 3: contains all spheres in zone 1 and 2;
dimensions: length 65.5 m , width 45 m , height 19.5 m .

A second further subdivision is possible as the free space in box 1 north of zone 3 does not belong to the obstructed region. All other free space between groups of cylinders are part of the obstructed region and can therefore not be excluded by further subdivision into multiple boxes.


Figure 5.16 Four boxes

We now have four boxes (Figure 5.16):
Box 1: contains the cylinders in zone 3 and the space between zones 3 and 4; dimensions: length 32 m , width 31.5 m , height 6 m .
Box 2: contains the cylinders in zones 4 and 5 and the space between zones 4 and 2 , and 5 and 6;
dimensions: length 77 m , width 65 m and height 6 m .
Box 3: contains the cylinders in zone 6;
dimensions length 45 m , width 31.25 m and height 4.5 m .
Box 4: contains all spheres in zone 1 and 2;
dimensions: length 65.5 m , width 45 m , height 19.5 m .

The volume of the obstructed region is the sum of the volumes of the four boxes minus the space occupied by the obstacles:

| Box 1: $32 \times 31.5 \times 6$ | $=6048 \mathrm{~m}^{3}$ |  |
| :--- | :--- | :--- |
| Box 2: $77 \times 65 \times 6$ | $=30030 \mathrm{~m}^{3}$ |  |
| Box 3: $45 \times 31.25 \times 4.5$ | $=6328 \mathrm{~m}^{3}$ |  |
| Box 4: | $65.5 \times 45 \times 19.5$ | $=57476 \mathrm{~m}^{3}$ |
|  | Total volume | $=99882 \mathrm{~m}^{3}$ |

The volume of the cloud inside the obstructed region is determined by deduction of the volume of the cylinders and spheres of the volume of the obstructed region.

T he storage capacity is $16000 \mathrm{~m}^{3}$ which is assumed to equal the volume of the storage vessels.

So: $\mathrm{V}_{\mathrm{gr}}=99882-16000=83882 \mathrm{~m}^{3}$
Obviously, further subdivision is possible and acceptable as long as the rules for subdivision are followed. One has to balance the benefit from further subdivision (which can be rather small) with the required time to perform the subdivision (which can be rather long) in order to decide to which level of detail subdivision is carried out.

Step 7: define additional obstructed regions if appropriate

As all obstacles present are inside the one obstructed region defined, no additional obstructed regions are requested.

### 5.6.3 Vapour cloud explosion

V apour cloud smaller than obstructed region

The blast parameters resulting from a vapour cloud explosion located in the LPG storage facility of the example in section 5.6 .2 will be determined. A table will be composed showing at what distances a specific side-on overpressure is expected to occur. The other blast parameters are calculated at these distances.

Step 1: application constraints

The incident of an accidental release of flammable material will probably have a number of effects with a number of consequences. Due to the explosion, domino effects are expected. Pressurised vessels may be shifted and damage and even fail, creating physical explosions, BLEVES, fires and missiles.
The M ulti-E nergy method is to be used for the determination of the blast parameters as a result of a relatively large and initially non-turbulent flammable fuel-air cloud. D etermination of blast as a result of bursting vessels is treated in chapter 7 'Rupture of V essels'.

## Step 2: determination of cloud size

D ue to a failure of a feed pipe to one of the cylindrical vessels, a certain amount of liquid propane is spilt in the bunt underneath the vessels. T he spill starts to evaporate and a fuel-air cloud is generated which fills the space between the storage tanks. It is assumed that at the moment of ignition 4750 kg liquid propane has evaporated.

It is assumed that the evaporated propane has mixed with air stoichiometrically (4\%) and that the temperature of the mixture is $15{ }^{\circ} \mathrm{C}$.
The density of propane vapour at $15{ }^{\circ} \mathrm{C}$ is $1.86 \mathrm{~kg} / \mathrm{m}^{3}$ so the volume of the cloud equals

$$
V_{c}=100 / 4 \times 4750 / 1.86=63844 \mathrm{~m}^{3}
$$

Step 3: recognition of potential blast sources

H ere, only blast sources relating to a vapour cloud explosion are at issue.
According to the guidance given in section 5.5.4, potential blast sources are underneath all cylinders and spheres.

Step 4: define obstructed regions

The example in section 5.6 .2 defines a single obstructed region comprising four boxes. It is calculated there that

$$
\mathrm{V}_{\mathrm{gr}}=83882 \mathrm{~m}^{3}
$$

The volume of the vapour that can be contained in the obstructed region is larger than the volume of the assumed cloud. Therefore $\mathrm{V}_{\mathrm{gr}}$ is reduced to $\mathrm{V}_{\mathrm{c}}$ :

$$
\mathrm{V}_{\mathrm{gr}}=\mathrm{V}_{\mathrm{c}}=63844 \mathrm{~m}^{3}
$$

T he centre of the vapour cloud is taken as the approximate centre of the obstructed region: the north end of the most eastern cylinder in the northern cylinder group of zone 4 see F igure 5.16.

T he volume of the unobstructed part of the cloud is zero:

$$
\mathrm{V}_{0}=0 \mathrm{~m}^{3}
$$

The heat of combustion of a stoichiometric propane air mixture is $3.46 \mathrm{M} \mathrm{J} / \mathrm{m}^{3}$ so the energy $E$ of the blast source is:

$$
E=3.46 \times 10^{6} \times 63844=221 G J
$$

Step 5: estimate the source strength
A strength number 10 is selected.

Step 6: combination of obstructed regions
N ot applicable.
Step 7: location of unobstructed part of the cloud
N ot applicable.
Step 8: calculate radius
From equation (5.9):

$$
r_{0}=\left(\frac{3}{2 \times \pi} \times 63844\right)^{1 / 3}
$$

follows: $r_{0}=31 \mathrm{~m}$
Step 9: calculate blast parameters
In case one wants to know at which distance a specific overpressure occurs (for instance $P_{s}=10 \mathrm{kPa}$ ):

The dimensionless peak side-on overpressure is:

$$
P_{s}^{\prime}=P_{s} / p_{a}=10 / 100=0.1
$$

Select on the vertical axis of Figure 5.8C the value 0.1 and pick the point where the pressure decay line belonging to a class strength of 10 crosses this value. Select on the horizontal axis the value of the scaled distance that belongs to the scaled pressure of 0.1 and the class 10 line.

It is found that:

$$
r^{\prime}=3
$$

The actual distance equals:

$$
r=r^{\prime} \times\left(E / p_{\mathrm{a}}\right)^{1 / 3}=3 \times\left(221 \times 10^{9} / 1 \times 10^{5}\right)^{1 / 3}=3 \times 128=385 \mathrm{~m}
$$

The other blast parameters at that distance are calculated as follows:

## The positive phase duration $t_{p}$ at a distance of 390 m is:

$$
r^{\prime}=3
$$

From Figure 5.8C :

$$
\begin{aligned}
& t_{p}^{\prime}=0.38(\text { class 10 }) \\
& t_{p}=t_{p}^{\prime} \times\left(E / p_{a}\right)^{1 / 3} / a_{a}=0.38 \times\left(221 \times 10^{9} / 1 \times 10^{5}\right)^{1 / 3} / 340=0.146 \mathrm{~s}=146 \mathrm{~ms}
\end{aligned}
$$

## The positive impulse:

$$
i_{s}=1 / 2 \times P_{s} \times t_{p}=1 / 2 \times 10^{4} \times 0.146=730 \mathrm{~Pa} \cdot \mathrm{~s}
$$

## The peak dynamic pressure, use figure 5.8B:

at $\mathrm{r}^{\prime}=3$ :

$$
\begin{aligned}
& p_{d y n}^{\prime}=0.003(\text { class } 10) \\
& p_{d y n}=p_{d y n}^{\prime} \times p_{a}=0.003 \times 1 \times 10^{5}=300 \mathrm{~Pa}
\end{aligned}
$$

## The shape of the blast-wave:

The pressure decay line belonging to class 10 is solid, which means the shape of the blast is that of a shock-wave.

T o get an impression of distances and blast parameters, T able 5.6 shows the result of some calculations.

Table 5.6 Distances for specific blast overpressures and remaining blast parameters

| $\mathbf{P}_{\mathbf{s}}$ | $\mathbf{r}^{\prime}$ | $\mathbf{r}$ | $\mathbf{t}_{\mathbf{p}}{ }^{\prime}$ | $\mathbf{t}_{\mathbf{p}}$ | $\mathbf{p}_{\mathbf{d y n}}$ | $\mathbf{i}_{\mathbf{s}}$ | shape |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| $\mathbf{( k P a )}$ | $\mathbf{( - )}$ | $\mathbf{( m )}$ | $\mathbf{( - )}$ | $\mathbf{( m s )}$ | $\mathbf{( k P a )}$ | $\mathbf{( P a *} \mathbf{s})$ |  |
| 100 | 0.7 | 92 | 0.18 | 68 | 23 | 3403 | shock-wave |
| 50 | 1 | 131 | 0.23 | 87 | 7.1 | 2184 | shock-wave |
| 20 | 1.8 | 229 | 0.32 | 122 | 1.3 | 1210 | shock-wave |
| 10 | 3 | 385 | 0.38 | 146 | 0.3 | 730 | shock-wave |
| 5 | 5.2 | 682 | 0.44 | 168 | $<0.01$ | 419 | shock-wave |

V apour cloud larger than obstructed region

The hazardous location is now assumed to consists only of the cylindrical vessels of zone 4 (Figure 5.12). All other data remains similar to that in section 5.6.2.

A table will be composed similar to Table 5.6 in order to get an impression of the reduction in distance at which a specific side-on overpressure is expected to occur. Also, the effect of the unobstructed part of the cloud is demonstrated.

Only the appropriate steps are addressed here:

Step 2:

$$
V_{c}=63844 \mathrm{~m}^{3}
$$

Step 4:
The obstructed area is now a box enclosing all vessels, stairs and pipework in zone 4. The box has dimensions: length 37.5 m , width 55 m and height 6 m .

$$
\begin{aligned}
& V_{r}=37.5 \times 55 \times 6=12375 \mathrm{~m}^{3} \\
& V_{\mathrm{gr}}=37.5 \times 55 \times 6-14 \times 180=9855 \mathrm{~m}^{3} \\
& \mathrm{~V}_{\mathrm{gr}}<\mathrm{V}_{\mathrm{c}}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{gr}}=63844-9855=53989 \mathrm{~m}^{3}
$$

Obstructed region: $\quad E=9855 \times 3.46 \times 10^{6}=34 \mathrm{GJ}$.
U nobstructed region: $\quad E=53989 \times 3.46 \times 10^{6}=187 \mathrm{GJ}$.

## Step 5:

C lass number for obstructed region is taken to be 10 .
Class number for unobstructed region is taken to be 3.
Step 7:
The location of the centre of both the obstructed and unobstructed region is taken to be the centre of zone 4 .

Step 8:

Obstructed region: $\quad r_{0}=16.8 \mathrm{~m}$.
U nobstructed region: $\quad r_{0}=29.5 \mathrm{~m}$.

Step 9:

The blast parameters for the obstructed and unobstructed region are determined for specific values of the peak side-on overpressure (T able 5.7A).
For the distances $r$ belonging to specific peak side-on overpressures, the blast parameters for the unobstructed region have been determined (T able 5.7B)

Table 5.7A Distances for specific blast overpressures and remaining blast parameters (obstructed region, class 10)

| $\mathbf{P}_{\mathbf{s}}$ | $\mathbf{r}^{\prime}$ | $\mathbf{r}$ | $\mathbf{t}_{\mathbf{p}}{ }^{\prime}$ | $\mathbf{t}_{\mathbf{p}}$ | $\mathbf{p}_{\mathbf{d y n}}$ | $\mathbf{i}_{\mathbf{s}}$ | shape |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| $\mathbf{( k P a )}$ | $(\boldsymbol{-})$ | $\mathbf{( m )}$ | $(\boldsymbol{-})$ | $\mathbf{( m s )}$ | $\mathbf{( k P a )}$ | $\left.\mathbf{( P a}{ }^{*} \mathbf{s}\right)$ |  |
| 100 | 0.7 | 50 | 0.18 | 37 | 22 | 1800 | shock-wave |
| 50 | 1 | 70 | 0.23 | 47 | 7.2 | 1173 | shock-wave |
| 20 | 1.7 | 122 | 0.32 | 65 | 1.3 | 653 | shock-wave |
| 10 | 2.9 | 206 | 0.38 | 78 | 0.3 | 390 | shock-wave |
| 5 | 5.2 | 365 | 0.44 | 90 | $<0.01$ | 225 | shock-wave |

Table 5.7B Distances for specific blast overpressures and remaining blast parameters (unobstructed region, class 3)

| $\mathbf{P}_{\mathbf{s}}$ | $\mathbf{r}^{\prime}$ | $\mathbf{r}$ | $\mathbf{t}_{\mathbf{p}}{ }^{\prime}$ | $\mathbf{t}_{\mathbf{p}}$ | $\mathbf{p}_{\mathbf{d y n}}$ | $\mathbf{i}_{\mathbf{s}}$ | shape |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $\mathbf{( k P a )}$ | $\mathbf{( - )}$ | $\mathbf{( m )}$ | $(-)$ | $\mathbf{( m s )}$ | $\mathbf{( k P a )}$ | $\mathbf{( P a * s )}$ |  |

### 5.6.4 Determination of obstructed region

The lay-out of the previous example, the LPG storage and distribution centre, was quit straightforward. Therefore, another example is given regarding determination of the obstructed region for a more complicated case.

D escription of the site
Figure 5.17A shows a three-dimensional view of the chemical unit under consideration. There only equipment is shown. Supporting structures and some buildings were omitted for visuality. Figure 5.17B shows the floor plan at ground level. The unit is located on a rectangular site of $120 \times 50 \mathrm{~m}$.
In order to get a better impression of the unit, additional Figures (5.17C through G) are added showing side-views from various locations. These locations are indicated in Figure 5.17A by C through G .
The area is sub-divided into two small and two large sections by two perpendicular pipebridges ( $F$ igure 5.17 H ), both having a width of 8 m , a height of 10 m and lengths of 100 and 50 m respectively. The main items within each sector are given next:

The two smaller sections consist of:

- I: a storage area with the tanks AD 16 and AD 26, diameter 8 m , height 12 m . total area $25 \times 21 \mathrm{~m}^{2}$ (Figure 5.17 C );
- II: substation \#92, height 10 m , total area $25 \times 21 \mathrm{~m}^{2}$.

The two larger sections consist of vertical columns and installations on multi-level supporting structures:

- III: columns AT 3 diameter 5m, height 40m, with adjacent support structure height 16m (Figure 5.17E);
AT 8 diameter 2.5 m , height 12 m (Figure 5.17E);
AT 4 diameter 5.8 m , height 50 m (F igure 5.17D);
AD-433 diameter 4 m , height 6 m (Figure 5.17D);
multi-level structure $25 \times 15 \mathrm{~m}^{2}$ of variable height 16.5, 33 and 45 m
(Figure 5.17D );
total area $87 \times 21 \mathrm{~m}^{2}$;
- IV: columns AF 1 average diameter 6 m , height 40 m (Figure 5.17G );

AT 5 diameter 5 m , height 30 m (Figure 5.17 F );
AT 6 diameter 2.5 m , height 15 m ( F igure 5.17F );
multi-level structure $20 \times 15 \mathrm{~m}^{2}$, with columns AR2A and AR2B diameter 5 m , height 20 m (Figure 5.17F);
total area $87 \times 21 \mathrm{~m}^{2}$.
D etermination of obstructed region
The flow diagram of section 5.5 .4 gives the possibility to determine the volume of the congested regions in two ways: by rough estimation or by the procedure of section 5.5.3 in case such a procedure may be required.

## Estimation of volume:

T he average height of the site is assumed to be 15 m . T ogether with outer dimensions of $120 \times 50 \mathrm{~m}$, this leads to a volume of the obstructed region of $90000 \mathrm{~m}^{3}$.

## Application of procedure:

Step 1: break-down structures into basic geometrical shapes

The installation consists of a combination of horizontally and vertically orientated cylinders supported by elements such as beams and columns. T here are some boxtype shapes the largest of which is sub-station\#92 in section I. T he open multi-level supporting structures should be considered as composed of a number of smaller geometrical shapes, rather than one big shape. T here are no spheres.
The dimensions of the bigger obstacles are given next as it will appear (step 4) that only those are decisive for the build-up of the obstructed region:

- Cylinder AD 16, $\quad d_{c}: 8 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 12 \mathrm{~m}$;
- Cylinder AD 26, $\quad d_{c}: 8 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 12 \mathrm{~m}$;
- Box \#92, $\quad b_{1}: 20 \mathrm{~m}, \mathrm{~b}_{2}: 15 \mathrm{~m}$,
- Cylinder AT 3, $\quad d_{c}: 5 \mathrm{~m}, \mathrm{I}_{\mathrm{c}}: 40 \mathrm{~m}$;
- Cylinder AT 8, $\quad d_{c}: 2.5 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 12 \mathrm{~m}$;
- Cylinder AT 4, $\quad d_{c}: 5.8 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 50 \mathrm{~m}$;
- Cylinder AF 1, $\quad d_{c}: 6 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 40 \mathrm{~m}$;
- Cylinder AD-433, $\quad d_{c}: 4 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 6 \mathrm{~m}$;
- Cylinder AT 5, $\quad d_{c}: 5 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 30 \mathrm{~m}$;
- Cylinder AT 6, $\quad d_{c}: 2.5 \mathrm{~m}, \quad \mathrm{I}_{\mathrm{c}}: 15 \mathrm{~m}$;
- Cylinders $A R-2 A$ and $B, d_{c}: 4 \mathrm{~m}, \mathrm{I}_{\mathrm{c}}: 20 \mathrm{~m}$.
$\mathrm{b}_{3}: 10 \mathrm{~m} ;$

Step 2: assume ignition location

Ignition is assumed to occur in between the multi-level structure and AT 3 in section III. It is not expected that variation of the ignition location will result in variable dimensions of the congested region. T he location has to be chosen for starting the build-up of the obstructed region in step 4.

Step 3: determine obstacle orientation

The flame will mainly propagate horizontally. H orizontal dimensions of the site are larger than the vertical ones. T he flame will pass more obstacles in the horizontal plane.
For all vertical cylinders: $D_{1}=d_{c}$ and $D_{2}=I_{c}$.

Step 4: build-up of obstructed region

The nearest large obstacle to the ignition location is AT 3. It forms a congested region with all obstacles within a distance smaller than $10 \times \mathrm{D} 1$ or 25 m . T he latter value is decisive in this case. This implies that the whole multi-level support structure in section III, the long pipebridge separating section III and IV, the multi-level support structure in sector IV and the area around AT 8 is part of the obstructed region.

A big cylinder located in the multi-level structure in sector III is AD-433. Within $10 \times D_{1}(40 \mathrm{~m})$ or 25 m of this cylinder, AT 4 is located. So AT 4 is also part of the obstructed region. Sector I and II as well as the shorter pipebridge are located within $10 \times \mathrm{D}_{1}(58 \mathrm{~m})$ or 25 m of AT 4, so they are part of the obstructed region too.

AT 6 is within 25 m of $A R-2 B$ and AT 5 is close to $A T 6$, so these are included as well as is AF 1 which is located about 20 m from AR-2A.

Some smaller horizontal oriented cylinders located along the long edges of the site (Figure 5.17A and B) are also within the obstructed region.

The procedure leads to the result that the whole site is part of the obstructed region.
The volume of the vapour cloud inside the obstructed region $\mathrm{V}_{\mathrm{gr}}$ is to be determined from the comparison of the free volume in the obstructed region $\mathrm{V}_{\mathrm{r}}$ (step 5 from paragraph 5.5 .3 ) and the volume of a cloud with stoichiometric concentration $\mathrm{V}_{\mathrm{c}}$ (step 2 of paragraph 5.5.4).

Step 5: defining a box containing the obstructed region
Step 6: subdivision into multiple boxes

A box containing the obstructed region has the dimensions of the site: $120 \times 50 \mathrm{~m}$ with a height equal to the highest vertical cylinder ( $50 \mathrm{~m}, \mathrm{AT} 4$ ).
Subdivision into multiple boxes is done by reducing the height where possible, i.e. where the distance between obstacles is larger than 25 m .
A result is shown in Figure 5.17. This figure shows the subdivision of the obstructed region into multiple boxes. The height as well as the volume of each particular box is given. The boundary of the obstructed region is also indicated in Figures 5.17C through G. Further subdivision is possible but will require considerable effort.

The total volume of the obstructed region equals $82421 \mathrm{~m}^{3}$.


Figure 5.17A Three-dimensional view of plant

CPR 14E
Chapter 5 of the 'Y ellow B ook'


Figure 5.17B Horizontal cross-section


Figure 5.17C View from location C-C


Figure 5.17D View from location D-D

CPR 14E
Chapter 5 of the ' $Y$ ellow B ook'



Figure 5.17F View from location F-F

CPR 14E
Chapter 5 of the ' $Y$ ellow B ook'


Figure 5.17G View from location G-G


Figure 5.17H Subdivision into sections and most important obstacles


Figure 5.171 Subdivision into multiple boxes
Bold: $\quad$ volume in $m^{3}$
Underlined: height in $m$

### 5.7 Interfacing to other models

## Input variables

The vapour cloud explosion blast model presented in this chapter describes the physical effect of an explosion that may occur after ignition of a flammable vapour cloud. What is needed as input is:

- the combustion energy involved in the explosion,
- the location of the cloud at the moment of the explosion.

According to the M ulti-Energy method, the combustion energy involved in the explosion is the combustion energy of the confined fraction of the cloud. In order to determine this fraction one has to determine the flammable mass quantity of the cloud.

Equations with which the flammable mass quantity of the cloud can be calculated are given in chapter 2 'Outfow and Spray Release' and chapter 4 'Vapour cloud dispersion'.

Entrainment with air is necessary to create a flammable cloud. Entrainment with air is calculated for:

- a free jet (section 4.5.4.1),
- a finite duration spray release (section 2.5.3.7),
- an instantaneous release (section 2.5.3.8),
- passive dispersion (section 4.5.3).

The flammable contents of the cloud created by the free jet is calculated using equation (4.83).

The condition of the cloud for the finite duration spray release after flashing including the effects of rain-out are described by step 2 of the procedure given in section 2.5.3.7. Equation (2.164) provides a value for $A_{f, \text { rain-out. }} A_{f, r a i n-o u t}$ together with:

$$
\begin{equation*}
\mathrm{b}_{f, \text { rain-out }}=\left(\mathrm{A}_{\mathrm{f}, \text { rain-out }} / \pi\right)^{1 / 2} \tag{m}
\end{equation*}
$$

is the input for equations (4.81) and (4.82). The explosive content, including droplets not rained out, then follows from equation (4.83).

Instantaneous release is described in section 2.5.3.8. T he concentration in the cloud is homogeneously distributed. The cloud is therefore flammable when this concentration is in between the lower and upper flammability limit. T he explosive mass of the cloud can be calculated using equation (2.183).

Both the combustion energy involved and the cloud location can be determined following a dispersion calculation (chapter 4, section 4.5.3.7). Equation (4.65) of that section provides the mass of the flammable part of the cloud.

The flammable mass calculated using either of the above equations, is to be multiplied by the combustion energy per unit volume. T able 5.1 gives this property for some gases.

O utput variables

The output of the model consists of the most important parameters to characterise the blast-wave at a specific distance from the explosion centre for free field conditions. In order to gain knowledge about damage to structures and injury to people, additional models should be applied using the blast parameters as input. M odels that can be used are described in CPR-16E [1990] chapters 2 and 3.

### 5.8 Literature

Baker W.E., C ox P.A., W estine P.S., K ulesz J.J. and Strehlow R.A. (1983),
Explosion hazards and evaluation,
F undamental studies in engineering, Vol.5, Elsevier Scientific Publishing C ompany, Amsterdam.

Baker Q.A., M .J. T ang and E Scheier (1994),
Vapor cloud explosion analysis,
AIC hE 28th Loss Prevention Symposium, Atlanta, G eorgia, U SA, A pril 1994.

Brasie W.C. and Simpson D.W. (1968),
Guidelines for estimating explosion damage,
63rd N ational AIC hE meeting, St L ouis (M O), USA.

Brasie W.C. (1976),
The hazard potential of chemicals,
AIChE Loss Prevention, Vol.10, pp.135-140.

Burgess D.S. and Zabetakis M.G. (1973),
D etonation of a flammable cloud following a propane pipeline break:
the D ecember 9, 1970, explosion in Port Hudson (M O),
Bureau of M ines Report of Investigations No. 7752, U nited States D epartment of the Interior.

C ates A.T (1991),
Fuel G as explosion guidelines,
C onference on fire and explosion hazards, M oreton-in-M arsh, A pril 1991.

CCPS (1994),
G uidelines for evaluating the characteristics of vapor cloud explosions, flash fires and bleves,
C enter for Chemical Pocess Safety of the American Institute of Chemical E ngineers.

CPR-14E (1988),
$M$ ethods for the calculation of physical effects of the escape of dangerous materials, M inistry of Social Affairs and E mployment, T he N etherlands.

CPR-16E (1990),
M ethods for the calculation of possible damage to people and goods due to the physical effects of the escape of dangerous materials, M inistry of Social Affairs and Emplyoment, Voorburg, T he N etherlands.

D esinov Yu. N ., Shchelkin K .I. and T roshinY a.K . (1962),
Some questions of analogy between combustion in a thrust chamber and a detonation wave,
8th Int. Symp. on C ombustion, Pittsburgh, PA, pp 1152-1159.

Eichler T.V. and N apadensky H.S. (1977),
Accidental vapor phase explosions on transportation routes near nuclear power plants,
IIT Research Institute final report no. J6405, C hicago (IL), U SA.
F actory M utual Research (1990),
Private Communication.

French Authority Safety Rule (1982),
Regle fondamentele de Surete I.2.d Prise en compte des risques lies a
l'environnement industriel et aux voies de communication,
M inistere de l'industrie, Paris.

French Chemical Industry (1986),
C ahier de securite: Explosion de gaz en milieu confine,
$U$ nion des Industries $C$ himiques.
Glasstone S. and D olan P.J. Ed. (1977),
The effects of nuclear weapons,
U S D ept. of D efence and U S D ept.of E nergy.

Gugan K. (1979),
U nconfined vapour cloud explosions,
The Institution of Chemical Engineers, UK.

H anna S.R. and D rivas P.J. (1987),
Guidelines for U se of Vapour C loud D ispersion M odels,
AIChE, CCPS, N ew. York.

H arris R.J. (1983),
The investigation and control of gas explosions in buildings and heating plant,
E \& F Spon Ltd, London, UK, 1983.

H arris R.J. and W ickens M .J. (1989),
U nderstanding vapour cloud explosions - an experimental study,
55th Autumn M eeting of the Institution of $G$ as Engineers, K ensington, U K.
H arrison A.J. and EyreJ.A. (1987),
The effect of obstacle arrays on the combustion of large premixed gas/air clouds, Combustion Science and T echnology, Vol.52, pp 121-137.

H jertager B.H . (1982),
Simulation of transient compressible turbulent flows,
Combustion Science and Technology, Vol.27, pp 159-170.
H jertager B.H. (1989),
Simulation of gas explosions,
M odeling, Identification and Control, Vol.10, N o.4, pp 227-247.

H ealth and Safety Executive (1979),
Second Report Advisory C ommittee M ajor H azards,
U.K. H ealth and Safety C ommission.

H ealth and Safety Executive (1986),
T he effect of explosions in the process industries,
Loss Prevention Bulletin, No.68, pp 37-47.

H opkinson B. (1915),
British Ordnance Board M inutes 13565.

Industrial Risk Insurers (1990),
Oil and Chemical Properties L oss Potential Estimation Guide,
IRI-Information February 1.

IC hemE (1994),
Explosions in the Process Industries,
Rugby, UK.

Jarrett D.E. (1968),
D erivation of the British explosives safety distances,
A nuals of the N ew Y ork Academy of Sciences, Vol.152.

K insella K.G. (1993),
A rapid assessment methodology for the prdiction of vapour cloud explosion overpressure,
proceedings of the International C onference and Exhibition on Safety, H ealth and Loss Prevention in the Oil, Chemical and Process Industries, Singapore.

K jäldman L. and R. H uhtanen (1985),
Simulation of flame acceleration in unconfined vapour cloud explosions, Research report No 357, T echnical Research Centre of Finland.

LeeJ.H.S and M oen I.O. (1980),
The mechanism of transition from deflagration to detonation in vapor cloud explosions,
Prog. Energy Combustion Science, vol. 6 pp 359-389.
Luckritz R.T. (1977),
An investigation of blast-waves generated by constant velocity flames, Aeronautical and Astronautical Engineering D epartment, U niversity of Illinois, U rbana, II ,U SA, Technical report no. AAE 77-2.

M arshall V.C. (1976),
The siting and construction of control buildings - a strategic approach, I.C hem.E.Symp.Series, N o.47.

M ercx W.P.M ., Johnson D.M. and Puttock J. (1994),
Validation of scaling techniques for experimental vapour cloud explosion investigations,
AIC hE L oss Prevention Symposium, Atlanta, G eorgia, U SA, A pril 1994.

M unday G. (1976),
Unconfined vapour-cloud explosions: A reappraisal of T NT equivalence, Inst.
Chem. Eng. Symposium Series N o.47, pp 19-38.

N ettleton M.A. (1987),
G aseous detonations, their nature, effects an control,
Chapman and Hall, New York.
NTSB (1972),
Pipeline Accident Report, Phillips Pipe Line C ompany propane gas
explosion, Franklin C ounty (M O ), D ecember 9, 1970,
N ational T ransportation Safety B oard, Washington (DC), report no. NTSB-PAR-72-1.

Pietersen C.M . and C endejas H uerta S. (1985),
A nalysis of the LPG incident in San Juan Ixhuatepec, M exico City, 19 N ovember 1984,
T N O report ref. 85-0222, M ay 1985, T he N etherlands.

Robinson C.S. (1944),
Explosions, their anatomy and destructiveness,
M cG raw-Hill, N ew Y ork.

Sachs R.G. (1944),
The dependence of blast on ambient pressure and temperature,
BRL report N o. 466, Aberdeen Proving G round, M aryland, USA.
Schardin H. (1954),
Ziviler L uftschutz,
No.12, pp 291-293.

Strehlow R.A., Luckritz R.T ., Adamczyk A.A. and Shimpi S.A. (1979),
T he blast-wave generated by spherical flames,
Combustion and Flame, Vol.35, pp 297-310.

T weeddale M. (1989),
C onference report on the 6th Int.Symp. on L oss Prevention and Safety Promotion in the Process Industries,
Journal of Loss Prevention in the Process Industries, Vol.2, No.4, pp 241.

U rtiew P.A. and Oppenheim A.K . (1966),
Experimental observations of the transition to detonation in an explosive gas,
Proceedings R oyal Society L ondon, A295:13-28.

Van den Berg A.C. (1980),
BLAST - a 1-D variable flame speed blast simulation code using a 'Flux-C orrected T ransport' algorithm,
Prins M aurits L aboratory T N O report no.PM L 1980-162, The N etherlands.

Van den Berg A.C. (1985),
The M ulti-Energy method - A framework for vapour cloud explosion blast prediction,
Journal of H azardous M aterials, Vol.12, pp 1-10.
Van den Berg A.C., Van W ingerden C.J.M ., Zeeuwen J.P. and Pasman H.J. (1987), Current research at T N O on vapor cloud explosion modeling,
Int.C onf.on Vapor C loud M odeling, C ambridge (M A), U SA, pp 687-711, AIChE, N ew York.

Van den Berg A.C. (1989),
REAGAS - a code for numerical simulation of 2-D reactive gas dynamics in gas explosions,
T N O Prins M aurits L aboratory report no. PM L 1989-IN 48, The N etherlands.

Van den Berg A.C., Van Wingerden C.J.M . and T he H.G. (1991),
Vapor cloud explosion blast modeling,
International C onference and W orkshop on M odeling and M itigation the
C onsequences of Accidental Releases of H azardous materials, M ay 21-24, N ew
Orleans, U SA.

Van den Berg A.C. and A. L annoy (1993),
$M$ ethods for vapour cloud explosion blast modelling,
Journal of H azardous M aterials, V ol 34, pp 151-171.

Van Wingerden C.J.M. (1989),
Experimental investigation into the strength of blast-waves generated by vapour cloud explosions in congested areas,
6th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, Oslo, N orway, pp 26-1,26-16.

Wiekema B.J. (1980),
Vapour cloud explosion model,
Journal of H azardus M aterials, Vol.3, pp 221-232.
Zeeuwen J.P. Van W ingerden C.J.M . and D auwe R.M . (1983),
Experimental investigation into the blast effect produced by unconfined vapour cloud explosions,
4th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, H arrogate, UK, C hemE Symp.Series N o.80, pp D 20-D 29.

Chapter 6 Heat flux from fires
W.F.J.M . Engelhard

## Modifications to Chapter 6 (Heat Flux from Fires) with respect to the first print (1997)

N umerous modifications were made concerning typographical errors. A list is given below for the pages on which errors have been corrected.

Page 6.19: $\quad$ C orrected the sentence that in the appendix formulae a given to calculate the view factor for all types of fires.
Page 6.29: $\quad$ C orrected the sentence above equation 6.5. The equations 6.5 and 6.6 have been extended for readability in a more scientific way.
Page 6.33: $\quad$ C orrected the symbol $a^{\prime}, b^{\prime}, c^{\prime}$ and $d^{\prime}$ in the text.
Page 6.34: $\quad U$ pdated the symbols below equation 6.14. C orrected the last sentence on the page wrt. the reference to the equations.
Page 6.38: $\quad U$ pdated the explanation of the symbols below equation 6.21.
Page 6.47: U pdated the equations 6.25 and 6.26.
Page 6.53: $\quad$ Equation 6.35 for $M_{j}$ for choked flow has been written down in a more scientific way. The equation for $M_{j}$ in case of unchoked flow has been added and also an explanation of the used symbols in these equations.
Page 6.55: Included a note wrt. the constant 2.85 in the value for $C_{c}$. The equation 6.44 has been updated and also the explanation of the symbol $\Theta_{\mathrm{jv}}$.
Page 6.56: $\quad U$ pdated equation 6.46 and 6.47 and the explanation of the symbols below equation 6.47.
Page 6.57: Inserted the correct formulae for the calculation of the lift-off of the flame (b) in equation 6.49. Added below equation 6.49 the equation to calculate the value of $(K)$ in equation 6.49. C orrected the equation 6.54
Page 6.65: Included a list of symbol explanations below equation 6.67. $N$ oted below equation 6.13 that according to $M$ udan [84] u ${ }^{*}<1$ $\rightarrow u^{*}=1$. In equation 6.12 the scaled wind velocity should be raised to the power of -0.21 .
Page 6.87: In table 6.11, the values for LNG on water and land were interchanged.
Page 6.97-6.121: The calculation examples have been fully corrected for according to the above changes.
Appendix 6.1-7: Equation 6.14 has been updated for the typographical error !
Appendix 6.1-9: $\quad$ The Figure 6.A. 7 is for an elevated flame wrt. the target.
A ppendix 6.1-11: Below equation 6.A. 30 an equation for $B$ has been inserted.
Appendix 6.1-12: $\quad T$ he numerical values in T able 6.A. 2 have been corrected and updated.
Appendix 6.1-13: Figure 6.A. 11 has been updated wrt the values in Table 6.A.2.

## List of symbols Chapter 6

| a | Acceleration (6.76) | $\mathrm{m} / \mathrm{s}^{2}$ |
| :---: | :---: | :---: |
| a | C onstant in Appendix (6.A.15) | - |
| $\mathrm{a}^{\prime}$ | C onstant (6.16) | - |
| A | Surface area of the flame (6.2) | $\mathrm{m}^{2}$ |
| A | C onstant in Appendix (6.A.8) | - |
| $\mathrm{A}_{0}$ | Surface area of the leak (6.76) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\mathrm{p}}$ | Surface area of the pool (6.7) | $\mathrm{m}^{2}$ |
| At | C ross-sectional area of the tank (6.76) | $\mathrm{m}^{2}$ |
| $\mathrm{dA}_{1}$ | Infinitesimal surface area (6.A.13) | $\mathrm{m}^{2}$ |
| $\mathrm{dA}_{2}$ | Infinitesimal surface area (6.A.13) | $\mathrm{m}^{2}$ |
| b | F rustum lift-off height (6.49) | m |
| b | C onstant in Appendix (6.A.15) | - |
| b | In Appendix, the width of a flat radiator (6.A.28) | m |
| $\mathrm{b}^{\prime}$ | C onstant (6.16) | - |
| B | C onstant in Appendix (6.A.9) | - |
| $\mathrm{B}_{\mathrm{c}}$ | 'Spalding' convection mass transfer number (6.88) |  |
| C | V ariable $\tan \Theta / \cos \Theta$ (6.70) | - |
| $C^{\prime}$ | C onstant (6.16) | - |
| $\mathrm{C}_{1}$ | C onstant (6.6) | $\left(\mathrm{m}^{1.22 .5} \mathrm{~s}^{0.61}\right) / \mathrm{kg}^{0.61}$ |
| $\mathrm{C}_{2}$ | C onstant (6.10) | S |
| $\mathrm{C}_{3}$ | C onstant (6.19) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{C}_{4}$ | C onstant (6.19) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{C}_{5}$ | C onstant (6.19) | $\mathrm{m}^{-1}$ |
| $\mathrm{C}_{6}$ | C onstant (6.21) | $\left(\mathrm{N} / \mathrm{m}^{2}\right)^{-0.32}$ |
| $\mathrm{C}_{7}$ | C onstant (6.29) | $\left(\mathrm{N} / \mathrm{m}^{2}\right)^{0.09} \cdot \mathrm{~m}^{0.09}$ |
| $\mathrm{C}_{8}$ | C onstant (6.67) | $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{C}_{9}$ | C onstant (6.90) | $\mathrm{m} / \mathrm{kg}^{0.325}$ |
| $\mathrm{C}_{10}$ | C onstant (6.91) | s/kg ${ }^{0.26}$ |
| C | C onstant in Appendix (6.A.15) | - |
| $C^{\prime}$ | F actor (6.53) | - |
| $\mathrm{C}_{\mathrm{a}}$ | C onstant (6.42) | - |
| $\mathrm{C}_{\text {b }}$ | C onstant (6.42) | - |
| $\mathrm{C}_{\mathrm{c}}$ | C onstant (6.42) | - |
| $\mathrm{C}_{\mathrm{p}}$ | Specific heat capacity at constant pressure (6.9) | J/(kg•K) |
| $\mathrm{C}_{v}$ | Specific heat capacity at constant volume (6.32) | $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ |
| $\mathrm{C}_{0}$ | F low coefficient for fluids through a circular hole (6.75) | - |
| $\mathrm{d}^{\prime}$ | C onstant (6.17) | - |
| $\mathrm{d}_{\mathrm{h}}$ | D iameter of the hole of the release point (6.83) | m |
| $\mathrm{d}_{\mathrm{j}}$ | D iameter of the jet at the exit hole (6.41) | m |
| D | Pool diameter (6.6) | m |
| D | C onstant in Appendix (6.A.15) | - |
| D' | Actual elongated flame base diameter (6.18) | m |
| $\mathrm{D}_{\text {max }}$ | M aximum diameter of pool fire (6.78) | m |
| $\mathrm{D}_{5}$ | Effective hole diameter (6.39) | m |
| $\mathrm{D}_{\mathrm{w}}$ | The maximum pool dimension in the direction of the wind (6.18) | m |
| $e^{\prime}$ | C onstant (6.17) | - |
| E | C onstant in Appendix (6.A.15) | - |

$f \quad$ F raction of the volume of the pressure tank, filled with the flammable liquefied pressurised gas (6.89)
f' C onstant (6.17)
F C onstant in A ppendix (6.A.15)
$F_{h} \quad$ Geometrical view factor for the horizontal plane of the radiated object (6.A.18)
$F_{\text {max }} \quad M$ aximum geometrical view factor of the radiated object (6.A.18)
$F_{s} \quad$ F raction of the generated heat radiated from the flame surface (6.3)

the radiated object (6.A.18)
$F_{\text {view }} \quad G$ eometric view factor (6.4)
$\mathrm{Fr} \quad$ Froude number $U^{2} /(g \times D)$ (6.15)
$\mathrm{Fr}_{10} \quad$ Froude number for wind velocity at a height of 10 metres (6.68)
$\mathrm{g} \quad$ Gravitational acceleration 9.81 (6.14)
$\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{g}^{\mathbf{\prime}} \quad$ C onstant (6.18)
G $\quad$ C onstant in Appendix (6.A.17)
$h \quad H$ eat transfer coefficient (6.88)
h' $\quad$ C onstant (6.18)
$h_{i} \quad$ Initial height of the liquid above the release point (6.75)
m
$h_{r} \quad$ Ratio between the flame length $L$ (or $L_{b}$ or $L_{f}$ ) and the radius of the flame $R$ (6.A.6)
H $\quad$ C onstant in Appendix (6.A.17)
$H_{\text {bleve }} \quad H$ eight from the centre of the fire ball to the ground under the fire ball (6.22)
-
$i^{\prime} \quad$ C onstant (6.18)
I C onstant in Appendix (6.A.17)
$k \quad$ Absorption extinction coefficient of the flame (6.8)
$\begin{array}{ll}k & \text { Absorption extinction coefficie } \\ \mathrm{L} & \text { A verage flame height (6.6) }\end{array}$
$L_{1} \quad L$ ift-off height of the fire (6.A.20)
$L_{2} \quad$ Flame length (6.A.21)
$L_{b} \quad$ Flame length, flame tip to centre of exit plane (6.44)
$\mathrm{L}_{\text {b0 }} \quad$ Flame length, in still air (6.43) m
$\mathrm{L}_{\mathrm{f}} \quad$ Frustum (flame) length m
$m \quad M$ ass of the flammable material (6.89)
$m^{\prime} \quad M$ ass flow rate (6.39)
$m_{h}{ }^{\prime} \quad$ Burning rate at still weather conditions (6.5)
$m " \quad$ Burning flux at still weather conditions (6.6)
$\mathrm{m}^{\text {" }}$ wind $\quad$ Burning flux under windy weather conditions (6.10)
m
$m_{\infty}{ }^{\prime \prime} \quad$ see $m^{\prime \prime}$, for $D \rightarrow \infty$ (6.66)
$\mathrm{m}^{-1}$
m
kg
$M_{j} \quad M$ ach number of the expanding jet (6.35)
$n_{1} \quad N$ ormal vector on the receiving surface area (6.A. fig. 6) -
$\mathrm{n}_{2} \quad \mathrm{~N}$ ormal vector at a certain point on the radiating (6.A. fig. 6) surface area
$p_{c} \quad$ Vapour pressure of carbon-dioxide (6.26)
$\mathrm{N} / \mathrm{m}^{2}$
$p_{w} \quad$ Partial vapour pressure of water in air at a relative humidity of RH (6.25)
$\mathrm{N} / \mathrm{m}^{2}$
$p_{w}^{0} \quad$ Saturated vapour pressure of water in air (6.73) $\quad \mathrm{N} / \mathrm{m}^{2}$
$P_{\text {air }} \quad$ Atmospheric pressure (6.33)
$\mathrm{N} / \mathrm{m}^{2}$
$P_{c} \quad$ Static pressure at the hole exit plane (6.34) $\quad \mathrm{N} / \mathrm{m}^{2}$

| $\mathrm{P}_{\mathrm{c}}{ }^{*}$ | Reduced pressure of carbon-dioxide (6.25) | $\mathrm{N} / \mathrm{m}^{2}$ |
| :---: | :---: | :---: |
| $\mathrm{P}_{\text {init }}$ | Initial pressure (6.33) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\text {sv }}$ | V apour pressure of flammable material inside the vessel (6.21) | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{w}}{ }^{*}$ | Reduced vapour pressure of water (6.25) | $\mathrm{N} / \mathrm{m}^{2}$ |
| q" | H eat flux (6.4) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| $\mathrm{q}_{\text {rw }}{ }^{\prime \prime}$ | Radiant heat flux to the pool burning surface | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| Q' | C ombustion energy per second (6.2) | J/s |
| $\mathrm{r}_{\mathrm{fb}}$ | R adius of the fire ball (6.22) | m |
| R | Radius of the pool or flame (6.73) | m |
| $\mathrm{R}_{\mathrm{c}}$ | G as constant (6.32) | $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$ |
| R | L ength of the frustum (6.45) | m |
| $\mathrm{R}_{\text {max }}$ | M aximum radius of the pool fire (6.78) | m |
| $\mathrm{R}_{\text {w }}$ | R atio of wind speed to the jet speed (6.38) | - |
| Re | Reynolds number (6.15) | - |
| RH | Relative H umidity (6.72) | - |
| $\mathrm{Ri}\left(\mathrm{D}_{5}\right)$ | Richardson number based on $\mathrm{D}_{5}(6.52)$ | - |
| $\mathrm{Ri}\left(\mathrm{L}_{\mathrm{b} 0}\right)$ | Richardson number based on $L_{\text {b0 }}$ (6.45) |  |
| $\mathrm{S}_{\mathrm{p}}$ | Pool perimeter (6.7) | m |
| SEP | Surface emissive power (6.1) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| SEP Pact | Actual surface emissive power, SEP, which is the average radiation emittance (emissive power) of the flame surface (6.4) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| SEP ${ }_{\text {max }}$ | M aximum surface emissive power (6.3) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| SEP ${ }_{\text {soot }}$ | The surface emissive power of soot, which is about $20 \cdot 10^{3}(6.20)$ | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| SEP $\mathrm{P}_{\text {theor }}$ | T heoretical Surface Emissive Power (6.2) | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ |
| t | T ime (6.73) | s |
| $\mathrm{t}_{\text {max }}$ | T ime at which the pool (fire) reaches its maximum diameter (6.77) | S |
| $\mathrm{t}_{\text {rel }}$ | T otal release time (6.87) | S |
| $\mathrm{t}_{\text {tot }}$ | T otal duration of the fire (6.87) | S |
| $t_{D}$ | T ime at which a tank has been released | S |
| T | T emperature | K |
| Ta | Ambient temperature (6.1) | K |
| $\mathrm{T}_{\text {air }}$ | Air temperature (6.38) | K |
| Tb | T he liquid boiling temperature (6.9) | K |
| Tf | T emperature of the radiator surface of the flame (6.1) | K |
| T ${ }_{\text {j }}$ | T emperature of the gas in the jet (6.33) | K |
| T, | Ambient combustion temperature | K |
| Ts | Initial gas temperature (6.33) | K |
| $\mathrm{U}_{\mathrm{w}}$ | W ind velocity (6.10) | $\mathrm{m} / \mathrm{s}$ |
| $u^{*}$ | Scaled wind velocity (6.12) | - |
| $\mathrm{u}_{\mathrm{c}}$ | C haracteristic wind velocity (6.13) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{u}_{\mathrm{j}}$ | Jet velocity (6.36) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{v}_{0}$ | Initial outflow velocity (6.74) | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{v}_{\mathrm{f}}$ | D ischarge velocity of the liquid from a tank (6.73) | $\mathrm{m} / \mathrm{s}$ |
| V | T ank volume | $\mathrm{m}^{3}$ |
| $\mathrm{V}_{\text {rel }}$ | A mount of LPG which will be released in case of complete tank failure (6.89) | $\mathrm{m}^{3}$ |
| W | Stoichiometric mass fraction (6.30) | - |
| $\mathrm{W}_{1}$ | W idth of frustum base (6.54) | m |
| $\mathrm{W}_{2}$ | W idth of frustum tip (6.55) | m |

$W_{\text {air }} \quad$ M olecular weight air (6.38) $\quad \mathrm{kg} / \mathrm{mol}$
$\mathrm{W}_{\mathrm{g}} \quad \mathrm{M}$ olecular weight of gas (6.30) $\mathrm{kg} / \mathrm{mol}$
D istance from the surface area of the flame to the
object (6.30)
$x_{1} \quad$ The projection of the elongated centreline of an elevated flame and the flame length, or D istance between the centre of the flame and the object at a certain elevation in a plane (at that elevation) parallel to the ground (6.A.19)
m
$\mathrm{x}_{\text {bleve }} \quad \mathrm{D}$ istance measured over the ground from the projected centre of the fire ball on the ground under the fire ball, and the object (6.92)
m
$x_{r} \quad$ Ratio between the distance from the centre of the flame to radiated object $X$ and the radius of the flame R (6.A.5)
X D istance from the centre of the flame (fireball) to the radiated object (6.5)
m
$X^{\prime} \quad$ D istance from the centre of the bottom plane of a lifted-off flame and the object (6.61)
m
$X_{m} \quad$ The projected distance from the elongated centreline to the ground of an elevated flame and the flame length (A.6. fig. 7)
m
Y $\quad$ Variable (6.42)
z Elevation of the flame base in Appendix (6.A.19)
$\alpha \quad$ Angle between hole axis and flame axis (6.46)
$\alpha_{c} \quad$ Absorption factor for carbon dioxide (6.24)
$\alpha_{w} \quad$ Absorption for water vapour (6.24)
$\beta \quad$ M ean-beam-length corrector (6.8)
$\beta_{1} \quad$ Angle between the normal vector of the receiving surface area and a line directed from the receiving area to a certain point on the radiating surface area (6.A.13) rad
$\beta_{2} \quad$ Angle between the normal vector of the radiating surface area at a certain point and a line directed from the radiating surface area to the receiving surface area (6.A.13)
rad
$\beta^{\prime} \quad$ Inverse of the non-dimensional time
$\gamma \quad$ Ratio of specific heats, Poisson constant (6.32)
$\delta \quad$ Pool thickness (6.65)
$\Delta \mathrm{H} \quad \mathrm{N}$ et available heat (6.94)
-
$\Delta H_{c} \quad$ C ombustion heat of the flammable material at its boiling point (6.5)
-
m
。
-
--
$\Delta \mathrm{H}_{v} \quad \begin{aligned} & \text { Vaporisation heat of the flammable material at its } \\ & \text { boiling point (6.9) }\end{aligned}$
$\begin{array}{ll}\Delta \mathrm{H}_{v} \quad \text { Vaporisation heat of the flammable material at its } \\ & \text { boiling point (6.9) }\end{array}$
$\begin{array}{ll}\Delta \mathrm{H}_{v} \quad \text { Vaporisation heat of the flammable material at its } \\ & \text { boiling point (6.9) }\end{array}$
$\Delta \mathrm{T} \quad \mathrm{T}$ emperature difference between flame and ambient temperature

K

Greek symbols
$\varepsilon \quad$ Emittance factor (emissivity) (6.1)
$\varepsilon_{\mathrm{w}} \quad$ Emission factor for the water reduced vapour pressure (6.28)

| $\varepsilon_{\text {c }}$ | Emission factor for the reduced carbondioxide pressure (6.27) | - |
| :---: | :---: | :---: |
| 5 | The fraction of the surface that is covered by soot (6.20) | - |
| $\Theta$ | T ilt angle of the flame, which is the angle between the centre line of the flame and the normal vector perpendiculum to the horizontal plane (6.15) | - |
| $\theta$ | Orientation angle in Appendix (6.A.1) | rad |
| $\Theta^{\prime}$ | Angle between the centreline of a lifted-off flame and the plane between the centre of the bottom of the lifted-off flame and the object (6.62) | 。 |
| $\Theta_{j}$ | Angle between hole axis and the horizontal in the vertical plane (6.44) | - |
| $\Theta_{\mathrm{jv}}$ | Angle between hole axis and the horizontal in the direction of the wind (6.64) | - |
| $v$ | K inematic viscosity of air (6.69) | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\rho$ | D ensity of liquid (6.73) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\text {air }}$ | D ensity of air (6.11) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{j}$ | D ensity of gas in the jet (6.40) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\text {lpg }}$ | D ensity of Ipg (6.89) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{\text {mat }}$ | D ensity of the flammable material in the pressure tank (6.89) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{v}$ | V apour density flammable material (6.15) | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\sigma$ | C onstant of Stefan-Boltzmann, which is $5.6703 \cdot 10^{-8}(6.1)$ | $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}^{4}\right)$ |
| $\tau$ | D imensionless time (6.77) | - |
| $\tau_{\text {a }}$ | Atmospheric transmissivity (6.4) | - |
| $\tau_{\text {D }}$ | D imensionless time at which a tank has been released (6.83) | - |
| $\tau_{i}$ | D imensionless time at the moment of ignition (6.82) | - |
| $\tau_{\text {max }}$ | D imensionless time at a maximum pool diameter (6.84) | - |
| $\Phi$ | N ormalised pool area (6.79) | - |
| $\phi$ | H alf of the view angle, in Appendix (6.A.1) | rad |
| $\Phi_{i}$ | N ormalised pool area at ignition (6.81) | - |
| $\Phi_{\text {max }}$ | M aximum normalised pool area at $\tau_{\text {max }}(6.82)$ | - |
| $\Omega$ | Angle between the wind direction and normal vector perpendicular to the pipeline in the horizontal plane (6.47) | - |

$N$ ote: the numbers between brackets refer to equations.

## Glossary of terms

| Absorptivity | The ratio of the radiant energy absorbed by any <br> surface or substance, to that absorbed under the <br> same conditions by a black body. |
| :--- | :--- |
| BLEVE |  | | Boiling Liquid Expanding Vapour Explosion; |
| :--- |
| results from the sudden failure of a vessel |
| containing a pressurized liquid at a temperature |
| well above its normal (atmospheric) boiling |
| point. |$\quad$| The linear rate of evaporation of material from a |
| :--- |
| liquid pool during a fire, or the mass rate of |
| combustion of a gas or solid. The context in |
| which the term is used should be specified. |

Fire storm

Fire temperature | An extremely large area fire resulting in a |
| :--- |
| tremendous inrush of air which may reach |
| hurricane force. |

| A term best avoided wherever possible. Fire |
| :--- |
| temperature only has a conventional meaning for |
| an idealised, isotropic, isothermal, hot gas and |
| soot mixture that is optically thick at all |
| wavelengths. In this report the term is used only |
| in this sense as far as possible. Other uses are |
| qualified. |

Flame front
The boundary between the burning and unburnt

Integral model

Jet flame

LFL (LEL)

M ass burning rate

M ulti-component rate

Optical thickness

Physical effects

Physical effects models

An integral model is a mathematical model formulated in exactly the same way as a field model. It solves equations that describe the conservation of mass, momentum and scalar quantities within a flow, and contains submodels of the turbulence structure and combustion and heat transfer processes.
In integral models however, the cross-stream variation of the flow and scalar variables is assumed to be self similar so that the partial differential equations used in the field models can be reduced to form ordinary differential equations. Entrainment laws are required to describe how air gets into the flame. These models demand far less computer time than field models.

The combustion of material emerging with significant momentum from an orifice.

The Lower Flammability Limit (Lower Explosion Limit) is the concentration in air of a flammable material below which combustion will not propagate.

The mass burning rate of a pool fire is the mass of fuel supplied to the flame per unit time, per unit area of the pool.

For the purposes of this report, a multicomponent fuel has been made of a number of different hydrocarbons which have different boiling points. Thus, when heated, a multicomponent fuel can fractionate and the vapour driven off can have a different composition of hydrocarbons.

A gas/soot layer is optically thick when any further increase in the layer thickness does not produce an increase in emitted radiation.

Physical phenomena that occur during or after a release of hazardous chemicals.

M odels that provide (quantitative) information about physical effects, mostly in terms of heat fluxes (thermal radiation), blast due to explosions, and environmental (atmospheric) concentrations.

| Pool fire | The combustion of material evaporating from a <br> layer of liquid at the base of the fire. |
| :--- | :--- |
| Pressurised liquefied gas | Gas that has been compressed to a pressure <br> equal to saturated vapour pressure at storage <br> temperature, so that the larger part has <br> condensed to the liquid state. |
| Semi-empirical model | A semi-empirical model is a mathematical model <br> that uses as its framework simple physical <br> arguments and empirical correlations fitted to <br> data from experiments which are very similar, in <br> terms of scale, fuel type, etc., to the situation <br> which is to be modelled. |
| SEPThe SEP or Surface Emissive Power of a flame is <br> the heat radiated outwards per unit surface area <br> of the flame. There is considerable confusion in <br> the literature about the meaning of these <br> empirical parameters characterising flame |  |
| radiation. |  |
| Surface flux |  |
| The radiation power emanating from a flame or |  |

C hapter 6 of the ' $Y$ ellow B ook'

View factor

The view factor quantifies the geometric relationship between the emitting and receiving surfaces; it describes how much of the field of view of the receiving surface is filled by the flame. The view factor is equal to unity if the flame completely fills the field of view of the receiving surface, otherwise it is a fraction of unity. The view factor depends on the dimensions, shape of the flame, the distance and the orientation of the receiving object.

N ote: $\quad$ Some definitions have been taken from Jones [1992], AIC hE [1989] and W ebster [1993].

## Table of contents Chapter 6

Modifications to Chapter 6: Heat Flux from Fires. ..... 3
List of symbols Chapter 6 ..... 5
Glossary of terms ..... 11
6 Heat flux from fires. ..... 19
6.1 Introduction ..... 19
6.2 Phenomenon of heat transfer from a fire. ..... 21
6.2.1 Introduction ..... 21
6.2.2 Surface emissive power ..... 21
6.2.3 H eat flux at a distance from the fire. ..... 22
6.3 General overview of existing models for heat radiation and heat transfer ..... 23
6.3.1 Introduction ..... 23
6.3.2 Jet flames ..... 25
6.3.3 Impinging fires ..... 27
6.3.4 Pool fires on land. ..... 28
6.3.5 Pool fires on water ..... 37
6.3.6 F ire balls ..... 38
6.4 Selection of models ..... 41
6.4.1 Introduction ..... 41
6.4.2 Jet flames ..... 41
6.4.3 H eat impact of impinging fires ..... 41
6.4.4 Pool fires on land. ..... 42
6.4.5 Pool fires on water ..... 43
6.4.6 Fire balls ..... 43
6.5 D escription of selected models ..... 45
6.5.1 Introduction ..... 45
6.5.2 Surface emissive power ..... 45
6.5.3 Jet flames ..... 50
6.5.4 Pool fires on land. ..... 61
6.5.5 Pool fire on land (unconfined) ..... 74
6.5.6 Pool fires on water ..... 84
6.5.7 Fire balls ..... 88
6.6 Application of selected models: calculation example ..... 97
6.6.1 Introduction ..... 97
6.6.2 Jet flames ..... 97
6.6.3 Pool fires on land (confined) ..... 105
6.6.4 Pool fires on land (unconfined) ..... 110
6.6.5 F ire balls ..... 118
6.7 Interface with the other models. ..... 123
6.7.1 Introduction ..... 123
6.7.2 Jet flames ..... 123
6.7.3 Pool fires on land. ..... 123
6.7.4 Pool fires on water ..... 123
6.7.5 Fire balls ..... 123
6.8 Discussion. ..... 125
6.8.1 Introduction ..... 125
6.8.2 Jet flames ..... 125
6.8.3 Pool fires on land ..... 125
6.8.4 Pool fires on water ..... 126
6.8.5 Fire balls ..... 126
6.9 Literature ..... 127
A ppendix 6.1 View factors for some radiation configurations

## 6 Heat flux from fires

### 6.1 Introduction

If flammable liquids and gases are released, there is the possibility of a fire after ignition. H eat transfer from a fire causes a heat flux with the potential to cause damage to objects in the surrounding area.
This heat flux can be estimated with the formulae presented in this chapter.
B efore the heat flux can be determined it is necessary to estimate the released amount. F or gas and liquid the release rate can be calculated with models from chapter 2. F or liquids the release duration is an important parameter for the pool size. C alculations to determine the pool size can be found in chapter 3.

In chapter 6 the following types of fire will be discussed:

- jet flames
- impinging fires
- pool fires on land
- pool fires on water
- fire balls

Except for impinging fires, heat radiation is the most important phenomenon in heat transfer. In case of an impinging fire also heat convection and heat conduction through the vessel wall have to be taken into account.

The heat radiated to objects in the surroundings of a fire is determined by the dimensions and shape of the surface area of the fire, the heat generated due to combustion, the fraction of heat which is emitted as heat radiation, produced soot which screens the luminous parts of the flame, water vapour and carbon-dioxyde in the air which absorbs the radiation, and the position of the object.

Chapter 6 has been structured in such a way that in chapter 6.2 first a general overview of all important physical phenomena with respect to heat radiation has been given.
In chapter 6.3 an overview of all existing and available models has been presented, based on literature search.
Because much literature has been published about models for each type of fire, a selection has been made, which is presented in chapter 6.4.
In chapter 6.5 the selected models are described. In some cases the whole recipe had to be followed to make clear what is in the model. Where possible a calculation schedule is given.
In chapter 6.6 calculation examples are given for the selected models. The calculations have been made in steps, in order to show which formulae have to be used with the correct figures and dimensions.
In chapter 6.7 the interface between models, used in chapter 6 , and models in the other chapters of the Y ellow Book, are given.
U Itimately the limitations of the selected models, described in Chapter 6, are discussed in chapter 6.8. Literature references can be found in chapter 6.9.
The Appendix gives formulae to calculate the view factors for all types of fires. Because the formulae for the cylinder and the flat plate are rather complicated, calculation results are presented in tables which can be used if the shape of the model has been determined.

### 6.2 Phenomenon of heat transfer from a fire

### 6.2.1 Introduction

The flames of a hydrocarbon fire consist of high-temperature combustion products with a radiation temperature between 800 and 1600 K . Flame temperature and radiation spectrum of the flame are important for the determination of the heat flux. Because of the temperature difference between the hot gases of the flame and objects in the surroundings, heat will be transferred.
In general the combustion energy in the flames can be transferred by heat radiation, heat convection and heat conduction.
At some metres distance from the fire, heat radiation is predominant in heat transfer. If objects are engulfed by a fire, heat convection and heat conduction have to be taken into account.
H eat conduction is only a relevant heat transport phenomenon in the material itself.

### 6.2.2 Surface emissive power

The Surface Emissive Power is the heat flux due to heat radiation at the surface area of the flame in $\mathrm{W} / \mathrm{m}^{2}$.
In principle the heat rate from a radiating surface of a flame can be calculated with the Stefan-B olzmann equation, which, for a so-called grey radiator (with $0<\varepsilon<1$ ) is:

$$
\begin{equation*}
\text { SEP }=\varepsilon \times \sigma \times\left(\mathrm{T}_{\mathrm{f}}^{4}-\mathrm{T}_{\mathrm{a}}^{4}\right) \tag{6.1}
\end{equation*}
$$

in which:
$S E P=$ Surface Emissive Power, in J/( $\left.\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\varepsilon=$ Emittance factor (emissivity)
$\sigma=$ C onstant of Stefan-Boltzmann, which is $5.6703 \cdot 10^{-8} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~T}^{4}\right)$
$\mathrm{T}_{\mathrm{f}}=\mathrm{T}$ emperature of the radiator surface of the flame, in K
$\mathrm{T}_{\mathrm{a}}=$ Ambient temperature, in K
If $\varepsilon=1$, the radiator is called a 'black radiator'. T he SEP calculated is the theoretically maximum heat flux which can be achieved. H owever, the flame temperature is difficult to determine because the flame temperature over the flame surface is not homogeneous and the flame in general is not a black radiator. In practice, the StefanBolzmann equation is of limited use for calculation of the surface emissive power of flames.
Therefore the so-called 'solid flame' approach is used, which means that part of the combustion heat is radiated through the visible flame surface area of the flame. However, flames do not really emit radiation from their surface area only. The emitted heat flux varies with the distance over which emission occurs. T hus the use of SE Ps is a two-dimensional simplification of a very complex three-dimensional heat radiation phenomenon [Cowley, 1991].
The heat which passes through the visible 'surface' of the flame comes from the gaseous combustion products, hot fuel vapour and incandescent soot deep within the flame.
$S E P_{\text {theor }}$, can be estimated from the combustion energy generated per second, which can be determined from the combustion burning-rate, the heat of combustion of the material and the surface area of the flame.

$$
\begin{equation*}
\mathrm{SEP}_{\text {theor }}=\mathrm{Q}^{\prime} / \mathrm{A} \quad \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \tag{6.2}
\end{equation*}
$$

in which:
SEP $\mathrm{t}_{\text {theor }}=\mathrm{T}$ heoretical Surface Emissive Power, in J/( $\left.\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
Q' $=$ Combustion energy per second, in J/s
A $=$ Surface area of the flame, in $\mathrm{m}^{2}$

SE $P_{\text {max }}$ can be calculated from $S E P_{\text {theor }}$ and the fraction of the generated heat radiated from the flame surface. H ereby it is necessary to select a value of the radiation fraction $F_{s}$ (some values of $F_{s}$ are given in table 6.6 and in formulae (6.21) and (6.59)):

$$
\begin{equation*}
S E P_{\max }=F_{\mathrm{s}} \times S E P_{\text {theor }} \quad \mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \tag{6.3}
\end{equation*}
$$

in which:
$S E P_{\max }=T$ he maximum Surface Emissive Power from a flame without soot production, in J/( $\mathrm{m}^{2} \cdot \mathrm{~s}$ )
$\mathrm{F}_{\mathrm{s}} \quad=\mathrm{Fraction}$ of the combustion energy radiated from the flame surface

The $F_{s}$ factor, in formula (6.3), gives the fraction of the generated heat in the fire which is emitted by the flame surface in the form of heat radiation. T his fraction differs per type of fire, such as jet flame, pool fire and fire ball, but also depends on the type of combustible material.
Black smoke or soot produced in the flame can absorb a large part of the radiation. So the actual value of SEP $P_{\text {act }}$ has to be introduced which can be calculated from $S E P_{\text {max }}$ and $S E P_{\text {soot }}$.

### 6.2.3 Heat flux at a distance from the fire

The heat flux $q^{\prime \prime}$ at a certain distance from the fire, which is experienced by the receiver per unit area, can be calculated by:

$$
\mathrm{q}^{\prime \prime}=\mathrm{SEP}_{\mathrm{act}} \times \mathrm{F}_{\text {view }} \times \tau_{\mathrm{a}} \quad \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)
$$

in which:
$q^{\prime \prime} \quad=H$ eat flux at a certain distance, in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
SEP ${ }_{\text {act }}=$ Actual surface emissive power, in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\mathrm{F}_{\text {view }}=$ View factor
$\tau_{\mathrm{a}} \quad=$ Atmospheric transmissivity

Formula (6.4) shows the relationship between the heat flux and the surface emissive power, view factor and the heat transmissivity, which are discussed in chapter 6.5.
For an impinging fire calculation the heat flux on the surface subjected to the fire is complicated, because it includes terms such as heat conduction in the vessel wall and heat transfer inside and outside the vessel.

### 6.3 General overview of existing models for heat radiation and heat transfer

### 6.3.1 Introduction

The objective of this section is to give an overview of all existing models found in literature about jet flames, pool fires on land, pool fires on water, impinging jets and fire balls. In some occasions only the results of experiments are given without analytical correlations in order to check the order of magnitude of the calculated results, because in some cases the calculations are inaccurate.
In this section the principles of the models will be explained. If more models exist to describe the same phenomenon, similarities and differences will be explained.

The mathematical tools for predicting the heat flux at a distance, associated with jet flames, in subsections 6.3.2, and pool fires on land, in subsection 6.3.4, can be divided broadly into three classes:

1. Semi-empirical models
2. Field models
3. Integral models

## 1. Semi-empirical

Semi-empirical modelling is a relatively simple technique for providing models for predicting the heat flux at a distance, associated with jet flames and pool fires. Because of their simplicity, semi-empirical models are usually designed only to predict quantities such as flame shape and radiative, rather than to provide a detailed description of the fire itself.
M ost semi-empirical modelling of jet flames and pool fires has focused on the prediction of flame shapes and heat fluxes to external objects. T here are two types of models:

1. Point source models, which do not attempt any shape prediction and assume that the source of the heat radiation is a point;
2. Surface emitter models, which assume that heat is radiated from the surface of a solid object (usually tilted cone or cylinder).

By their nature, semi-empirical models depend heavily on experimental data. C orrelations may describe the gross features of the fire. F or example, to represent the location of a fire in space, correlations for the flame length and the trajectory of the centre line of the fire may be derived. Alternatively the fire may be represented by coupling the fire geometry obtained from such correlations with secondary correlations for surface emissive power or the fraction of combustion energy input to the flame that is emitted as radiation.

Semi-empirical models are ideally suitable for routine hazard assessment purposes because they are mathematically simple, and hence easily understood. A prerequisite of any semi-empirical model is that it provides reliable prediction. M oreover it may be important that models are readily embodied in simple computer programs with
short run times. Thus, they can only be applied to the specific type of fire examined in the experiments which form the basis of the model. Also, although dimensional analysis may have been used in deriving the correlations within the model, the range over which those correlations apply will be limited (e.g. in terms of flammable material, mass flow rate, etc.).

## 2. Field models

Field models are based on solutions of the time-averaged N avier-Stokes- equations of fluid flow. These are equations that describe, in partial differential form, the conservation of mass, momentum and scalar quantities in flowing fluid. In general most field models are good at predicting fluid flow when no combustion is involved. Combustion problems are much more difficult to model. Additional sub-models must be included to describe the important physical and chemical processes which occur in such flows. Field models are mathematically complex, embodied in large computer programs and have significant run times on large computer systems.

## 3. Integral models

Integral models are a compromise between semi-empirical models and field models. The models that incorporate a more rigorous description of the physics permit them to be used over a wider range of circumstances than semi-empirical models. Integral models are formulated mathematically in the same way as field models. They solve equations that describe the conservation of mass, momentum and scalar quantities within a flow, and can in principle contain sub-models of the turbulence structure and combustion and heat transfer process. These equations are, expressed in a simplified form, namely in integral models, such that their solution is demanding far less computer time than for field models.

In the integral approach, the partial differential equations, used in the field models, can be integrated (hence the name) and reduced to form ordinary differential equations with the downstream coordinate being the independent variable. T herefore, in formulating such a model it is essential to identify the flow properties which are self-similar and to choose an appropriate cross-stream profile to represent them.

Some of the models require advanced computer programs for the calculations. It is not the intention to describe these models. Only the general approach, if possible, will be touched. These models will be mentioned just to inform the reader.
Although the overview of types of models has to be as complete as possible in this chapter, the semi-emperical models suit the purpose of the Y ellow Book best. Therefore most of the attention will be given to the semi-empirical models.

For pool fires on land and water a lot of experimental data is available. H owever, in some cases models have not been developed. M ore information can be found in chapter 6.5.

### 6.3.2 Jet flames

### 6.3.2.1 Introduction

Jet flames can fully develop in an unconfined environment. At first, the influence of wind is disregarded to estimate its shape in idealised conditions. The flame shape is usually defined as the envelope of the visible flame.
The characteristic flame shapes can be determined by the jet length and diameter. If there is a curvature in the flame, calculation of the heat flux at a certain distance has to be done numerically.
When jet flames can be approximated by a cone or a cylinder shape, the view factor can be determined analytically.

In the past the turbulent free jet was mentioned as a valid model to estimate the dimensions of a jet flame by using the lean-limit-approach of Brzustowski, which means that the contours of the flame are similar to the contours of the lower explosion limit. The turbulent free jet is a very simple model which does not take into account lift-off of a flame, the influence of the wind and the effect of the increasing temperature due to the heat of combustion. Furthermore no description was given how the model should be used to estimate the view factor.

### 6.3.2.2 Semi-empirical models for jet flames

The most important consideration when assessing the relevance and applicability of any such model, is the range of the experimental data used in its derivation.

There are three types of models which can be distinguished:

1. Point source models, which do not attempt any shape prediction and assume that the source of the heat radiation is a point;

The only single point source model identified was the API-model which was originally developed for designing vertical flare stacks producing subsonic flares.
2. M ultiple point source models, which attempt to model the effect of flame shape on the radiated heat flux by distributing radiating point sources along a modelled flame centre line trajectory.

Some multiple point source models attempt to take into account the flame geometry by employing multiple radiation sources, for example, a number of points along a predicted flame axis. Some of the models assume a number of equidistant point sources along the flame axis. In the model it is also assumed that each of the points represent an equal part of the total radiation.
3. Surface emitter models, which assume that heat is radiated from the surface of a solid object (usually a tilted frustum of a cone or a cylinder) modelling the flame.

All the surface emitter models with the conical frustum flame shape are based on C hamberlain [1987], explained in subsection 6.5.2.

A list of semi-empirical models from C owley [1991], has been shown in table 6.1.

Table 6.1 Semi-emperical models of Jet Flames

| Model name | Organisation | Type |
| :--- | :--- | :--- |
| API 521 | American Petroleum Institute | Single Point Source |
| WHAZAN | Technica | Multiple Point Source |
| FLARESIM | Cremer \& Warner | Multiple Point Source <br> Multiple Point Source |
| THORIN | British Gas Midland Research <br> Station | Multiple Point Source |
| FLARE | Technica | Conical frustum |
| TORCH | AEA Technology SRD <br> W.S. Atkins Engineering <br> Sciences Ltd | Conical frustum |
| MAJESTIC SHELF2 <br> PIPEFIRE MAJ3D | HSE Major Hazard Assessment <br> Unit, Bootle | Conical frustum |

### 6.3.2.3 Field models for jet flames

The following field models are available: Jasmin, H arwell-Flow3D, K ameleon Fire [C owley, 1991]. F urthermore there are research organisations which have specialised models. Field models consist of several sub-models such as:

- Turbulence models which produce realistic flow fields in the geometry being considered. Standard $k-\varepsilon$ turbulence models have been shown to predict flow field incorrectly when the flow has significant swirl.
- Combustion of gaseous species models, based on the instantaneous chemical properties, and which are capable of predicting the concentration of partial products of combustion such as CO and have the facility to test the effect of turbulent fluctuations on the reactions.
- Soot production and oxidation models, based on instantaneous species concentrations derived from the gaseous combustion model, hence the requirement to predict partial products of combustion such as OH , which plays a major role in soot oxidation. Since the timescales of soot reactions are much longer than the timescale of gas reactions, the effect of residence time should be included in the soot model. Finally, the effects of turbulent fluctuations should be tested.
- Radiative heat transfer models, capable of handling non-isothermal, nonhomogeneous species distributions, reabsorption of radiation within the flame and the effect of turbulent fluctuations which are tested.

The requirements for these models are:

- The boundary conditions on surfaces and openings should be defined for all the variables.
- Boundary conditions, such as pressure conditions, at openings should not produce unphysical behaviour in the flow variables.
- In most combustion problems, it is necessary to extend the computational grid well outside the area of interest because of ventilation flows and flame extensions.
- Numerical methods should be tested for convergence of computational solutions and numerical accuracy.


### 6.3.2.4 Integral models

Earlier integral models ignore the unmixedness of turbulent jet diffusion flames, [C owley, 1991]. At a given axial position both the flammable material and the air can coexist at the same time in separate turbulent eddies without reacting until they are mixed together. The key sub-models in jet fire integral models are similar to the sub-models for field models of jet fires.
Integral models of jet fires from C owley [1991] are: U PM FIR, T ORCIA, T HRAIN and C ook's model.
Of the integral models only Cook's model has been validated against large scale flames. However, even Cook's integral model does not have its sub-models' validation against data from large-scale experiments because no such data exists.

### 6.3.3 Impinging fires

### 6.3.3.1 Introduction

The past 5 to 10 years much attention has been paid to heat impact of impinging flames. T wo types of impinging jet flames are recognised in literature, viz. the situation in which the object does not perturb the flame, and the situation in which the object causes a strong distortion of the flame.

In the literature an overview of appraised work on jet flame impingement up to 1986 could be found. M uch of the work has been conducted on laboratory flames, burners and furnaces.

C owley (1991) states that soundly based information on heat transfer from large jet fires to engulf objects is lacking. Whilst theoretical models are now beginning to address these problems, currently the only reliable method for obtaining impingement heat flux is direct measurement in flames of adequate size.

### 6.3.3.2 Fire engulfment of tanks

In the publications Ramskill [1988] and Ramskill [1989] a description of the 'E ngulf-II' is given. In Ramskill [1989] the description was detailed containing all the mathematical formulae. The models described show that differential equations have to be solved simultaneously. In the EN GU LF -code a fourth order Runge-K utta algorithm is used to calculate the wall temperatures and the bulk vapour and liquid temperatures.
The present code 'E ngulf-II', can model either total or partial fire engulfment of a LPG -tank, including jet flame impingement. O ther features available within the code are the treatment of safety relief vent valves, bulk boiling of liquid contents, external tank wall thermal insulation by water spray cooling, tank failure prediction and the modelling of a gas or petrol filled tank. According to Ramskill (1988) the code predictions have to be in agreement with available experimental data.
N o field tests were performed but the basics of the models presented are useful.

Computational Fluid Dynamics (CFD) field modelling approaches are particularly under development. It is possible that this method is capable of predicting a wide range of impingement conditions. CFD is a sophisticated and powerful technique in which the basic physics and chemistry of a flowing fluid can be solved in space and time. H owever, there are a large number of unknowns that can only be solved with the aid of practical data. Run times of these models are in the order of hours. C FD methods must be regarded as useful adjuncts to the experimental work.

### 6.3.4 Pool fires on land

### 6.3.4.1 Introduction

A pool fire can be defined as a turbulent diffusion fire burning above a horizontal pool vaporising flammable material under conditions where the flammable material has zero or very low initial momentum, C owley [1991].

A key feature of these fires is that there is a degree of feedback between the fire and the flammable material. T o a greater or lesser extent, there is a heat transfer back from the fire to the pool that influences or even controls the rate of evaporation and hence the fire size and other characteristics.
The pool with flammable material is not necessarily static. It may be spreading or contracting. Additional flammable material could be coming from a leak. Depletion of the local flammable material supply can occur via drainage or overflow to other areas - perhaps giving tide to running liquid fires.
The most important parameters for a burning pool which determine the flame shape are the flame length, flame tilt and the flame drag. T he aspect of influence of the wind
on the flame shape and burning rate can be considered as an addition to the previous edition of the Y ellow Book and will be discussed in this section.

### 6.3.4.2 Semi-empirical models for pool fires

## Point source model

In the point source model it is assumed that the heat radiation of the flame is radiated from a point which equally disperses in radial direction from the emission point as a sphere.
The heat flux $q^{\prime \prime}$ versus the distance from the emission point decreases with the inverse square of the distance.

$$
\begin{equation*}
q^{\prime \prime}=F_{s} \times m_{h}^{\prime} \times \Delta H_{d}\left(4 \times \pi \times X^{2}\right)=F_{s} \times m_{h}^{\prime} \times \frac{\Delta H_{c}}{4 \times \pi \times X^{2}} \quad\left(J /\left(m^{2} \cdot s\right)\right) \tag{6.5}
\end{equation*}
$$

in which:
$q^{\prime \prime}=H$ eat flux, in J/(m2.s)
$\mathrm{F}_{\mathrm{s}}=\mathrm{Fraction}$ of the combustion heat radiated from the flame surface
$m_{h}{ }^{\prime}=$ Burning rate, in kg/s
$\Delta H_{c}=N$ et heat of combustion at the boiling point of the flammable material, in J/kg
$X=T$ he distance from the source to the receiver, in $m$

These models can be accurate for distances greater than 5 pool diameters from the centre of the flame. The key parameters which affect the prediction from the point source models are the location of the assumed point source, whether maximum fluxes or fluxes to an oriented receiving surface are required, and the fraction of combustion energy released as radiation.
The source can be located at the geometrical centre of the flame, which is determined by empirical correlations for the flame length and tilt, or it can be located at the centre of the pool.

In the commercially available package WHAZAN another point source model has been used, derived from formulae from Y ellow Book [1992] and T homas [1963].

$$
\begin{equation*}
\left.q^{\prime \prime}=\frac{\left(\pi \times D \times L+\pi \times \frac{D^{2}}{4}\right) \times m^{\prime \prime} \times F_{s} \times \Delta H_{c}}{\left(c_{1} \times m^{\prime \prime} 0.61\right.}+1\right) \times\left(4 \times \pi \times \mathrm{X}^{2}\right) \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{6.6}
\end{equation*}
$$

in which:
D $\quad=$ Pool diameter, in $m$
$\mathrm{L}=$ Average flame height, in m
$\mathrm{m}^{\prime \prime}=$ Burning flux at still weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\Delta H_{c}=T$ he heat of combustion of the flammable material at its boiling point, in J/kg
$\mathrm{F}_{\mathrm{s}}=\mathrm{F}$ raction of the generated heat radiated from the flame surface
$X=D$ istance from the point source, in $m$
$\mathrm{c}_{1}=72\left(\mathrm{~m}^{1.22} \cdot \mathrm{~s}^{0.61}\right) / \mathrm{kg}^{0.61}$

## Surface emitter models

In principle these models can give an accurate predicted radiation perpendicular to the flame length, so formula (6.4) can be used; see also subsections 6.5.3 and 6.6.2.

The atmospheric absorption can be calculated as described in chapter 6.5; the view factor can be calculated with the formulae in the Appendix for a cylinder or tilted cylinder and the average surface emissive power assigned to a given flame shape. The surface emissive power is constant over the flame surface or has two separate values one for strongly emitting clear flames at the base of the flames and one for dark sooty flames above. It can also be given by statistical description of the bright flame and the dark sooty areas.

### 6.3.4.3 Field models for pool fires

Field models are mathematically complex, embodied in flare computer programs and have significant run times on large computer systems.

### 6.3.4.4 Integral model for pool fires

At present there are no integral models for pool fires which could be used for the prediction of large-scale pool fire hazard consequences.

### 6.3.4.5 Dimensions of the pool fire

Pool diameter

The equivalent pool diameter of a confined pool can be estimated from the estimated surface area and the pool perimeter, with:

$$
\begin{equation*}
D=4 \times A_{p} / S_{p} \tag{m}
\end{equation*}
$$

in which:
$A_{p}=$ Surface area of the pool, in $\mathrm{m}^{2}$
$S_{p}=$ Pool perimeter, in m .
In practice it is rather difficult to calculate the pool perimeter with an irregular shape. Therefore the pool diameter can be better determined with an equivalent circular pool or, if the pool is rather square, with an equivalent square. T his means that the dimensions of the pool are determined using the surface area of the original pool.

The only literature which could be found about a fire of an unconfined pool is described in Cline [1983].

This model describes a pool fire on land which was fed from a storage tank. A maximum pool diameter was ultimately obtained if the burning rate and the spill rate from the tank are equal.
In this model the thickness of the pool has to be taken arbitrarily.
$B$ urning rate

In Babrauskas [1983] equations are given for the simulation of the burning rate in large pool fires, based on large scale experiments.
F or most flammable liquids, reliable measurements exist only for m " as a function of $D$ and not for $k, T_{f}, k$ or $\beta$ separately. In table 6.5 values of $k \times \beta$ are listed. The data can be presented in the mathematical function as:

$$
\begin{equation*}
m^{\prime \prime}=f\left(m_{\infty}{ }^{\prime \prime}, k, \beta, D\right) \tag{6.8}
\end{equation*}
$$

$$
\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

in which:
$m_{\infty}{ }^{\prime \prime}=$ Burning flux, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ and for large pool diameter
$\mathrm{k}=$ Absorption extinction coefficient of the flame, in $\mathrm{m}^{-1}$
$\beta=M$ ean-beam-length corrector
D $=$ Pool diameter, in m

If the mass burning rate is not tabulated, the best correlation to use for predicting the mass burning rate is that of Burgess, Hertzberg [1974]; applicable for single component liquids under ambient conditions. It shows the burning rate as function of:

$$
\begin{equation*}
m^{\prime \prime}=f\left(\Delta H_{c}, \Delta H_{v}, C_{p}, T_{b}, T_{a}\right) \tag{6.9}
\end{equation*}
$$

$$
\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

in which:
$\Delta H_{c}=T$ he heat of combustion of the flammable material at its boiling point, in J/kg
$\Delta H_{v}=T$ he heat of vaporisation of the flammable material at its boiling point, in J/kg
$\mathrm{C}_{\mathrm{p}}=\mathrm{T}$ he heat capacity, in J/(kg•K )
$\mathrm{T}_{\mathrm{a}}=$ Ambient temperature, in K
$\mathrm{T}_{\mathrm{b}}=\mathrm{T}$ he liquid boiling temperature, in K

The influence of wind on the burning rate has been demonstrated experimentally. For, e.g., a burning hexane pool a doubling of the burning rate was observed. B abrauskas [1983] has derived the following relationship between the burning rate of a pool and the wind velocity:

$$
\begin{equation*}
\mathrm{m}_{\text {wind }} / \mathrm{m}^{\prime \prime}=1+\mathrm{c}_{2} \times \mathrm{u}_{\mathrm{w}} / \mathrm{D} \tag{-}
\end{equation*}
$$

in which:
$\mathrm{m}^{\prime \prime}=$ Burning flux at still weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\mathrm{m}^{\prime \prime}{ }_{\text {wind }}=$ Burning flux under windy weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$c_{2}=0.15 \mathrm{~s}$
$\mathrm{u}_{\mathrm{w}}=\mathrm{W}$ ind velocity, in $\mathrm{m} / \mathrm{s}$
D $\quad=$ Pool diameter, in m

According to B abrauskas [1983] this is the best available formula, with the restriction that it is not applicable for alcohols, nor for conditions under which a fire is blown out (wind velocity > approximately $5 \mathrm{~m} / \mathrm{s}$ ).

Babrauskas [1983] made some remarks on the experimental data which show a slight decrease in burning rate of very large pools with diameters larger than 5 to 10 metres. It seems that not enough systematic and precise data exist to provide a numerical model here, assuming independence of $\mathrm{m}^{\prime \prime}$ on D in this regime. Qualitatively this is presumed to be due to poorer mixing, leading to a larger cool vapour zone, lower flame temperatures, and cooler smoke (which can act to shield a fire base from its flames). In any case, this effect is likely to be larger than about 20\%.

F lame length

M any models are proposed in literature. In general for visible flame, length without any influence of wind is estimated by the equation from T homas (1963):

$$
\begin{equation*}
L / D=f\left(m ", \rho_{\text {air }}, D\right) \tag{-}
\end{equation*}
$$

in which:
$\mathrm{m}^{\prime \prime}=$ Burning rate at still weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\rho_{\text {air }}=$ D ensity of air, in $\mathrm{kg} / \mathrm{m}^{3}$
D $=$ Pool diameter, in m

U nder wind blow conditions formula (6.11) becomes a function of $u^{*}$ :

$$
\begin{equation*}
\mathrm{L} / \mathrm{D}=\mathrm{f}\left(\mathrm{~m} ", \rho_{\mathrm{air}}, \mathrm{D}, \mathrm{u}^{*}\right) \tag{-}
\end{equation*}
$$

with

$$
\begin{align*}
& u^{*}=u_{w} / u_{c}  \tag{-}\\
& u_{c}=\left(\mathrm{g} \times \mathrm{m}^{\prime \prime} \times \mathrm{D} / \rho_{\mathrm{air}}\right)^{1 / 3}
\end{align*}
$$

in which:
D = pool diameter, in m
$\mathrm{g}=$ Gravitational acceleration, in $\mathrm{m} / \mathrm{s}^{2}$.
$\mathrm{m}^{\prime \prime}=$ Burning rate at still weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\rho_{\text {air }}=$ D ensity of air, in $\mathrm{kg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{w}}=$ Wind velocity, in $\mathrm{m} / \mathrm{s}$
$\mathrm{u}_{\mathrm{c}} \quad=$ C haracteristic wind velocity, in $\mathrm{m} / \mathrm{s}$
$\mathrm{u}^{*} \quad=$ Scaled wind velocity
If $u_{w}$ is less than $u_{c}$ then $u^{*}$ is assigned the value of unity. F or wind velocities up to the characteristic value, the flame length therefore remains constant whilst at higher values flame shortening occurs.

It seems that the influence of the wind velocity on the burning rate, as indicated in Babrauskas (1983) has already been incorporated in the Thomas equations. So in the Thomas equations the burning rate in still air ( $\mathrm{u}_{\mathrm{w}}=0 \mathrm{~m} / \mathrm{s}$ ) has to be used.

Flame tilt

U nder wind conditions the flame is tilted in the wind direction with a certain angle $\Theta$. M any small scale experiments have shown relationship with the F roude number Fr and the Reynolds number Re in [Sliepcevich, 1966]. A more simple relationship derived for Iarge scale L N G-fire has also be found in [Atallah, 1973].

F rom Sliepcevich [1966] the following equations are found, showing the relationship:

$$
\Theta=f\left(\operatorname{Fr}, \operatorname{Re}, \rho_{\mathrm{v}}, \rho_{\mathrm{air}}\right)
$$

with
$\operatorname{Re}=D \times u_{w} / v$
$\mathrm{Fr}=\mathrm{u}_{\mathrm{w}}{ }^{2} /(\mathrm{g} \times \mathrm{D})$
in which:
Re $=$ Reynolds number
$\mathrm{Fr}=\mathrm{Fr}$ roude number

In the Reynolds equation ' $v$ ' is the kinematic viscosity of air.

Although the equation for a tilted flame in [Sliepcevich, 1966] was initially derived from small scale fires, the equations for a conical and cylindrical representation were obtained from data from large L N G -pool fires, which were correlated.

The parameters $a^{\prime}, b^{\prime}, c^{\prime}$ and d' of the equation developed by W elker and Sliepcevich [Sliepcevich, 1966], are presented as follows:

$$
\begin{equation*}
\tan \Theta / \cos \Theta=a^{\prime} \times(\mathrm{Fr})^{\mathrm{b}^{\prime}} \times(\mathrm{Re})^{\mathrm{c}^{\prime}} \times\left(\rho_{\mathrm{v}} / \rho_{\mathrm{air}} \mathrm{~d}^{\mathrm{d}^{\prime}}\right. \tag{6.16}
\end{equation*}
$$

In table 6.2 values for the required parameters are given.

Table 6.2 Values of parameters of formula (6.16)

| Equation |  | $\mathbf{a}^{\prime}$ | $\mathbf{b}^{\prime}$ | $\mathbf{c}^{\prime}$ | $\mathbf{d}^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $6.16-1$ | Conical flame | 3.0 | 0.422 | 0.011 | 0 |
| $6.16-2$ | Cylindrical flame | 1.9 | 0.399 | 0.050 | 0 |
| 6.16-3 Sliepcevich [1966] |  | 3.3 | 0.8 | 0.07 | 0 |
| 6.16-4 Binding [1992] |  | 0.666 | 0.333 | 0.117 | -0.6 |

In the two equations for the conical and cylindrical flame, the density terms have been incorporated into a constant since the data is only applicable to one kind of flammable material.

The relationship given by Binding [1992] was determined by curve fitting with experimental data. T he data does not indicate a relationship between the flame tilt and fuel type and therefore the correlation does not incorporate the term for gas vapour density used by Sliepcevich [1966]. T he tilt is only applied to the lower half of the flames. B ased on the experimental data, the model uses an angle of $\Theta / 2$ applied to the upper half of the flame.

D ue to the influence of wind the $T$ homas equation becomes:

$$
\begin{equation*}
\cos \Theta=e^{\prime} \times\left(u^{*}\right)^{f^{\prime}} \tag{-}
\end{equation*}
$$

In table 6.3 values for the required parameters are given.

Table 6.3 Values of parameters for formula (6.17)

| Equation |  | $\mathbf{e}^{\prime}$ | $\mathbf{f}^{\prime}$ |
| :--- | :--- | :---: | :---: |
| $6.17-1$ | Conical flame | 0.87 | -0.272 |
| $6.17-2$ | Cylindrical flame | 0.86 | -0.250 |
| $6.17-3$ American Gas Association [1974] |  | 1 | -0.5 |

In most cases the vapour pressure is relatively low, so $\rho_{\mathrm{v}} \approx \rho_{\text {air }}$, which means that:

$$
\begin{equation*}
\mathrm{u}_{\mathrm{c}}=\left(\mathrm{g} \times \mathrm{m}^{\prime \prime} \times \mathrm{D} / \rho_{\mathrm{v}}\right)^{1 / 3} \approx\left(\mathrm{~g} \times \mathrm{m}^{\prime \prime} \times \mathrm{D} / \rho_{\mathrm{air}}\right)^{1 / 3} \tag{6.14}
\end{equation*}
$$

In which:

$$
\begin{array}{ll}
\mathrm{m"} & =\text { Burning flux at still weather conditions, in } \mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \\
\mathrm{g} & =\mathrm{G} \text { ravitational acceleration, in } \mathrm{m} / \mathrm{s}^{2} \\
\mathrm{D} & =\text { Pool diameter, in } \mathrm{m} \\
\rho_{\mathrm{v}} & =\text { Vapour density of the flammable material, in } \mathrm{kg} / \mathrm{m}^{3}
\end{array}
$$

In the Thomas equations for a tilted flame, wind velocities at 10 m above the ground have to be used.

All the formulae developed for the determination of the tilted flame angle $\Theta$ have their limitations because the experiments were often carried out on a small scale or on a large scale with LN G pools (equations 6.17-1, 6.17-2 and 6.17-3).

## F lame drag correlation

Due to wind the flame tilts and spills over the edge of a pool or storage tank. C onsequently, the flame surface approaches any nearby object on the leeward of the pool, increasing the heat flux of thermal radiation. If wind is hard enough, the flame may impinge on, for instance, an adjacent tank.

Figure 6.1 shows a schematic representation of the pool diameter $D$, the flame height $L$, and the flame base $D$ ' which is elongated due to the effect of wind.


Figure 6.1

Correlation resulting for flames with a conical representation from M oorhouse (1982):

$$
\begin{equation*}
D^{\prime} / D_{w}=g^{\prime} \times(F r)^{h^{\prime}} \times\left(\rho_{v} / \rho_{\text {ar }}\right)^{i^{\prime}} \tag{-}
\end{equation*}
$$

In table 6.4 values for the required parameters are given.

Table 6.4 Values of parameters of formula (6.18)

| Equation |  | $\mathbf{g}^{\prime}$ | $\mathbf{h}^{\prime}$ | $\mathbf{i}^{\prime}$ |
| :--- | :--- | :---: | :---: | :--- |
| $6.18-1$ | Conical flame | 1.6 | 0.061 | 0 |
| $6.18-2$ | Cylindrical flame | 1.5 | 0.069 | 0 |
| 6.18-3 Sliepcevich [1966] |  | 2.1 | 0.21 | 0.48 |

The large scale L N G pool fires reported here are for square and rectangular pools and the extent of flame drag was expressed as $D^{\prime} / D_{w}$. $D_{w}$ is the maximum pool dimension in the direction of the wind. F or circular pools it can be assumed that $D=D_{w}$.

A detailed study was performed in Sliepcevich [1966] which includes the flame drag for small circular fires in a wind tunnel using different fuels. The data resulted in equation (6.18-3) in table 6.4, in which $\mathrm{D}^{\prime}$ is the actual elongated flame base dimension and $D$ is the circular pool diameter.

The wind velocity at 10 m above the ground should be used in the Fr number.

### 6.3.4.6 Surface emissive power of pool fires

A method to assume the surface emissive power of pool fires is that the model flame has one uniform SEP over the whole of its surface. T his approach was adopted in M udan [1984] in which a derivation of the following correlation was given, using data from gasoline, kerosene and JP-5.

The SEP in $W / \mathrm{m}^{2}$ is given by:

$$
\begin{aligned}
\text { SEP } & =\mathrm{c}_{3} \times \mathrm{e}^{--55 \times \mathrm{D}}+\mathrm{c}_{4} \times\left(1-\mathrm{e}^{-c 5 \times \mathrm{D}}\right) \\
\mathrm{C}_{3} \quad & =140 \times 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \\
\mathrm{c}_{4} & =20 \times 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right) \\
\mathrm{C}_{5} & =0.12 \mathrm{~m}^{-1} \\
\mathrm{D} & =\text { Pool diameter, in } \mathrm{m}
\end{aligned}
$$

where $D$ is the pool diameter. Alternatives are presented in other literature and their approach for the flame shape is divided in lower and upper zones. The emissive power of the lower zone is taken as the SEP of clear flame multiplied by a factor which is the fraction of unobscured flame in the upper region.

The general approach for this type of flame is given in the following formula:

$$
S E P_{a c t}=S E P_{\max } \times(1-\varsigma)+S E P_{\text {soot }} \times \varsigma
$$

in which:
$\varsigma \quad=$ the fraction of the surface of the flame covered by soot
Next to models, also literature presented many measurement results. This information will be described in chapter 6.5.

### 6.3.5 Pool fires on water

### 6.3.5.1 Introduction

Studies to model the effects of pool fires on water have, in the first place, been undertaken to evaluate the safety associated with transportation and storage of flammable materials, such as L N G and LPG. M ore recent studies have been directed towards the evaluation of combustion of spills of crude and fuel oils on water.

M any additional studies have been undertaken concerning specific topics, such as ignition, rate of flame spreading, burning rate and external factors which affect burning rate, effect of weathering and evaporation, heat transfer mechanisms and modelling. All these studies have generated qualitative results.
One model could be found to calculate the burning rate of hydrocarbons on water.

### 6.3.5.2 B urning rate

Extensive testing was carried out on water to determine the effect of the pool diameter on the burning rate of several crude oils. A compromise was that the oil was burnt in a pan floating in water, so the effect of spreading was neglected. F or all fuels tested, the burning rate initially decreased reaching a minimum point and finally rose to a constant value with an increasing test pan diameter. A constant burning rate was observed for pan diameters $>1 \mathrm{~m}$.

In Petty [1983] seven different crude oils were combusted. The average burning rate in a 2 metre-diameter pans was determined at $5.8 \cdot 10^{-2} \mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$. The average burning rates between crude oils do not appear to be a function of a crude oil's overall specific gravity.

F rom the test results, a formula was derived to calculate the burning rate; this formula is given in chapter 6.5.

The wind influence on the burning rate was also determined in one of the experiments and resulted in an increase of the burning rate with a factor 2.

### 6.3.5.3 Pool diameter

This model of Cline [1983] as mentioned in subsection 6.3.4.5 is intended for unconfined pool fires on land.
It is assumed that the burning rate in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ is constant; normally the burning rate is a function of the pool diameter.
N o other models were found in literature, all data describe result of experiments.

### 6.3.5.4 Flame height

In A ravamudan [1979] an analytical expression was given to calculate the flame height. However, this equation does not correspond well with the figures presented.

### 6.3.5.5 Surface emissive power

For the surface emissive power for pool fires only test results were given. This data was not correlated with formulae.

### 6.3.6 Fire balls

### 6.3.6.1 Introduction

In Bagster [1989] an overview was given of the available models for the BLEVE's with a fireball. The models are exponential relationships to determine the fireball's diameter and duration. The TNO-model showed the best overall curve fit of the results.
The exponent of the relationships seems not to differ too much and is more or less dependent on the scale of the experiments. A graphical comparison between a number of models was made with results of accidents and experiments. In some cases, the quantity involved may be overestimated because of prior combustion or leakage.
A new development for the calculation of the fraction of generated heat which is radiated is given in subsection 6.3.6.2.

### 6.3.6.2 Fraction of the generated heat which is radiated

In [Roberts, 1982] the thermal radiation output from a fireball was characterised in terms of the fraction of combustion energy released through radiation, and its dependence on the release pressure. The following relation was obtained:

$$
\begin{equation*}
F_{s}=c_{6} \times\left(P_{\text {sv }}\right)^{0.32} \tag{-}
\end{equation*}
$$

in which:
$\mathrm{F}_{\mathrm{s}}=\mathrm{F}$ raction of the generated heat radiated from the flame surface
$\mathrm{c}_{6}=0.00325\left(\mathrm{~N} / \mathrm{m}^{2}\right)^{0.32}$
$\mathrm{P}_{\mathrm{sv}}=$ Saturated vapour pressure before the release, in $\mathrm{N} / \mathrm{m}^{2}$

CPR 14E
Chapter 6 of the 'Y ellow B ook'

### 6.3.6.3 Lift height of the fire ball

In Cowley [1991] and Bagster [1989] the fireball models have been evaluated in order to find the best available model. The T N O-model showed the best overall curve fit of the results. The formulae include the maximum diameter, duration and the centre height of the fire ball.

### 6.4 Selection of models

### 6.4.1 Introduction

In chapter 6.3 all models for the different fire types are addressed. Sometimes a number of different models were found for the same fire type or for the calculation of different aspects or parameters; in some cases the model is completely new to the previous edition of the $Y$ ellow Book and in other cases it is only an addition or extension.
In this chapter 6.4 the selection is made for those models mentioned in chapter 6.3.
A choice between models means that criteria have to be used. T hese criteria are:

- degree of validation of the model against experimental data;
- complexity of the model.


### 6.4.2 Jet flames

For jet flames two models were considered because both were validated with large scale experiments.
One of the models is a centreline trajectory model which is fully described in [Cook, 1987]. T he model uses difference equations in order to calculate the size and shape of the flame in small steps. Therefore a computer is necessary to calculate the heat radiation numerically; an analytical solution does not exist for flame models with the centre line trajectory. T his computer model is commercially available as 'T horin'.

The other model is a geometric solid flame shape from [C hamberlain, 1987] which is also validated with large scale experiments, however, it can be programmed more easily than the centre line trajectory model. In principle the heat radiation model for a frustum can be calculated analytically. In order to simplify calculations for the view factor, the shape of the frustum can even be approximated by a cylinder, by using the average diameter of the frustum.

Although the centre line trajectory models may approach the real flame shape better than the geometric models, the difference in heat radiation results at a distance seems to be minor.
B oth models were validated for a wide range of natural gas experiments, so arguments of non- or limited validation cannot be used for the selection. Because the calculation of the geometric solid flame model can be made with less computational effort, this model has been chosen.

### 6.4.3 Heat impact of impinging fires

U ntil now no simple models were available for impinging fires to determine the heat flux and the temperature rise in steel walls and surfaces exposed to fire.

A thorough description of the heat impact of impinging and engulfing flames has been presented in [Ramskill, 1988]. At this moment 'ENGULF' can be considered as the
best attempt to model impingement and engulfment of tanks and vessels. H owever, other literature sources indicate that there are a large number of unknowns that can only be clarified by experimental data.

The current results of the tests show until now that the current knowledge and understanding in combusting flows is essentially qualitative.
At this moment there are no validated predictive tools available that can accurately describe the extent of engulfment and the heat flux distribution over fire impinged objects.

The model 'ENGULF' has not been incorporated, because it is a 3-D model and because it has not been validated until now.

### 6.4.4 Pool fires on land

F or heat radiation calculations of a stationary flame shape, the 'T homas'equation (6.11) and the equation (6.9) of Burgess, H ertzberg [1974] can still be used. The 'Thomas'-equation appears to be adequate for predicting the flame length of pool fires with a diameter of up to 20 m . The relations which take the influence of wind into account can be added.

As indicated in Y ellow Book [1992] the equivalent diameter of an irregular pool shape can be determined with the surface area of the pool and the perimeter. It is difficult to estimate the perimeter and therefore it is proposed to calculate the pool diameter, by assuming a circular pool with the same surface area as the original pool. If the shape of the irregular pool can be better compared with a square, then the length of one side can be calculated.

The equations to calculate $\Theta$ (angle of tilting of the flame) are different. The Thomasequations (6.17-1) and (6.17-2) consistently underpredicts the experimentally obtained flame tilt angle while equation (6.17-3) tends to overpredict. T he equations (6.17-1) and (6.17-2) in table 6.3 are for small scale experiments and equation (6.173 ) is only applicable to large scale LN G fires.

The equations (6.16-1), (6.16-2) and (6.16-3) in table 6.2 for conical and cylindrical flames are based on small scale experiments with different types of flammable materials, whereas equation (6.16-4) is determined by fitting of experimental data. The data does not incorporate the term for the gas vapour density used by Sliepcevich (1966).

In general, equation (6.16-4) is preferred for calculations because it fits experimental data.

With equation (6.19) the surface emissive power SEP can be calculated. T his formula takes into account the influence of soot. It has been validated for gasoline, kerosene and JP-5 pool fires. The SEP seems only dependent of the pool diameter.

The view factor for conical and cylindrical flames can be analytically described. In the Appendix the graphical representation as well as the analytical equation are presented.

Furthermore, some experimental results were found in literature and are given in chapter 6.5.

## Unconfined pool

The only model for pool fires on land [Cline, 1983], could also be applicable to pool fires on water. With the models the maximum diameter of spreading pool fires can be calculated. The model has not been validated for large scale situations on land. H owever, it seems to match the small scale measurements well.
Some equations (6.78), (6.80) and (6.82) will be given, despite limited validation.

### 6.4.5 Pool fires on water

No data could be found on the calculation of the flame height. F ormulae (6.11) and (6.12) for pool fires on land will be used for pool fires on water. F urthermore, some experimental results were found in literature and are given in chapter 6.5.

### 6.4.6 Fire balls

In C owley [1991] and Bagster [1989] fireball models have been evaluated in order to find the best available model. It can be concluded that (6.90) shows the best prediction for the whole range of data available from small scale fireballs to large ones. Equations (6.90) and (6.91) which are required for calculation of the fireball diameter and duration respectively, seem to match the available accidental data of fireballs well. The centre height of the fire ball, which belongs to these selected formulae, is

$$
\begin{equation*}
\mathrm{H}_{\text {bleve }}=2 \times \mathrm{r}_{\mathrm{fb}} \tag{6.22}
\end{equation*}
$$

according to Bagster [1989].

Equation (6.21) for the calculation of the fraction of the generated heat which is related to the saturated vapour pressure, is a useful extension to this model.

### 6.5 Description of selected models

### 6.5.1 Introduction

In this chapter, for all fire types a description of the selected models is given. The objective of the selected models is to estimate the heat flux onto an object at a certain distance.
The formulae are presented in steps and where necessary an explanation has been given. If required, experimental data in tables and figures is given.

### 6.5.2 Surface emissive power

T he important parameters for heat radiation which contribute to the heat load of an object, are:

- Surface E missive Power (SEP) is the heat radiated outwards per surface area of the flame, including the influence of the soot formation (subsection 6.5.2.2).
- View factor $F_{\text {view }}$ (subsection 6.5.2.3) which takes into account:
- The shape of the fire, including the influence of wind
- Distance of receptor to the outside surface of the fire,
- Orientation of the receiving surface (horizontal, vertical and maximum value).
- Atmospheric transmissivity $\tau_{a}$ (subsection 6.5.2.4).


### 6.5.2.1 Released heat from combustion

The heat which is generated in a fire depends on the burning rate and the heat of combustion of the flammable material.
F or modelling a static situation, the shape and the dimensions of the fire are taken constant, which implies that the supply rate of flammable material is equal to the combustion rate. The burning rate differs for the various fire types, for instance:

Jet flame: the burning rate under stationary conditions is equal to the release rate in $\mathrm{kg} / \mathrm{s}$ of the flammable material.
Pool fire: the evaporation rate from the pool is equal to the burning rate.
Fire ball: the burning rate is equal to the total amount of flammable material divided by the duration of the fire ball (which is in fact also the supply rate).

### 6.5.2.2 Fraction of the heat radiated

The radiation emittance of materials for which $S E P_{\text {max }}$ has not been measured can be estimated from the combustion energy generated per second, which can be determined from the combustion burning-rate and the heat of combustion of the material, the surface area of the flame and a fraction of the generated heat which
is radiated. Hereby it is necessary to select a value of the radiation fraction $F_{s}$. $A$ careful estimation departs from the maximum value found in literature for $F_{s}$ ( see for some values of $F_{s}$ in table 6.6 and formulae (6.21) and (6.59)):
$S E P_{\text {max }}=F_{s} \times S E P_{\text {theor }}$
$\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)$
$S E P_{\text {max }}=F_{s} \times Q^{\prime} / A$
$\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)$
in which:
$S E P_{\max }=M$ aximum Surface Emissive Power from a flame without soot production, in J/(m².s)
Q' $=$ Combustion energy per second, in $\mathrm{J} / \mathrm{s}$
$\mathrm{F}_{\mathrm{s}} \quad=\mathrm{Fraction}$ of the combustion energy radiated from the flame surface
A $=$ Surface area of the flame, in $\mathrm{m}^{2}$

The $F_{s}$ factor, in formula (6.3), gives the fraction of the generated heat in the fire emitted by the flame surface in the form of heat radiation. This fraction differs per type of fire, such as jet flame, pool fire and fire ball, but also depends on the type of combustible material.

In contrast to formula (6.3), however, it appears from experiments that the emissivity decreases with an increase of the flame diameter. M udan [1984] attributes this to an increasing formation of black smoke at the flame boundary, such as has been established by hydrocarbons with a molecular ration of carbon: hydrogen bigger than 0.3. T his black smoke or soot can absorb a great part of the radiation. So the actual value of SEP ${ }_{\text {act }}$ is less than $S E P_{\text {theor }}$ and SEP max .

The following formula can be used:

$$
S E P_{\text {act }}=S E P_{\max } \times(1-\varsigma)+S E P_{\text {soot }} \times \varsigma
$$

in which:
$\varsigma \quad=\mathrm{F}$ raction of the surface of the flame covered by soot
$H$ ägglund [1976] has found for smoke $S E P_{\text {soot }} \approx 20 \times 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ (in agreement with $\mathrm{T} \approx 800 \mathrm{~K}$ ). Only when such a smoke is not present, the value of SEP calculated from the flame temperature must be approximated with formula (6.1).

M udan [1984] proposes to estimate the emittance of sooting flame surface, assuming that the major part of the flame (for instance $80 \%$ ) is enveloped by black smoke and that there are only certain spots ( $20 \%$ ) in which the emittance is maximal.

### 6.5.2.3 View factor

The geometrical view factor is the ratio between the received and the emitted radiation energy per unit area.
The factor is determined by the flame dimensions and shape, and by the relative position and orientation of the receiving object.

In general, simple flame shapes are taken for the calculations such as sphere, cylinder and flat plate.
The view factor of a cylinder can be used for a circular pool fire and a flat plate for a square or rectangular pool fire. The view factor of a sphere can be used for a fire ball. Practical data and theoretical background of these view factor are given in Appendix. The formula of the view factor becomes more complicated for e.g. a tilted flame, due to wind influence. F or this type of fire a rather complicated analytical solution exists.

### 6.5.2.4 Atmospheric transmissivity

The atmospheric transmissivity $\left(\tau_{\mathrm{a}}\right)$ accounts for the fact that the emitted radiation is partly absorbed by the air present between the radiator and the radiated object. T he factor is equal to 1 minus the absorption factor, the value which depends on the absorbing properties of the components of the air in relationship to the emission spectrum of the fire. Since water vapour and carbon-dioxide are the main absorbing components within the wave length area of the heat radiation, the following approximating expression can be given:

$$
\begin{equation*}
\tau_{a}=1-\alpha_{w}-\alpha_{c} \tag{-}
\end{equation*}
$$

Both factors depend on the partial vapour pressure, length L covered by the radiation, the radiator temperature and the ambient temperature. T he partial vapour pressure of carbon-dioxide in the atmosphere is normally $30 \mathrm{~N} / \mathrm{m}^{2}$, however, the partial vapour pressure of water depends always on the temperature and the relative humidity.

The absorption takes place in some absorption bands of which the major ones are:

| water: | $1.8 \mu \mathrm{~m}, 2.7 \mu \mathrm{~m}, 6.3 \mu \mathrm{~m}$ |
| :--- | :--- |
| carbon-dioxide: | $2.7 \mu \mathrm{~m}, 4.3 \mu \mathrm{~m}, 14.4-20 \mu \mathrm{~m}$ |

Since the energy distribution of the radiation depends on the radiator temperature, the absorption will also be dependent on it. An exact calculation of $\tau_{\mathrm{a}}$ is complicated.

An approximation method on the basis of emission factors given by H ottel [1967] and summarized by M udan [1984] is only outlined here:
a. determine the partial vapour pressure of water $p_{w}$ and the length $x$ to be covered by the radiation in the flame.
b. calculate the reduced vapour pressures.

$$
\begin{array}{lr}
\mathrm{P}_{\mathrm{w}}{ }^{*}=\mathrm{p}_{\mathrm{w}} \times\left(\begin{array}{l}
\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{a}}}
\end{array}\right) & \left(\mathrm{N} / \mathrm{m}^{2}\right) \\
\mathrm{P}_{\mathrm{c}^{*}}=\mathrm{p}_{\mathrm{c}} \times\left(\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{a}}}\right) & \left(\mathrm{N} / \mathrm{m}^{2}\right)
\end{array}
$$

in which $T_{f}$ is the flame or radiator surface temperature and $T_{a}$ the ambient temperature.
c. Determine the emission factors $\varepsilon_{\mathrm{w}}$ (for water vapour) and $\varepsilon_{\mathrm{c}}$ (for carbon-dioxide) for these reduced vapour pressures from the graphs from $H$ ottel [1967], not included in this paragraph.
d. C alculate the absorption factors $\alpha_{w}$ (for water vapour) and $\alpha_{c}$ (for carbon-dioxide) from the preceding, in accordance with W elker [1982]:

$$
\begin{align*}
& \alpha_{w}=\varepsilon_{w} \times\left(T_{a} / T_{f}\right)^{0.45}  \tag{6.27}\\
& \alpha_{c}=\varepsilon_{c} \times\left(T_{a} T_{f}\right)^{0.65} \tag{-}
\end{align*}
$$

From equations (6.25) and (6.27) we obtain $\alpha_{w}$ as function of $P_{w} \times x$, in which $x$ is the distance from the surface area of the flame to the object, in $m$; from equations (6.26) and (6.28) we obtain $\alpha_{c}$, as function of $P_{c}{ }^{*} \times x$. In order to be able to convert these functions into values of: $\alpha_{w}$, as function of $p_{w} \times x$, and $\alpha_{c}$, as function of $p_{c} \times x$, the temperature $\mathrm{T}_{\mathrm{f}}$ must be known.
In table 6.5 a number of typical flame temperatures can be found. These values vary between 800 and 1600 K .
If no data is available an average temperature of 1200 K is recommended.
H owever, for temperatures $T_{f} \alpha_{w}$ and $\alpha_{c}$ can be estimated directly using the graphs from $H$ ottel [1967] which are given in Figures 6.2 and 6.3.
The transmissivity $\tau_{a}$ can be calculated as a function of $x$, the distance between radiator surface and object.

For relative humidities ( RH ) of 0.4 and 1 and an 'average' radiation temperature of 1200 K , the transmissivity in Figure 6.4 (in this subsection) has been calculated.

It can be seen from this that differences in relative humidity have little influence on $\tau_{\mathrm{a}}$ provided $\tau_{a}$ is expressed as a function of $p_{w} \times x$. The relationship shown is in relatively good agreement with the graphs given by Raj [1977], which in turn are derived for a radiator temperature of $1150{ }^{\circ} \mathrm{C}$, disregarding the carbon-dioxide absorption.

CPR 14E
C hapter 6 of the ' $Y$ ellow B ook'


Figure 6.2 Absorption factors for water vapour


Figure 6.3 Absorption factors for carbon-dioxide


Figure 6.4 Transmissivity as a function of the product water vapour pressure $p_{w}$ and length $x$ (radiator temperature 1200 K)

A simple formula was produced [Bagster, 1989], based on data of Figure 6.4, to calculate the atmospheric transmissivity for all types of fire.

$$
\begin{equation*}
\tau_{a}=c_{7} \times\left(p_{w} \times x\right)^{-0.09} \tag{-}
\end{equation*}
$$

in which:
$\mathrm{c}_{7}=2.02\left(\mathrm{~N} / \mathrm{m}^{2}\right)^{0.09} \cdot \mathrm{~m}^{0.09}$
$\mathrm{p}_{\mathrm{w}}=$ Partial water vapour pressure of water in air at a relative humidity RH , in $\mathrm{N} / \mathrm{m}^{2}$
$x=D$ istance from the surface area of the flame to the object, in $m$
This formula can only be used for calculations in the range between:

$$
10^{4}<\mathrm{p}_{\mathrm{w}} \times \mathrm{x}<10^{5} \mathrm{~N} / \mathrm{m}
$$

In all other cases it is not advised to use (6.29).

### 6.5.3 Jet flames

In this subsection the model from C hamberlain [1987] has been described. This model, also called 'T hornton-model', predicts the flame shape and radiation field of flares from flare stacks and flare booms. This model has been developed in several years of research and has been validated with wind tunnel experiments and field tests both onshore and offshore. The model represents the flame as a frustum of a cone, radiating as a solid body with a uniform surface emissive power. C orrelation describing the variation of flame shape and surface emissive power under a wide range of ambient and flow conditions. By increasing the gas exit velocity, the fraction of heat released as radiation and the levels of received radiation are reduced. Correlation of laboratory data and field experience has shown that flames are fully stable under a
much wider range of ambient and flow conditions than indicated in API RP 521. Figure 6.5, which is given below, shows the sequence of steps:


Figure 6.5 Sequence for the calculation of the heat flux of a jet flame at a certain distance

Theflow diagram for the calculation of the heat flux at a certain distance of a jet flame can be divided into five parts, viz.:

- Calculation of the exit velocity of the expanding jet;
- C alculation of the dimension of the flame;
- Calculation of the surface emissive power (SEP);
- Calculation of the view factor;
- C alculation of the heat flux at a certain distance.


### 6.5.3.1 Calculation of the exit velocity of the expanding jet

Step 1 to 6 show the calculation of the exit velocity of an expanding jet. T his exit velocity is an important parameter for the calculation of the flame length, lift-off and the widths of the frustum. First the properties of the flammable material are required for the calculation of the exit velocity of the gas, i.e.: molecular weight, the Poisson constant and the storage conditions of the gas, such as temperature and pressure.

## Step 1

D etermine the mass fraction of flammable material in a stoichiometric mixture with air:

$$
\begin{equation*}
W=W_{g} /\left(15.816 \times W_{g}+0.0395\right) \tag{-}
\end{equation*}
$$

in which:
$\mathrm{W}_{\mathrm{g}}=\mathrm{M}$ olecular weight of gas, in $\mathrm{kg} / \mathrm{mol}$
Step 2
Calculate Poisson constant $\gamma$

$$
\begin{equation*}
\gamma=C_{p} / C_{v} \tag{-}
\end{equation*}
$$

For a so-called 'ideal gas'

$$
\begin{equation*}
C_{v}=C_{p}-R_{d} / W_{g} \tag{6.32}
\end{equation*}
$$

(J/(kg•K ))
in which:
$\mathrm{C}_{\mathrm{p}}=$ Specific heat capacity at constant pressure, in J/(kg•K )
$\mathrm{C}_{\mathrm{v}}=$ Specific heat capacity at constant volume, in J/(kg•K)
$\mathrm{R}_{\mathrm{c}}=\mathrm{G}$ as constant $8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$

H owever, for high pressure gas, it is necessary to calculate $\gamma$ more accurately by using equation (6.31).

Step 3
D etermine the temperature of the expanding jet:

$$
\begin{equation*}
T_{j}=T_{s} \times\left(P_{\text {air }} / P_{\text {init }}\right)^{((\gamma-1) / \gamma)} \tag{K}
\end{equation*}
$$

in which:
$\mathrm{T}_{\mathrm{s}}=$ Initial temperature of the gas, in K
$\mathrm{P}_{\mathrm{air}}=$ Atmospheric pressure, in $\mathrm{N} / \mathrm{m}^{2}$
$P_{\text {init }}=$ Initial pressure, in $\mathrm{N} / \mathrm{m}^{2}$
$\gamma=$ Ratio of specific heats, Poisson constant

Step 4
D etermine the static pressure at the hole exit plane:

$$
\begin{equation*}
P_{c}=P_{\text {init }} \times(2 /(\gamma+1))^{(\gamma /(\gamma-1))} \quad\left(N / \mathrm{m}^{2}\right) \tag{6.34}
\end{equation*}
$$

Step 5
D etermine the $M$ ach-number for choked flow of an expanding jet:

$$
\begin{equation*}
M_{j}=\sqrt{\frac{(\gamma+1) \times\left(\left(\frac{P_{c}}{P_{\text {air }}}\right)^{\left(\frac{\gamma-1}{\gamma}\right)}-2\right)}{\gamma-1}} \tag{6.35}
\end{equation*}
$$

(-)
in which:
$\mathrm{P}_{\mathrm{c}}=$ Static pressure at the hole exit plane, in $\mathrm{N} / \mathrm{m}^{2}$
or in case of unchoked flow

$$
M_{j}=\sqrt{\frac{\sqrt{1+2(\gamma-1) \mathrm{F}^{2}-1}}{\gamma-1}}
$$

in which:
$F=3.6233 \cdot 10^{-5} \times \frac{m^{1}}{d_{o}^{2}} \sqrt{\frac{T_{j}}{\gamma W_{g}}}$
$\mathrm{m}^{\prime}=\mathrm{M}$ ass F low Rate, in $\mathrm{kg} / \mathrm{s}$
$d_{0}=$ D iameter of hole, in $m$
$\mathrm{T}_{\mathrm{j}}=\mathrm{T}$ emperature of the gas in the jet, in K
$\mathrm{W}_{\mathrm{g}}=\mathrm{M}$ olecular weight of gas, in $\mathrm{kg} / \mathrm{mol}$

Step 6
D etermine the exit velocity of the expanding jet

$$
\begin{equation*}
u_{j}=M_{j} \times\left(\gamma \times R_{c} \times T_{j} / W_{g}\right)^{1 / 2} \tag{m/s}
\end{equation*}
$$

in which:
$\mathrm{R}_{\mathrm{c}}=\mathrm{G}$ as constant $8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\mathrm{T}_{\mathrm{j}}=\mathrm{T}$ emperature of the gas in the jet, in K
$\mathrm{W}_{\mathrm{g}}=\mathrm{M}$ olecular weight of gas, in $\mathrm{kg} / \mathrm{mol}$

Background of this model can be found in chapter 2.

### 6.5.3.2 Calculation of the flame dimensions

In step 7 to 20 position and dimensions of the flames are determined. T hese position parameters are required to calculate the lift-off and the angle of the flame with respect to the object. This is important for the calculation of the view factor. T he flame dimensions are used to calculate the surface area of the flame.

Step 7
D etermine the ratio of wind speed to jet velocity

$$
\begin{equation*}
\mathrm{R}_{\mathrm{w}}=\mathrm{u}_{\mathrm{w}} / \mathrm{u}_{\mathrm{j}} \tag{-}
\end{equation*}
$$

in which:
$u_{w}=W$ ind velocity, in $\mathrm{m} / \mathrm{s}$
$u_{j} \quad=$ Velocity of the jet, in $\mathrm{m} / \mathrm{s}$
Step 8
D etermine the density of air:

$$
\begin{equation*}
\rho_{\mathrm{air}}=\mathrm{P}_{\mathrm{air}} \times \mathrm{W}_{\mathrm{air}} /\left(\mathrm{R}_{\mathrm{c}} \times \mathrm{T}_{\mathrm{air}}\right) \quad\left(\mathrm{kg} / \mathrm{m}^{3}\right) \tag{6.38}
\end{equation*}
$$

in which:
$\mathrm{P}_{\text {air }}=$ Atmospheric pressure, in $\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{W}_{\text {air }}=\mathrm{M}$ olecular weight air, in $\mathrm{kg} / \mathrm{mol}$
$\mathrm{R}_{\mathrm{c}}=\mathrm{G}$ as constant $8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\mathrm{T}_{\text {air }}=$ Air temperature, in K
Step 9
D etermine combustion effective source diameter:

In combustion modelling the effective source diameter $D_{s}$ is a widely used concept, representing the throat diameter of an imaginary nozzle releasing air of density $\rho_{\text {air }}$ at a mass flow rate $\mathrm{m}^{\prime}$.

$$
\begin{equation*}
D_{s}=\left(4 \times m^{\prime} /\left(\pi \times \rho_{\text {air }} \times u_{j}\right)\right)^{1 / 2} \tag{m}
\end{equation*}
$$

in which:
$D_{s}=E$ ffective hole diameter, in $m$
$\mathrm{m}^{\mathrm{s}}=$ mass flow rate, in $\mathrm{kg} / \mathrm{s}$
$\rho_{\text {air }}=$ D ensity of air, in $\mathrm{kg} / \mathrm{m}^{3}$
$u_{j} \quad=$ Velocity of the jet, in $\mathrm{m} / \mathrm{s}$
If the hole size is given, the mass flow rate at the exit hole has then to be calculated with the models from chapter 2 for the calculation of the release rate of gas.

The effective hole diameter in case of a choked flow can be calculated as follows:

$$
\begin{align*}
& \rho_{j}=P_{c} \times W_{g} /\left(R_{c} \times T_{j}\right) \\
& D_{s}=d_{j} \times\left(\rho_{j} / \rho_{\text {air }}\right)^{1 / 2}
\end{align*}
$$

in which:
$P_{c}=$ Static pressure at the hole exit plane, in $N / \mathrm{m}^{2}$
$\mathrm{W}_{\mathrm{g}}=\mathrm{M}$ olecular weight of gas, in $\mathrm{kg} / \mathrm{mol}$
$R_{c}=G$ as constant $8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\mathrm{T}_{\mathrm{j}}=\mathrm{T}$ emperature of the gas in the jet, in K
$\mathrm{d}_{\mathrm{j}}=\mathrm{D}$ iameter of the jet at the exit hole, in m
$\rho_{j}=D$ ensity of gas in the jet, in $\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {air }}=D$ ensity of air, in $\mathrm{kg} / \mathrm{m}^{3}$

It can be assumed that the diameter of the jet is about equal to the hole diameter.

## Step 10

C alculate first auxiliary variable $Y$ by iteration with equation

$$
\begin{equation*}
C_{a} \times Y^{5 / 3}+C_{b} \times Y^{2 / 3}-C_{c}=0 \tag{-}
\end{equation*}
$$

in which:
$Y \quad=\mathrm{D}$ imensionless variable

This equation includes the following coefficients:

$$
\begin{aligned}
& C_{a}=0.024 \times\left(g \times D_{s} / u_{j}^{2}\right)^{1 / 3} \\
& C_{b}=0.2 \\
& C_{c}=(2.85 / W)^{2 / 3}
\end{aligned}
$$

$N$ ote, that the constant 2.85 ( $\beta$ in C hamberlain [1987] is valid for parafins only.

Step 11
D etermine the length of the jet flame in still air:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{b} 0}=\mathrm{Y} \times \mathrm{D}_{\mathrm{s}} \\
& \mathrm{~L}_{\mathrm{b} 0}=\mathrm{F} \text { lame length, in still air, } \mathrm{m}
\end{aligned}
$$

Step 12
D etermine the length of the jet flame measured from the tip of the flame to the centre of the exit plane:

$$
\begin{align*}
L_{b}= & L_{b 0} \times\left(\left(0.51 \times \mathrm{e}^{\left(-0.4 \times u_{w}\right)}+0.49\right)\right) \times  \tag{6.44}\\
& \left(1.0-6.07 \cdot 10^{-3} \times\left(\Theta_{j v}-90^{\circ}\right)\right) \tag{m}
\end{align*}
$$

in which:
$\Theta_{\mathrm{jv}}=$ Angle between hole axis and the horizontal in the direction of the wind
Figure 6.6 shows a diagram with the cone frustum parameters of the 'Thorntonmodel'. N ote that point $P$ is always at the intersection of the hole and frustum axes. The 5 basic parameters that are used to correlate flame shape with flaring conditions, are $R_{1}, W_{1}, W_{2}, \alpha$ and $b$.


Figure 6.6 Diagram showing the cone frustum parameters used in the Thornton model. Note that point $P$ is always at the intersection of the hole and the frustum axes. The 5 basic parameters used to corrolate flame shape with flaring conditions are $R_{1}, W_{1}, W_{2}, \alpha$ and $b$

## Step 13

D etermine the Richardson number of the flame in still air:

$$
\begin{equation*}
\operatorname{Ri}\left(L_{b 0}\right)=\left(g /\left(D_{s}^{2} \times u_{j}^{2}\right)\right)^{1 / 3} \times L_{b 0} \tag{-}
\end{equation*}
$$

If $R_{w} \leq 0.05$ (see (6.37)), then the flame is jet dominated. $T$ he tilt angle $\alpha$ is given by:

$$
\begin{equation*}
\alpha=\left(\Theta_{j v}-90^{\circ}\right) \times\left(1-e^{(-25.6 \times R w)}\right)+\left(8000 \times R_{w}\right) / R i\left(L_{b 0}\right) \tag{6.46}
\end{equation*}
$$

in which:
$\Theta_{\mathrm{jv}} \quad=$ Angle between hole axis and the horizontal in the direction of the wind $\mathrm{Ri}\left(\mathrm{L}_{\text {bo }}\right)=$ Richardson number based on $\mathrm{L}_{\text {bo }}$

If $R_{w}>0.05$, then the flame tilt becomes increasingly dominated by wind forces:

$$
\begin{align*}
\alpha= & \left(\Theta_{\mathrm{jv}}-90^{\circ}\right) \times\left(1-\mathrm{e}^{(-25.6 \times \mathrm{Rw})}\right)+  \tag{6.48}\\
& \left.\left(134+1726 \times\left(\mathrm{R}_{\mathrm{w}}-0.026\right)^{1 / 2}\right) / \mathrm{Ri}\left(\mathrm{~L}_{\mathrm{b} 0}\right)\right) \tag{}
\end{align*}
$$

## Step 14

D etermine the lift-off of the flame by the following emperical relation:

$$
\begin{equation*}
b=L_{b} \times \frac{\sin K \alpha}{\sin \alpha} \tag{m}
\end{equation*}
$$

in which:
$\mathrm{L}_{\mathrm{b}} \quad=$ Flame length, flame tip to centre of exit plane, in m
$K=0.185 \times \mathrm{e}^{-20 R \mathrm{w}}+0.015$

In still air $\left(\alpha=0^{\circ}\right)$, $b$ is equal to $0.2 \times L_{b}$. F or 'lazy' flames pointing directly into high winds $\left(\alpha=180^{\circ}\right), b=0.015 \times L_{b}$.

Step 15
D etermine length of frustum (flame):

$$
\begin{equation*}
R_{1}=\left(L_{b}^{2}-b^{2} \times \sin ^{2}(\alpha)\right)^{1 / 2}-b \times \cos (\alpha) \tag{m}
\end{equation*}
$$

in which:
$R_{\text {I }} \quad=$ Length of frustum, in $m$

## Step 16

D etermine the ratio between air and jet density:

$$
\begin{equation*}
\rho_{\text {air }} / \rho_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}} \times \mathrm{W}_{\text {air }} /\left(\mathrm{T}_{\text {air }} \times \mathrm{W}_{\mathrm{g}}\right) \tag{-}
\end{equation*}
$$

Step 17
D etermine the Richardson number based on the combustion source diameter and factor $C^{\prime}$, used for the calculation of the frustum base width:

$$
\begin{align*}
& \operatorname{Ri}\left(D_{s}\right)=\left(g /\left(D_{s}^{2} \times u_{j}^{2}\right)\right)^{1 / 3} \times D_{s}  \tag{-}\\
& C^{\prime}=1000 \times e^{(-100 \times R w)}+0.8 \tag{-}
\end{align*}
$$

Step 18
D etermine the frustum base width:

$$
\begin{equation*}
\mathrm{W}_{1}=\mathrm{D}_{\mathrm{s}} \times\left(13.5 \times \mathrm{e}^{-6 R \mathrm{w}}+1.5\right) \times 1-\left[1-\frac{1}{15} \times \sqrt{\frac{\mathrm{P}_{\mathrm{air}}}{\mathrm{P}_{\mathrm{j}}}}\right] \times \mathrm{e}^{-70 R \mathrm{i}(\mathrm{Ds})^{C^{\prime} R w}}(\mathrm{~m}) \tag{6.54}
\end{equation*}
$$

in which:
$\mathrm{W}_{1}=\mathrm{W}$ idth of frustum base, in m

Step 19
D etermine the frustum tip width:

$$
\begin{equation*}
W_{2}=L_{b} \times\left(0.18 \times \mathrm{e}^{(-1.5 \times R w)}+0.31\right) \times\left(1-0.47 \times \mathrm{e}^{(-25 \times R w)}\right) \quad(\mathrm{m}) \tag{6.55}
\end{equation*}
$$

in which:
$W_{2}=$ Width of frustum tip, in $m$
Step 20
D etermine the surface area of frustum, including end discs:

$$
\begin{align*}
A= & \pi / 4 \times\left(W_{1}^{2}+W_{2}^{2}\right)+\pi / 2 \times\left(W_{1}+W_{2}\right) \times \\
& \left(\left(R_{1}^{2}+\left(\left(W_{2}-W_{1}\right) / 2\right)^{2}\right)^{1 / 2}\right. \tag{6.56}
\end{align*}
$$

in which:
A $=$ Surface area of frustum including end discs, in $\mathrm{m}^{2}$
As an alternative for the calculation of the frustum surface area, the surface area for a cylinder with an average width can be applied, so calculations in Appendix can be applied.

$$
\begin{equation*}
A=\pi / 2 \times\left(\left(W_{1}+W_{2}\right) / 2\right)^{2}+\pi \times R_{1} \times\left(W_{1}+W_{2}\right) / 2 \tag{6.57}
\end{equation*}
$$

in which:
A $=$ Surface area of a cylinder including end discs, in $\mathrm{m}^{2}$

### 6.5.3.3 Calculation of the surface emissive power

The surface emissive power can be calculated with the net heat released from combustion of the flammable gas, the fraction of that part of the heat radiated and the surface area of the frustum.

Step 21
D etermine the net heat per unit time released:

$$
\begin{equation*}
Q^{\prime}=m^{\prime} \times \Delta H_{c} \tag{J/s}
\end{equation*}
$$

in which:
Q' $=$ C ombustion energy per second, in J/s
$\mathrm{m}^{\prime}=\mathrm{M}$ ass flow rate, in $\mathrm{kg} / \mathrm{s}$
$\Delta H_{c}=H$ eat of combustion, in J/kg
Step 22
D etermine the fraction of heat radiated from the surface of the flame:

$$
\begin{equation*}
F_{\mathrm{s}}=0.21 \times \mathrm{e}^{\left(-0.00323 \times \mathrm{uj}_{\mathrm{j}}\right)}+0.11 \tag{-}
\end{equation*}
$$

in which:
$F_{s}=F$ raction of the generated heat radiated from the flame surface

Step 23
D etermine the surface emissive power:

$$
\begin{equation*}
S E P_{\max }=F_{s} \times Q^{\prime} / A \tag{6.60}
\end{equation*}
$$

$$
\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

in which:
$S E P_{\max }=M$ aximum surface emissive power, in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
This is the final result of the ' $T$ hornton-model'.

### 6.5.3.4 Calculation of the view factor

C oordinate transformation to $X^{\prime}, \Theta^{\prime}$ is required before a model for the calculation of the view factors can be used.

Step 24
In Figure 6.7, this transformation takes into account the lift-off of the flame, change in distance to the object due to lift-off and the change of the angle under which the object observes the flame. This transformation is only correct if $\Theta_{j}=\Theta_{j v}$.

$$
\begin{align*}
& X^{\prime}=\left(\left(\mathrm{b} \times \sin \Theta_{\mathrm{j}}\right)^{2}+\left(\mathrm{X}-\mathrm{b} \times \cos \Theta_{\mathrm{j}}\right)^{2}\right)^{1 / 2}  \tag{m}\\
& \Theta^{\prime}=90^{\circ}-\Theta_{\mathrm{j}}+\alpha-\arctan \left(\mathrm{b} \times \sin \Theta_{\mathrm{j}} /\left(\mathrm{X}-\mathrm{b} \times \cos \Theta_{\mathrm{j}}\right)\right)  \tag{}\\
& \mathrm{X}=\mathrm{X}^{\prime}-\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right) / 4 \tag{m}
\end{align*}
$$

In which:
$X^{\prime} \quad=$ Distance from the centre of the bottom plane of a lifted-off flame to the object, in m
$X \quad=\mathrm{D}$ istance from the centre of the flame without lift-off to the object, in m
$x \quad=$ D istance from the surface area of the flame to the object, in $m$
$\Theta^{\prime} \quad=$ A ngle between the centreline of a lifted-off flame and the plane between the centre of bottom of the lifted-off flame and the object, in degrees
b $\quad=$ Frustum lift-off height, m
$\Theta_{\mathrm{j}} \quad=$ Angle between hole axis and the horizontal in the vertical plane, in degrees
$\alpha=$ Angle between hole axis and the flame axis, in degrees
$\mathrm{W}_{1}=\mathrm{W}$ idth of frustum base, in m
$W_{2}=$ Width of frustum tip, in $m$


Figure 6.7 Distances, lengths and angles required for the calculation of a lifted-off flame

Step 25
Atallah et.al. [1990] show the mathematical formula to calculate the maximum view factor of a tilted cylinder at a lift in the direction of the cylinder's central axis. The frustum can be approximated by a cylinder, using the average diameter of the frustum. In the formulae of the A ppendix the value of $\Theta^{\prime}$ and $X^{\prime}$ can be used in $\Theta$ and $X$ to calculate the view factor of a tilted cylinder with the formulae in the Appendix. If the tilt angle of the flame, the radius of the pool/flame, the flame length and the distance from the flame centre to the object are known, the maximum view factor can be calculated.
It is not allowed to position the object above or under the lifted cylinder, so the distance of the object from the centre of the flame should be greater than the radius of the cylinder.

### 6.5.3.5 Calculation of the heat flux at a certain distance

With the dimensions of the flame and the view factor the thermal heat flux at a certain distance $x$ from the heat source can be calculated, with:

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}(\mathrm{x})=\mathrm{SEP} \mathrm{act} \times \mathrm{F}_{\mathrm{view}} \times \tau_{\mathrm{a}} \tag{6.4}
\end{equation*}
$$

The SEP $P_{\text {act }}$ is the result of the calculations executed in step 23 in this chapter. $T$ he value of the view factor of a tilted cylinder can be calculated with the formulae in Appendix.
B oth the transmissivity factor $\tau_{\mathrm{a}}$ and the view factor $\mathrm{F}_{\text {view }}$ are distance dependent.

### 6.5.4 Pool fires on land

F or pool fires on land a number of calculation steps can be distinguished, as is shown in Figure 6.8.

In the heat radiation calculations for pool fire the following main steps can be distinguished:

- Calculation of the liquid pool diameter;
- Calculation of the burning rate;
- C alculation of the flame dimensions of a pool fire;
- C alculation of the surface emissive power;
- Calculation of the heat flux at a certain distance.

These steps have been shown in fig. 6.8.


Figure 6.8 Calculation diagram of the heat flux from a pool fire of a confined pool on land at a certain distance

### 6.5.4.1 Calculation of the liquid pool diameter

In reality liquid pools will have an irregular shape. In this section the method is given for transferring this shape into a circular or rectangular pool, which is required for the calculation of the view factor.

Step 1
D etermine the pool diameter

F or circular pools the heat source can be considered to be cylindrical. In case of a rectangular or a nearly rectangular pool, for a ratio length/width smaller than 2 , an equivalent or effective pool diameter $D$ can be calculated, which is defined as follows:

Pools with an irregular shape from which the surface area can be determined, can be transformed into a circular pool. The pool diameter can then be calculated with:

$$
\begin{equation*}
D=\left(4 \times A_{p} / \pi\right)^{1 / 2} \tag{m}
\end{equation*}
$$

in which:
D = Pool diameter, in m
$A_{p}=$ Surface area of the pool, in $m^{2}$

F or a length/width ratio larger than 2 (a gutter), an equivalent diameter has to be calculated. The pool fire can thereafter be considered as a flat radiator. T he A ppendix includes formulae, numeric values and graphs of the geometric view factor for some radiator configurations.
If the released volume and the thickness of the pool can be determined, the circular pool diameter can also be calculated with:

$$
\begin{equation*}
D=(4 \times V /(\pi \times \delta))^{1 / 2} \tag{m}
\end{equation*}
$$

in which:
$\mathrm{V} \quad=\mathrm{V}$ olume of the released liquid, in $\mathrm{m}^{3}$
$\delta=$ Thickness of the pool, in $m$
If the pool is confined in a bund, surface area, length and width are known. This can be used for calculation of the equivalent pool diameter or the side of an equivalent square.

### 6.5.4.2 Calculation of the burning rate

T he burning rate is a function of the pool diameter. H owever, the influence of the diameter is only relevant for pools with a diameter smaller than 1 metre. F urthermore the flammable component will have an influence on the amount of absorption.
Table 6.5 shows burning rates of particular flammable components for large poolfires. The burning rate of single component liquid flammable material can be calculated with formula (6.9) in step 2a.

Step 2
D etermine the pool burning rate $\mathrm{m}^{\prime \prime}$

$$
\mathrm{m}^{\prime \prime}=\mathrm{m}_{\infty}{ }^{\prime \prime} \times\left(1-\mathrm{e}^{-\mathrm{k} \times \beta \times \mathrm{D}}\right) \quad\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

in which:
$\mathrm{m}^{\prime \prime}=$ Burning rate at still weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$m_{\infty} "=$ see $m "$ for $D \rightarrow \infty$ (see also table 6.5)
$\mathrm{k} \quad=$ Absorption extinction coefficient of the flame, in $\mathrm{m}^{-1}$
$\beta=M$ ean beam length corrector

This form was first recommended by Burgess, Zabetakis [1961], in which (1- $\mathrm{e}^{\mathrm{k} \mathrm{\times} \mathrm{\beta} \times \mathrm{D}}$ ) represents the effective flame volume emissivity. The difference between $\mathrm{m} "$ and $\mathrm{m}_{\infty}{ }^{\prime \prime}$ becomes less than $10 \%$ if the pool diameter is more than 2 metres.

In general the value of the factor ( $1-\mathrm{e}^{-\mathrm{k} \mathrm{\times} \mathrm{\beta} \mathrm{\times D}}$ ) is above 0.95 if the pool diameter is more than 1 metre, so $\mathrm{m}^{\prime \prime} \approx \mathrm{m}_{\infty}$ ".
There will be an influence of wind on the burning rate, which has been accounted for in the calculations for the flame length and diameter of the pool fire.

T able 6.5 shows data for $L$ arge Pool Burning R ate Estimates, [Babrauskas, 1983].

Table 6.5

| Flammable <br> material | $\mathbf{m}_{\infty} "$ <br> $\left(\mathbf{k g} /\left(\mathbf{m}^{2} . \mathbf{s}\right) \mathbf{)}\right.$ | $\mathbf{k} \times \mathbf{\beta}$ <br> $\left(\mathbf{m}^{-1}\right)$ | $\mathbf{k}$ <br> $\left(\mathbf{m}^{-1}\right)$ | $\mathbf{T}_{\mathbf{f}}$ <br> $\mathbf{( \mathbf { K } )}$ |
| :--- | :---: | :---: | :---: | :---: |
| Liq. $\mathrm{H}_{2}$ | 0.169 | 6.1 | - | 1600 |
| LNG | 0.078 | 1.1 | 0.5 | 1500 |
| LPG | 0.099 | 1.4 | 0.4 | - |
| Butane | 0.078 | 2.7 | - | - |
| Hexane | 0.074 | 1.9 | - | - |
| Heptane | 0.101 | 1.1 | - | - |
| Benzene | 0.085 | 2.7 | 4.0 | 1490 |
| Xylene | 0.090 | 1.4 | - | - |
| Gasoline | 0.055 | 2.1 | 2.0 | 1450 |
| Kerosene | 0.039 | 3.5 | 2.6 | 1480 |
| JP-5 | 0.054 | 1.6 | 0.5 | 1250 |
| Methanol | 0.015 | $1)$ | - | 1300 |
| Ethanol | 0.015 | $1)$ | 0.4 | 1490 |

1) Value independent of diameter in turbulent regime

## Step 2a Alternative

If the mass burning rate has not been tabulated, the best correlation for predicting the mass burning rate of single component liquid flammable materials under ambient conditions is from Burgess [1974]:

$$
\begin{equation*}
\mathrm{m}^{\prime \prime}=\mathrm{c}_{8} \times \Delta \mathrm{H}_{\mathrm{c}} /\left(\Delta \mathrm{H}_{\mathrm{v}}+\mathrm{C}_{\mathrm{p}} \times\left(\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{a}}\right)\right) \tag{6.67}
\end{equation*}
$$

$\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)$
in which:
$\mathrm{C}_{8} \quad=0.001 \mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\Delta H_{c}=$ The heat of combustion of the flammable material and its boiling point in J/kg
$\Delta H_{v}=T$ he heat of vaporisation of the flammable material and its boiling point, in J/kg
$\mathrm{C}_{\mathrm{p}}=$ The heat capacity in $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$
$\mathrm{T}_{\mathrm{b}}=\mathrm{T}$ he liquid boiling temperature, in K
$\mathrm{T}_{\mathrm{a}}=$ Ambient temperature in K

### 6.5.4.3 Calculation of the flame dimensions of a pool fire (confined)

The diameter of a pool, which is in first approximation equal to the diameter of the fire, has been calculated in subsection 6.5.4.1. T he other dimensions of a flame will be calculated in this subsection. The influence of wind on flame dimensions will also be considered here. A number of equations have been introduced in this chapter which take that influence into account, so length of the tilted cylinder, the tilt angle of the cylinder and the change of the flame basis are calculated here. In step 3 to 7 the formulae are given to calculate the dimensions. In step 7 there are two possibilities given to calculate the flame basis, viz. for a conical and a cylindrical flame.

Step 3
D etermine the characteristic wind velocity $u_{c}$

$$
\begin{equation*}
\mathrm{u}_{\mathrm{c}}=\left(\mathrm{g} \times \mathrm{m}^{\prime \prime} \times \mathrm{D} / \rho_{\mathrm{air}}\right)^{1 / 3} \tag{m/s}
\end{equation*}
$$

in which:
$\mathrm{u}_{\mathrm{c}} \quad=$ Characteristic wind velocity, in $\mathrm{m} / \mathrm{s}$
$\mathrm{g}=$ Gravitational acceleration $9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{m}^{\prime \prime}=$ Burning flux in still weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
D = Pool diameter, in m

Step 4
D etermine the scaled wind velocity u*

$$
\begin{equation*}
\mathrm{u}^{*}=\mathrm{u}_{\mathrm{w}} / \mathrm{u}_{\mathrm{c}} \tag{-}
\end{equation*}
$$

in which:
$\mathrm{u}_{\mathrm{w}}=\mathrm{W}$ ind velocity at height of 10 metres, in $\mathrm{m} / \mathrm{s}$

Step 5
D etermine the mean length $L$ of the fire

$$
\begin{equation*}
\mathrm{L} / \mathrm{D}=55 \times\left(\mathrm{m} / /\left(\rho_{\text {air }} \times(\mathrm{g} \times \mathrm{D})^{1 / 2}\right)\right)^{0.67} \times\left(\mathrm{u}^{*}\right)^{-0.21} \tag{-}
\end{equation*}
$$

in which:
$\mathrm{L} \quad=$ A verage flame height, in m

## Step 6

D etermine the flame tilt angle $\Theta$, using the $F$ roude and Reynolds numbers:

$$
\begin{equation*}
\mathrm{Fr}_{10}=\mathrm{u}_{\mathrm{w}}^{2} /(\mathrm{g} \times \mathrm{D}) \tag{-}
\end{equation*}
$$

in which:
$\mathrm{Fr}_{10}=\mathrm{F}$ roude number for wind velocity at a height of 10 metres

$$
\begin{equation*}
\operatorname{Re}=u_{w} \times D / v \tag{-}
\end{equation*}
$$

in which:
$v=K$ inematic viscosity of air, in $\mathrm{m}^{2} / \mathrm{s}$

$$
\begin{equation*}
\tan \Theta / \cos \Theta=0.666 \times\left(\mathrm{Fr}_{10}\right)^{0.333} \times(\mathrm{Re})^{0.117} \tag{-}
\end{equation*}
$$

in which:
$\Theta \quad=$ Tilt angle of the flame, in degrees
In general, if $\tan \Theta / \cos \Theta=c$, than $\Theta$ can analytically be calculated by:

$$
\begin{equation*}
\Theta=\arcsin \left(\left(\left(4 \times c^{2}+1\right)^{1 / 2}-1\right) /(2 \times c)\right) \tag{}
\end{equation*}
$$

Step 7
D ue to influence of wind the flame will elongate and the flame basis will have a kind of elliptical shape, L autkaski [1992].

The elongated diameter of the flame basis can increase the surface area of the flame on one side. $M$ oreover, the distance between the outer flame surface and the radiated object may decrease.

In Figure 6.9 is shown how the shape of the pool fire may change due to the influence of the wind.


Figure 6.9 Three common pool geometries with a
(a) cylindrical flame, (b) conical flame,
(c) cylindrical flame with elongated flame base diameter

Step 7a)

$$
\begin{equation*}
\mathrm{D}^{\prime} / \mathrm{D}=1.6 \times\left(\mathrm{Fr}_{10}\right)^{0.061} \tag{6.18-1}
\end{equation*}
$$

(-)
for a conical flame presentation

Step 7b)

$$
\begin{equation*}
D^{\prime} / D=1.5 \times\left(\mathrm{Fr}_{10}\right)^{0.069} \tag{-}
\end{equation*}
$$

for a cylindrical flame presentation
in which:
D = Pool diameter, in $m$
$D^{\prime} \quad=$ Actual elongated flame base diameter, in $m$

### 6.5.4.4 Calculation of the surface emissive power

If the flame dimensions have been determined as well as the heat generated in the flame due to combustion, the surface emissive power can be calculated.
F ormula (6.19) is an empirical relationship between the diameter and the surface emissive power. In tables 6.7 and 6.8 the surface emissive power has been shown for liquid pools of different components, as well as the ratio of the flame height and the pool diameter. Also the influence of the pool diameter on the surface emissive power is shown.

Experimental results of pool fires with references are collected in table 6.9, which may be used to check whether the calculated results are realistic.
At the end of step 8, additional information about the surface emissive power from literature is given.

Step 8
The calculation of the Surface Emissive Power SEP for a tilted cylindrical flame, according to the approach of the Y ellow Book [1992]:

$$
\begin{equation*}
\mathrm{SEP}_{\max }=\mathrm{F}_{\mathrm{s}} \times \mathrm{m}^{\prime \prime} \times \Delta \mathrm{H}_{\mathrm{d}} /(1+4 \times \mathrm{L} / \mathrm{D}) \tag{6.71}
\end{equation*}
$$

in which:
$S E P_{\max }=M$ aximum Surface Emissive Power, in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$F_{s} \quad=F$ raction of the generated heat radiated from the flame surface
$\mathrm{m}^{\prime \prime}=$ Burning rate, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\Delta \mathrm{H}_{\mathrm{c}} \quad=\mathrm{H}$ eat of combustion, in J/kg
$\mathrm{L} \quad=$ A verage height of flame, in m
D $\quad=$ Pool diameter, in m

In Balluff [1985] results of experimental data are presented from fires of different types of fuel, showing the share of heat radiation in relation to the tank diameter, see Figure 6.10.


Figure 6.10 Experimental data from fires of different types of fuel, showing the share of heat radiation

T here are, however, two effects which have an impact on the fraction of the generated combustion heat, $\mathrm{F}_{\mathrm{s}}$, which is radiated:
a. for small diameters, $\mathrm{F}_{\mathrm{s}}$ is clearly smaller than 1 ,
b. for large diameters, soot formation is possible in case of a limited air supply.

In both these cases the SEP will be smaller. It is, therefore rather remarkable that the combustible substances investigated by Burgess, Hertzberg [1974] (table 6.6): methanol, methane and benzene have a radiation fraction which is practically independent of the pool diameter.

In table 6.6 some experimental values of the fraction of the radiated heat are given.

Table 6.6 Radiation fraction $F_{s}$ for various poolfires, Burgess, Hertzberg [1974]

| Substance | Pool diameter <br> $(\mathbf{m})$ | Radiation fraction $\mathbf{F}_{\mathbf{s}}$ <br> $(\boldsymbol{-})$ |
| :---: | :---: | :---: |
| methanol | 0.076 | 0.162 |
|  | 0.152 | 0.165 |
| methane | 1.22 | 0.177 |
|  | 0.305 | 0.21 |
|  | 0.76 | 0.23 |
| butane | 1.53 | $0.15-0.24$ |
|  | 3.05 | $0.24-0.34$ |
|  | 6.10 | $0.20-0.27$ |
|  | 0.305 | 0.199 |
|  | 0.457 | 0.205 |
|  | 0.76 | 0.269 |
|  | 1.22 | $0.30-0.40$ |
|  | 1.53 | $0.16-0.27$ |
|  | 3.05 | $0.13-0.14$ |
|  | 0.076 | 0.350 |
|  | 0.457 | 0.345 |
|  | 0.76 | 0.350 |
|  | 1.22 | 0.360 |

The radiation fraction is a factor which generally can only be given with little certainty. Its value appears to range between 0.1 and 0.4 .

In literature $\varsigma=80 \%$ has been found as a representative figure for pool fires of oil products

$$
\begin{equation*}
S E P_{\text {act }}=S E P_{\max } \times(1-\varsigma)+S E P_{\text {soot }} \times 5 \tag{6.20}
\end{equation*}
$$

in which:
SEP $\mathrm{P}_{\text {act }}=$ Actual surface emissive power, in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
SEP $\mathrm{P}_{\text {soot }}=$ The surface emissive power of soot, which is about $20 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
Another approach with the following empirical formula assumes one uniform SEP over the whole of the flame surface. This approach was adopted by M udan who derived the following correlation using data from gasoil, kerosene and JP-5. In order to calculate the worst case, the larger diameter has to be taken.

$$
\begin{equation*}
\mathrm{SEP}_{\text {act }}=140 \cdot 10^{3} \times \mathrm{e}^{-0.12 \times \mathrm{D}}+20 \cdot 10^{3} \times\left(1-\mathrm{e}^{-0.12 \times \mathrm{D}}\right) \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{6.19}
\end{equation*}
$$

in which:
D $\quad=$ Pool diameter, in m
In tables 6.7, 6.8 and 6.9 the flame dimensions are shown in relation to the surface emissive power.

Table 6.7 Relative flame height (L/D) and actual surface emissive power ( $S E P_{a c t}$ ) of the flame surface of boiling pools ( $T_{b}<20^{\circ} \mathrm{C}$ ), Yellow Book [1992]

|  | $\mathrm{D}=1 \mathrm{~m}$ |  | $\mathrm{D}=10 \mathrm{~m}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Substance | L/D $(-)$ | $\underset{\left(10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)}{\mathrm{SEP}_{\mathrm{at}}}$ | L/D <br> (-) | $\underset{\left(10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)}{\mathrm{SEP}_{\text {at }}}$ |
| Acetaldehyde | 2.88 | 35 | 1.43 | 64 |
| Ammonia | 1.57 | 17 | 0.78 | 30 |
| Butane | 4.84 | 86 | 2.40 | 165 |
| Butadiene | 4.88 | 87 | 2.42 | 168 |
| I-Butane | 5.02 | 87 | 2.49 | 168 |
| Dimethylamine | 3.59 | 59 | 1.78 | 112 |
| Ethane | 4.76 | 96 | 2.36 | 185 |
| Ethene | 4.52 | 90 | 2.24 | 173 |
| Ethylchloride | 3.01 | 28 | 1.49 | 52 |
| Ethylene oxide | 2.79 | 37 | 1.38 | 68 |
| Carbon monoxide | 2.71 | 13 | 1.34 | 24 |
| Methane | 4.59 | 100 | 2.29 | 193 |
| Methyl bromide | 2.25 | 9 | 1.11 | 16 |
| Methyl chloride | 4.90 | 15 | 2.43 | 27 |
| Propane | 5.08 | 98 | 2.52 | 188 |
| Propylene | 4.90 | 92 | 2.43 | 178 |
| Vinylchloride | 2.68 | 26 | 1.41 | 46 |
| Hydrogen sulphide | 2.20 | 18 | 1.09 | 32 |

CPR 14E
Chapter 6 of the 'Y ellow B ook'

Table 6.8 Relative flame height (L/D) and actual surface emissive power ( $S E P_{a c t}$ ) of the flame surface of non-boiling pools ( $T_{b} \geq 20^{\circ} \mathrm{C}$ ), Yellow Book [1992]

|  | $\mathrm{D}=1 \mathrm{~m}$ |  | $D=10 \mathrm{~m}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Substance | $\begin{gathered} \text { L/D } \\ (-) \end{gathered}$ | $\underset{\left(10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)}{\substack{\text { act } \\ x^{2}}}$ | $\begin{gathered} \text { L/D } \\ (-) \end{gathered}$ | $\underset{\left(10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)}{\mathrm{SEP}_{\text {act }}}$ |
| Acetone | 3.06 | 42 | 1.52 | 79 |
| Acetonitrile | 2.27 | 34 | 1.13 | 62 |
| Acrylonitrile | 2.64 | 36 | 1.31 | 67 |
| Allyl Alcohol | 2.45 | 37 | 1.21 | 68 |
| Benzene | 4.16 | 71 | 2.06 | 135 |
| Diethylamine | 4.29 | 71 | 2.12 | 135 |
| Ethylene Diamine | 2.37 | 36 | 1.18 | 66 |
| Ethyl Formate | 2.86 | 29 | 1.42 | 54 |
| Ethyl Mercaptan | 3.44 | 45 | 1.71 | 84 |
| Hexane | 4.53 | 87 | 2.24 | 166 |
| Methanol | 1.59 | 19 | 0.79 | 34 |
| Methyl Acetate | 2.59 | 26 | 1.28 | 48 |
| Methyl Formate | 2.31 | 18 | 1.14 | 33 |
| Vinyl Acetate | 2.89 | 32 | 1.43 | 59 |
| Carbon Disulphide | 2.37 | 15 | 1.18 | 28 |

T able 6.9 gives a summary of measured emittance and radiation temperatures for recent experiments conducted with large poolfires of hydrocarbons. It seems from this table that, depending on absorption by smoke, the emittances can vary between maximum values and a small fraction of these values. Previously conducted experiments with large LNG pool fires, American G as Association [1974], Burgess, Zabetakis[1971], C arne[1971], M aezawa [1973] have shown a maximum emittance of $142 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$.

In table 6.9 the radiation emittances and temperatures for pool fire experiments are shown.

Table 6.9 Radiation emittances and temperatures for pool fire experiments [Yellow Book 1992]

| Reference | Flammable material | Pool diameter D (m) | $\begin{gathered} \text { SEP }_{\text {act }} \\ \left(10^{3} \mathrm{~W} / \mathrm{m}^{3}\right) \end{gathered}$ | Radiation temperature (K) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Raj [1977] | LNG (on water) | 8,5-15 | 210-280 | 1500 | (a) |
| Minzer [1982] | LNG (on land) | 20 | 150-220 |  | (a)+(b) |
| May [1973] | LNG (on land) | 15 and 24 | 52 and 36 |  |  |
| Minzer [1982] | LPG (on land) | 20 | 48 |  | (d) |
| Welker [1982] | LPG (on land) | 2-17 | 60-160 |  |  |
| Hägglund, Persson [1976] | Aviation fuel (JetB) | 1-10 | 60-130 | 1240 | (c) |
| NASA [1979] | Aviation (JP-4) | 5.8 | 1200 |  | (e) |
| Fu [1971] | (JP-4;JP-5) | 2.4 | 40-80 |  |  |
| Modak [1978] | (JP-5) | 1-30 | 30-50 |  | (f) |
| Alger [1979] | (JP-5) | 3 | 110 |  |  |
| TNO [1978] | (kerosine) | 10 and 14 | 120 |  |  |
| JISE [1982] | (kerosine) | $\begin{gathered} 30-80 \\ \text { (average) } \end{gathered}$ | 10-25 |  | (b) + (c) |
| Alger [1979] | methanol | 3 | 70 |  |  |
| Modak [1978] | pentane | 1.0 | 61 |  |  |
| Modak [1978] | ethene | 2.5 | 130 |  |  |

(a) determined with a narrow angle radiometer
(e) flame surface covered by smoke
(f) SEP $=30 \cdot 10^{3} \mathrm{~W} / \mathrm{m}^{2}$ by $\mathrm{D}=30 \mathrm{~m}$
(b) determined with a wide angle radiometer
(c) large fires radiate less than small fires
(d) high smoke production

## Additional information on Surface emissive power

It is clear that the SEP is not uniform on the surface of the flame. A part from having temperature variations throughout, the flame is actually a volumetric rather than a surface emitter and is therefore less emissive near its edges where the path length through the flame is shorter. T he use of the solid flame model with the assumption of a surface emitter is a convenient concept to aid calculation techniques.
The flame surface consists of more-emissive parts, the so-called 'hot-spots', and lessemissive parts affected by the quantity of black soot produced. This depends on the size of the fire and the proportion of heavier hydrocarbons in the LNG.

When the diameter of a soot producing hydrocarbon pool fire increases, the soot escapes from the flame due to incomplete combustion. T his soot cools rapidly and instead of radiating heat, absorbs heat radiation strongly and reduces the radiation considerably. Thus the average SEP will at first increase with the pool diameter and then decrease because the flame surface becomes more and more obscured by soot. This can be explained, because the entrained oxygen in the air will be consumed on its way to the centre of the flame, causing incomplete combustion in the central part of the flame.
For large diameter open flames, almost the entire flame surface becomes partially obscured by dark soot, except for a very narrow region at the base of the fire where air entrainment keeps the soot away. Bright flame only appears in blooms and puffs as large scale vortices bring radiating regions to the surface.

For LPG the average surface emissive power from the present fire was $48 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$, only a third of that from the $\mathrm{LN} G$ fire. T his low average value was entirely attributable to the soot-masking of the luminous flame. T he larger value of about $80 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ was previously obtained from a 1.8 m diameter LPG fire. This suggests that the maximum average surface flux for LPG fires occurs close to the pool diameter at which black soot formation starts to be significant. F urther increases in pool diameter will then produce more soot and hence lower average surface fluxes. This was demonstrated more clearly for kerosine. In experiments it was demonstrated that the SEP of a small kerosine fire of 2 m diameter was about $130 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ while the soot produced in a 10 m pool reduced the SEP to $60 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$. M ore recent research showed for a 20 m pool fire that the SEP reduced to $35 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$, M inzer [1982].

The clear flame length is assumed to be $30 \%$ of the total flame length for the pool diameters larger than 5 m . F or pools larger that 25 m in diameter the whole of the flame is assumed to be partially obscured by soot, C owley [1991].

### 6.5.4.5 Calculation of the heat flux at a certain distance

F or the calculation of the heat flux the transmissivity in the air has to be determined. T his can be done with the formulae given in subsection 6.5.2.4. F irst the relative humidity has to be determined. Also formula (6.29) can be used to estimate the decrease in heat radiation at a certain distance. This is shown in step 11.

Step 9
D etermine absorption factor for water vapour $\alpha_{w}$ for an average flame temperature from Figure 6.2 (subsection 6.5.2.4), at a certain distance $x$, between the flame surface and the object.

C alculate the partial vapour pressure of water $p_{w}$ at $T_{a}$ and a relative humidity RH.

$$
\begin{equation*}
p_{w}=R H \times p_{w}^{0} \tag{6.72}
\end{equation*}
$$

$$
\left(\mathrm{N} / \mathrm{m}^{2}\right)
$$

in which:
RH $=$ Relative humidity, fraction between 0 and 1
$p_{w}^{0}=$ Saturated vapour pressure of water in air, in $N / \mathrm{m}^{2}$

Calculate $p_{w} \times x$

From Figure $6.2 \alpha_{w}$ in relation to $p_{w} \times x$ can be found

Step 10
Determine the absorption coefficient for carbon-dioxide $\alpha_{c}$ for an average flame temperature from Figure 6.3 (subsection 6.5.2.4) and a distance $x$, between the flame surface and target.

C alculate $p_{c} \times x$

From Figure $6.3 \alpha_{c}$ in relation to $p_{c} \times x$ can be found

Step 11
D etermine the atmospheric transmissivity

$$
\begin{equation*}
\tau_{a}=1-\alpha_{w}-\alpha_{c} \tag{-}
\end{equation*}
$$

or $\tau_{\mathrm{a}}$ can directly be read from Figure 6.4 in subsection 6.5 .2 .4 , or can be calculated with:

$$
\begin{equation*}
\tau_{\mathrm{a}}=2.02 \times\left(\mathrm{p}_{\mathrm{w}} \times \mathrm{x}\right)^{-0.09} \tag{-}
\end{equation*}
$$

Because $p_{c}$ is constant in air, this can be eliminated in the formula (6.29) as a variable and is included in the constants of the formula.

Step 12
Calculate the view factor with the formulae in Appendix. U se the calculated flame dimensions and the distance from the flame to the radiated object as input.

Step 13
C alculate the maximum heat flux at a certain distance.

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}=S E P_{\mathrm{act}} \times \mathrm{F}_{\mathrm{view}} \times \tau_{\mathrm{a}} \tag{6.4}
\end{equation*}
$$

### 6.5.5 Pool fire on land (unconfined)

For unconfined pool fires on land a number of calculations steps can be distinguished, as shown in Figure 6.11.

In the heat radiation calculations for pool fire the following main steps can be distinguished:

- Calculation of the liquid pool diameter;
- Calculation of the burning rate;
- Calculation of the flame dimensions of a pool fire;
- Calculation of the surface emissive power;
- C alculation of the heat flux at a certain distance.

CPR 14E
C hapter 6 of the ' $Y$ ellow B ook'


Figure 6.11 Calculation diagram of the heat flux from a pool fire of an unconfined pool on land at a certain distance

### 6.5.5.1 Description of the model

In Cline [1983] the pool diameter can be calculated for a burning pool which is fed from a storage tank. In the first instance pool diameter and surface area will increase. T he burning rate will also increase with the surface area. At a certain moment the burning rate is equal to the release rate from the tank, which also determines the maximum pool diameter.
This maximum pool diameter can be used for the calculation of the flame height.

The model in its general form is:

$$
\begin{equation*}
2 \times \pi \times R \times \delta \times \rho \times d R / d t=\rho \times A \times v_{f}-\pi \times m^{\prime \prime} \times R^{2} \quad(\mathrm{~kg} / \mathrm{s}) \tag{6.73}
\end{equation*}
$$

The discharge velocity $\mathrm{V}_{\mathrm{f}}$ is controlled by the hydrostatic pressure of the fluid level in the tank. Assuming the fuel tank to discharge through an orifice permits the timedependent flow velocity to be described by the following relationship:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{0}-\mathrm{a} \times \mathrm{t} \quad(\mathrm{~m} / \mathrm{s}) \tag{6.74}
\end{equation*}
$$

for: $0 \leq t \leq t_{D}$,
with

$$
\begin{equation*}
v_{0}=C_{0} \times\left(2 \times g \times h_{i}\right)^{1 / 2} \tag{6.75}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\left(C_{0} \times A_{0} / A_{t}\right)^{2} \times g \quad\left(m / \mathrm{s}^{2}\right) \tag{6.76}
\end{equation*}
$$

In this expression $A_{t}$ denotes the cross-sectional area of the tank while $h_{i}$ is the level of the fluid in the tank in relation to the location of the release area. T he burning rate of the liquid $m$ "can be calculated by using the formulae in subsection 6.5.4.2. The equation above was made dimensionless, using the non-dimensional time $\tau$ defined as:

$$
\begin{equation*}
\tau=m^{\prime \prime} \times \mathrm{t} /(\rho \times \delta) \tag{-}
\end{equation*}
$$

The dependent variable $R$ can be similarly expressed in a dimensional form as follows:

$$
\begin{equation*}
\Phi=m^{\prime \prime} \times \pi \times R^{2} /\left(\rho \times A_{0} \times v_{0}\right) \tag{-}
\end{equation*}
$$

The non-dimensional form of the pool spread differential equation is:

$$
\begin{equation*}
d \Phi / d \tau+\Phi=1-\beta^{\prime} \times \tau \tag{-}
\end{equation*}
$$

The non-dimensional parameter, $\beta^{\prime}$, is given by the following relationship:

$$
\begin{equation*}
\beta^{\prime}=\left(a \times \delta \times \rho /\left(v_{0} \times m^{\prime \prime}\right)\right) \tag{-}
\end{equation*}
$$

Physically, $\beta^{\prime}$ represents the inverse of the non-dimensional time required to discharge the available fuel load in the tank, i.e., $\beta^{\prime}=1 / \tau_{D}$.
It is important to note that the non-dimensional equation is valid only for the time interval in which the fuel pool is burning and the tank is releasing fuel, that is $\tau_{i} \leq$ $\tau \leq \tau_{D}$. The lower bound of the time domain, $\tau_{i}$, represents an initial condition on the spill at the onset of ignition. The initial condition on the non-dimensional equation is taken as:

$$
\begin{equation*}
\Phi\left(\tau_{\mathrm{i}}\right)=\Phi_{\mathrm{i}} \tag{-}
\end{equation*}
$$

where $\Phi_{i}$ is the normalsed pool area at ignition. Solving the non-dimensional equation in conjunction with this condition, leads to the following solution for the transient growth of the burning pool fire:

$$
\begin{equation*}
\Phi(\tau)=1+\beta^{\prime} \times(1-\tau)-\left[1-\Phi_{i}+\beta^{\prime} \times\left(1-\tau_{i}\right)\right] \times e^{-(\tau-\tau i)} \tag{6.82}
\end{equation*}
$$

for: $\tau_{i} \leq \tau \leq \tau_{D}$
T wo situations can be distinguished:

1. a fuel pool initially burning, $\Phi\left(\tau_{i}=0\right)=0$
2. a fuel pool with a delayed ignition.

F or both situations a solution has been given. In case of a fuel pool initially burning, the size of the pool initially increases and after having reached a maximum it will decrease in size owing to the continually decreasing fuel discharge from the source tank. The interior sections of the fuel pool are 're-supplied' with fuel whereas the outermost edges of the pool become depleted. T o satisfy mass conservation the edges of the pool turn back, resulting in a decrease in pool size. This is presented in Figure 6.12.


Figure 6.12 Normalised Radial Pool Fire Growth - Initially Ignited Pool Fire

Figure 6.13 shows the analytical solution of the ignited pool fire.


Figure 6.13 Normalised Radial Pool Fire Growth - Delayed Ignited Pool Fire

Experiments were carried out to demonstrate the relationship between fuel discharge and fire size suggested by the present theory. A series of experiments were conducted to measure the time-dependent growth of an unconfined spill fire. Although the experiments were carried out on a small scale using JP-4 as a fuel, the experiments showed that the model described the situation well.
No large scale experiments were carried out to validate the model.

### 6.5.5.2 Calculation of the pool diameter of a pool fire

The following input has been used for the calculation example:
$\mathrm{A}_{\mathrm{t}} \quad=$ the cross-sectional area of the tank, in $\mathrm{m}^{2}$
$\mathrm{h}_{\mathrm{i}} \quad=$ the initial height of the liquid above the release point, in m
$\mathrm{g}=\quad$ gravitational constant is $9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{C}_{0} \quad=$ flow coefficient of fluids through a circular hole
$d_{h} \quad=$ hole diameter of the release point, in $m$
$\delta \quad=$ a thickness of the petrol layer on the ground
$\mathrm{m}^{\prime \prime} \quad=$ the mass burning flux m " of the petrol at still weather conditions, in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\rho \quad=$ density of petrol, in $\mathrm{kg} / \mathrm{m}^{3}$
$\Phi\left(\tau_{\mathrm{i}}=0\right)=0$, which means that the ignition took place at the beginning of the release while no liquid pool was present before the release.

Step 1
$C$ alculate the surface area $A_{0}$ of the hole:

$$
\begin{equation*}
\mathrm{A}_{0}=\pi / 4 \times \mathrm{d}_{\mathrm{h}}^{2} \quad\left(\mathrm{~m}^{2}\right) \tag{6.83}
\end{equation*}
$$

in which:
$\mathrm{d}_{\mathrm{h}} \quad=$ hole diameter of the release point, in m
Step 2
C alculate the initial outflow velocity $\mathrm{v}_{0}$ :

$$
\begin{equation*}
v_{0}=C_{0} \times\left(2 \times g \times h_{i}\right)^{1 / 2} \tag{m/s}
\end{equation*}
$$

in which:
$\mathrm{C}_{0}=$ flow coefficient of fluids through a circular hole
$\mathrm{g}=$ gravitational constant is $9.81 \mathrm{~m} / \mathrm{s}^{2}$
$h_{i} \quad=$ the initial height of the liquid above the release point, in $m$

The flow coefficient $C_{0}$ is the product of a contraction and a friction factor. F or a sharp-edged orifice the friction factor is nearly 1 and the value of the flow coefficient is fully determined by the contraction factor. In general the value of the flow coefficient is between 0.6 and 0.8

## Step 3

C alculate the acceleration constant a:

$$
a=\left(C_{0} \times A_{0} / A_{t}\right)^{2} \times g
$$

in which:
$A_{t} \quad=$ the cross-sectional area of the tank

## Step 4

The mass burning rate $\mathrm{m}^{\prime \prime}$ in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ at still weather conditions can be taken from table 6.5, or can be calculated with formula (6.66) in subsection 6.5.4.2.

## Step 5

C alculate the dimensionless parameter $\tau$ with:

$$
\begin{equation*}
\tau=m^{\prime \prime} \times t /(\rho \times \delta) \tag{-}
\end{equation*}
$$

in which t remains a variable.

Step 6
C alculate the dimensionless parameter $\Phi$ with:

$$
\begin{equation*}
\Phi=m^{\prime \prime} \times \pi \times R^{2} /\left(\rho \times A_{0} \times v_{0}\right) \tag{-}
\end{equation*}
$$

in which $R$ remains a variable.

Step 7
C alculate the dimensionless parameter $\beta^{\prime}$ with:

$$
\begin{equation*}
\beta^{\prime}=\left(a \times \delta \times \rho /\left(v_{0} \times m^{\prime \prime}\right)\right) \tag{-}
\end{equation*}
$$

in which:
$\delta \quad=$ pool thickness, in m
$\rho \quad=$ liquid density, in $\mathrm{kg} / \mathrm{m}^{3}$

## Step 8

U se the non-dimensional form of the pool spread differential equation, which is applicable for $\tau_{i} \leq \tau \leq \tau_{D}$; it is assumed that there is a fire when the release has started, thus $\Phi\left(\tau_{\mathrm{i}}=0\right)=0$ or $F$ igure 6.12 can be used:

$$
\begin{equation*}
\Phi(\tau)=1+\beta^{\prime}(1-\tau)-\left[1-\Phi_{i}+\beta^{\prime}\left(1-\tau_{i}\right)\right] e^{-\left(\tau-\tau_{i}\right)} \tag{-}
\end{equation*}
$$

Step 9
D etermine the time at which the pool diameter will be maximal.
This can be derived from formula (6.82), if $d \Phi / d \tau=0$ is taken. $T$ his results in:

$$
\begin{equation*}
\tau_{\max }=\ln \left(\left(1+\beta^{\prime}\right) / \beta^{\prime}\right) \tag{-}
\end{equation*}
$$

## F urthermore

$$
\begin{equation*}
\tau=m^{\prime \prime} \times t /(\rho \times \delta) \tag{-}
\end{equation*}
$$

in which t remains a variable.

Rearranging formula (6.77) gives:

$$
\begin{equation*}
\mathrm{t}_{\max }=\tau_{\max } \times \rho \times \delta / \mathrm{m}^{\prime \prime} \tag{s}
\end{equation*}
$$

Step 10
D etermine the maximum pool diameter at $\tau_{i}=0$ and $\Phi_{i}=0$ and using formula (6.82).

$$
\begin{equation*}
\Phi_{\max }=1+\beta^{\prime} \times\left(1-\tau_{\max }\right)-\left(1+\beta^{\prime}\right) \times \mathrm{e}^{-\tau \max } \tag{-}
\end{equation*}
$$

With formula (6.82) the maximum pool radius can be calculated, with:

$$
\begin{equation*}
\Phi_{\max }=\mathrm{m}^{\prime \prime} \times \pi \times \mathrm{R}_{\max }^{2} /\left(\rho \times \mathrm{A}_{0} \times \mathrm{v}_{0}\right) \tag{6.78}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\max }=2 \times R_{\max } \tag{m}
\end{equation*}
$$

N ow the same calculations can be applied from subsection 6.5.4 to calculate the flame height and the heat flux at a certain distance from the tank.

Step 11
D etermination of the total release time $t_{\text {rel }}$ and duration of the fire $t_{\text {tot }}$.

T he total time of the petrol release from the tank will be:

$$
\begin{equation*}
t_{\text {rel }}=\left(A_{t} /\left(C_{0} \times A_{0}\right)\right) \times\left(2 \times h_{i} / g\right)^{1 / 2} \tag{s}
\end{equation*}
$$

which can be solved from the differential equation:

$$
A_{t} \times d h / d t=-C_{0} \times A_{0} \times(2 \times g \times h)^{1 / 2} \quad\left(\mathrm{~m}^{3} / \mathrm{s}\right)
$$

with $\mathrm{h}=\mathrm{h}_{\mathrm{i}}$ at time $\mathrm{t}=0$.

T he total duration of the fire will be the release time plus the time to burn the petrol in the pool completely.

The time to burn the pool completely after the release has stopped can be derived from:

$$
\begin{equation*}
\pi \times R^{2} \times m^{\prime \prime} \times t=\pi \times R^{2} \times \delta \times \rho \tag{kg}
\end{equation*}
$$

which results in

$$
\begin{equation*}
\mathrm{t}=\delta \times \rho / \mathrm{m}^{\prime \prime} \tag{s}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{t}_{\mathrm{tot}}=\mathrm{t}_{\mathrm{rel}}+\mathrm{t} \tag{6.86}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{t}_{\text {tot }}=\mathrm{t}_{\text {rel }}+\delta \times \rho / \mathrm{m}^{\prime \prime} \tag{s}
\end{equation*}
$$

### 6.5.5.3 Calculation of the flame dimensions of a pool fire

The flame dimension can be calculated in the following steps.
Step 12
Determine the pool burning rate m " at still weather conditions

$$
\begin{equation*}
\mathrm{m}^{\prime \prime}=\mathrm{m}_{\infty}{ }^{\prime \prime} \times\left(1-\mathrm{e}^{-k \times \beta^{\times} \times \mathrm{D}}\right) \tag{6.66}
\end{equation*}
$$

$$
\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)
$$

In general the value of the factor ( $1-\mathrm{e}^{\mathrm{k} \times \beta \times \mathrm{D}}$ ) is above 0.95 if the pool diameter is more than 1 metre, so $\mathrm{m}^{\prime \prime} \approx \mathrm{m}_{\infty}{ }^{\prime \prime}$.

Step 12a
If the mass burning rate was not tabulated, the best correlation to use for predicting the mass burning rate of single component fuels which are liquids under ambient conditions is that of Burgess, H ertzberg [1974]:

$$
\begin{equation*}
\mathrm{m}^{\prime \prime}=0.001 \times \Delta \mathrm{H}_{\mathrm{d}} /\left(\Delta \mathrm{H}_{\mathrm{v}}+\mathrm{C}_{\mathrm{p}} \times\left(\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{a}}\right)\right) \quad\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{6.67}
\end{equation*}
$$

## Step 13

D etermine the characteristic wind velocity $u_{c}$

$$
\begin{equation*}
\mathrm{U}_{\mathrm{c}}=\left(\mathrm{g} \times \mathrm{m}^{\prime \prime} \times \mathrm{D} / \rho_{\mathrm{ar}}\right)^{1 / 3} \tag{6.14}
\end{equation*}
$$

Step 14
D etermine the dimensionless wind velocity $\mathrm{u}^{*}$

$$
\begin{equation*}
u^{*}=u_{w} / u_{c} \tag{-}
\end{equation*}
$$

Step 15
D etermine the mean fire length

$$
\begin{equation*}
\mathrm{L} / \mathrm{D}=55 \times\left(\mathrm{m} " /\left(\rho_{\mathrm{air}} \times(\mathrm{g} \times \mathrm{D})^{1 / 2}\right)\right)^{0.67} \times\left(\mathrm{u}^{*}\right)^{0.21} \tag{6.12}
\end{equation*}
$$

The flame length can now be calculated because $D$ is known.
Step 16
D etermine the flame tilt angle $\Theta$ :

$$
\begin{align*}
& \mathrm{Fr}_{10}=\mathrm{u}_{\mathrm{w}}^{2} /(\mathrm{g} \times \mathrm{D}) \\
& \mathrm{Re}=\mathrm{u}_{\mathrm{w}} \times \mathrm{D} / v \\
& \tan \Theta / \cos \Theta=0.666 \times\left(\mathrm{Fr}_{10}\right)^{0.333} \times(\mathrm{Re})^{0.117} \tag{-}
\end{align*}
$$

In general, if $\tan \Theta / \cos \Theta=c$, then $\Theta$ can analytically be calculated by:

$$
\begin{equation*}
\Theta=\arcsin \left(\left(\left(4 \times c^{2}+1\right)^{1 / 2}-1\right) /(2 \times c)\right) \tag{}
\end{equation*}
$$

Step 17
D etermine the actual elongated flame base dimension

Step 17a)

$$
\begin{equation*}
\mathrm{D}^{\prime} / \mathrm{D}=1.6 \times\left(\mathrm{Fr}_{10}\right)^{0.061} \tag{-}
\end{equation*}
$$

for a conical flame presentation.

D' can now be calculated, because $D$ is known.

Step 17b)

$$
\mathrm{D}^{\prime} / \mathrm{D}=1.5 \times\left(\mathrm{Fr}_{10}\right)^{0.069}
$$

(-)
(6.18-2)
for a cylindrical flame presentation.

### 6.5.5.4 Calculation of the surface emissive power

Step 18
C alculate the Surface Emissive Power SE $\mathrm{P}_{\text {theor }}$ for a tilted cylindrical flame

$$
\begin{equation*}
S E P=140 \cdot 10^{3} \times \mathrm{e}^{-0.12 \times \mathrm{D}}+20 \cdot 10^{3} \times\left(1-\mathrm{e}^{-0.12 \times \mathrm{D}}\right) \quad\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{6.19}
\end{equation*}
$$

T able 6.6 can be used to estimate $\mathrm{F}_{\mathrm{s}}$.
$S E P_{\max }=F_{s} \times \mathrm{m}^{\prime \prime} \times \Delta \mathrm{H}_{\mathrm{c}} /(1+4 \times \mathrm{L} / \mathrm{D})$
$\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)$
$S E P_{\text {act }}=S E P_{\max } \times(1-\varsigma)+$ SEP $_{\text {soot }} \times \varsigma$
$\left(\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right)$

### 6.5.5.5 Calculation of the heat flux at a certain distance

Step 19
D etermine absorption factor for water vapour $\alpha_{w}$ for an average flame temperature of $\mathrm{T}_{\mathrm{f}}$ from F igure 6.2 and for a distance x from the flame surface.

C alculate the partial vapour pressure of water $\mathrm{p}_{\mathrm{w}}$ at $15^{\circ} \mathrm{C}$ and a relative humidity RH .

$$
\begin{equation*}
\mathrm{p}_{\mathrm{w}}=\mathrm{RH} \times \mathrm{p}_{\mathrm{w}}^{0} \tag{6.72}
\end{equation*}
$$

$$
\left(\mathrm{N} / \mathrm{m}^{2}\right)
$$

N ow $p_{w} \times x$ can be calculated.

Figure 6.2 has to be used to find $\alpha_{w}$.

Step 20
Determine the absorption coefficient for carbon-dioxide $\alpha_{c}$ for an average flame temperature of $\mathrm{T}_{\mathrm{f}} \mathrm{K}$ from Figure 6.3. and a distance x from the flame surface.

N ow $\mathrm{p}_{\mathrm{c}} \times \mathrm{x}$ can be calculated.

Figure 6.3 has to be used to find $\alpha_{c}$.
Step 21
The calculation with formula (6.24) is generally much more accurate. If the value of $p_{w} \times x$ is between $10^{4}$ and $10^{5} \mathrm{~N} / \mathrm{m}$, formula (6.29) can be used.

D etermine the atmospheric transmissivity.

$$
\begin{equation*}
\tau_{a}=1-\alpha_{w}-\alpha_{c} \tag{-}
\end{equation*}
$$

Step 22
C alculate the view factor with the formulae, shown in Appendix, section 3
$a=L / R$
$\mathrm{b}=\mathrm{X} / \mathrm{R}$
$A=\sqrt{\left(a^{2}+(b+1)^{2}-2 \times a \times(b+1) \times \sin \theta\right)}$
$B=\sqrt{\left(a^{2}+(b-1)^{2}-2 \times a \times(b-1) \times \sin \theta\right)}$
$C=\sqrt{\left(1+\left(b^{2}-1\right) \times \cos ^{2} \theta\right)}$
$D=\sqrt{((b-1) /(b+1))}$
$E=(a \times \cos \theta) /(b-a \times \sin \theta)$
$F=\sqrt{\left(b^{2}-1\right)}$

The maximum view factors $F_{h}$ and $F_{v}$ can now be calculated with formulae (6.A.14) and (6.A.15), respectively.
The maximum view factor can be calculated with formula (6.A.18).

$$
\begin{equation*}
F_{\max }=\sqrt{\left(F_{v}^{2}+F_{h}^{2}\right)} \tag{-}
\end{equation*}
$$

Step 23
C alculate the maximum heat flux at a certain distance $x$

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}=\mathrm{SEP}_{\text {act }} \times \mathrm{F}_{\text {view }} \times \tau_{\mathrm{a}} \tag{6.4}
\end{equation*}
$$

### 6.5.6 Pool fires on water

F or pool fires on water a number of calculation steps can be distinguished, as shown in Figure 6.14.

CPR 14E
Chapter 6 of the ' $Y$ ellow B ook'


Figure 6.14 Calculation diagram for the heat flux from a pool fire on water at a certain distance

In the heat radiation calculations for pool fire the following steps can be distinguished:

- Calculation of the liquid pool fire diameter;
- Calculation of the burning rate;
- C alculation of the flame dimensions of the pool fire;
- Calculation of the surface emissive power;
- Calculation of the heat flux at a certain distance.


### 6.5.6.1 Calculation of the liquid pool fire diameter

N o models could be found about calculation of the diameter of the liquid pool fire. If the pool on water is confined the equivalent diameter can be calculated with equation (6.64). A confined pool can be formed if the perimeter and the surface area of the pool do not change in time. This will occur in e.g. harbours when the spill is enclosed by oil booms.

### 6.5.6.2 Burning rate

In general liquid pools will spread. H owever, measurements on burning rate are made in controlled conditions with fixed pool diameters.

From literature Petty [1983] the following experimental data have been published in table 6.10.

CPR 14E
Chapter 6 of the ' $Y$ ellow B ook'

Table 6.10 Mass burning fluxes of flammable materials on water from experiments

| Flammablematerial <br> on water | Pool diameter | Mass burning flux |  |
| :--- | :---: | :---: | :---: |
| $\mathbf{( \mathbf { k g } / ( \mathbf { m } ^ { \mathbf { 2 } } \mathbf { s } \mathbf { ) } )}$ | Temperature of the <br> flammable material <br> $\mathbf{(} \mathbf{C} \mathbf{C})$ |  |  |
| LPG | 10.4 | 0.629 |  |
|  | 12.9 | 0.240 |  |
| LNG | 16.9 | 0.175 |  |
| Gasoline |  | 0.255 |  |
| Crude oil: |  |  |  |
| - Saharan |  | 0.054 |  |
|  |  |  |  |
| - Attaka | 28.2 | 0.056 | 50 |
| - El Sider | 2 | 0.047 | 30 |
| - Labuan | 2 | 0.057 | 30 |
|  | 2 | 0.048 | 50 |
| - Ekofisk | 2 | 0.043 | 30 |
| - Isthmus/mayan | 2 | 0.065 | 30 |
|  | 2 | 0.073 | 5 |
| - North Slope | 2 | 0.047 | 30 |
|  | 2 | 0.069 | 5 |
| - Diesel | 2 | 0.061 | 5 |
| - Bunker C fuel oil | 2 | 0.051 | 5 |

F ew models can be found in literature about the burning flux of pool fires in water. $M$ ost of the available literature is about experimental data.
A comparison between the burning flux of crude oils and gasoline in pool fires on land and water does not show much difference.
F or LPG on water the burning flux is about twice as high as for LPG on land and for LN G this is about three times higher. T he differences between the burning flux for the water and land situation are presented in the following table 6.11.

Table 6.11 Mass burning fluxes for several flammable materials vs. pool diameter and water and land

| Flammable material in <br> water | Pool diameter <br> $\mathbf{( m )}$ | Mass burning flux <br> $\left(\mathbf{k g} /\left(\mathbf{m}^{2} \cdot \mathbf{s}\right) \mathbf{)}\right.$ |
| :--- | :---: | :---: |
| LPG on land | 20.0 | 0.13 |
| LPG on water | 12.2 | 0.136 |
|  | 10.4 | 0.629 |
|  | 12.9 | 0.24 |
|  | 14.9 | 0.295 |
| LNG on land | 16.9 | 0.175 |
| LNG on water | up to 16.8 | 0.255 |
|  | up to 13.7 | 0.094 |
|  | 20.0 | 0.106 |
|  | 35.0 | 0.14 |

For the calculation of the burning flux on water the following equation can be used from Petty [1983]:

$$
\begin{equation*}
\mathrm{m}^{\prime \prime}=\left[\mathrm{q}_{\mathrm{rw}} " /\left(\mathrm{Q} \times \ln \left[\mathrm{B}_{\mathrm{c}}+1\right]\right)\right]+\left[\left(\mathrm{h} / \mathrm{C}_{\mathrm{p}}\right) \times \ln \left(\mathrm{B}_{\mathrm{c}}+1\right)\right] \quad\left(\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \tag{6.88}
\end{equation*}
$$

in which:
$\mathrm{m}^{\prime \prime}=$ burning flux in $\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\mathrm{q}_{\mathrm{rw}}{ }^{\prime \prime}=$ radiant heat flux to the pool burning surface in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$.
$\mathrm{Q}=$ heat of vaporisation in J/kg
$\mathrm{B}_{\mathrm{c}}=$ 'Spalding' convection mass transfer number
$\mathrm{h}=$ heat transfer coefficient in $\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$
$\mathrm{C}_{\mathrm{p}}=$ heat capacity in J/(kg $\cdot \mathrm{K}$ )
The value of $B_{c}$ ranged from 10.17 to 15.12 , so the term $\ln \left(B_{c}+1\right)$ varies between 2.41 to 2.78 , which is a variation of $13 \%$. In general 2.6 can be taken for calculations.

### 6.5.6.3 Calculation of the flame dimension

The formulae for the calculation of the flame height of a confined pool fire on land, as described in subsection 6.5.4, can be used.

### 6.5.6.4 Calculation of the heat flux at a certain distance

The heat flux can be calculated in a similar way as for pool fires on land. In literature only experimental data could be found with respect to the surface emissive power. This showed much scatter in the measured SEP's. N o significant difference in SEP between the land and the water situation could be found.
The calculations for heat flux at a distance, as described in subsection 6.5.5, can be used.

### 6.5.7 Fire balls

The calculation steps for the heat flux of a fire ball caused by a BLEVE can be carried out in four steps, starting from the estimation of the amount of LPG which would be involved in a BLEVE.

For the calculation of a fire ball from a BLEVE the following calculation steps are required, see F igure 6.15.

CPR 14E
Chapter 6 of the ' $Y$ ellow B ook'



Figure 6.15 Calculation diagram for the heat flux from a fire ball at a certain distance from the fire ball

### 6.5.7.1 Calculation of the dimensions, duration and lift-off height

The formulae used for the calculation are given below. In step 2 the released amount is ignited and the radius of the fireball can be determined with (6.90); in step 3 the duration of a fireball with (6.91) can be calculated and step 4 the centre height is calculated with equation (6.22). All equations are from T N O [1983].

Step 1
C alculate the amount of LPG release in case of a complete failure of the tank

$$
\begin{equation*}
\mathrm{m}=\mathrm{V}_{\mathrm{rel}} \times \rho_{\mathrm{mat}}=\mathrm{f} \times \mathrm{V} \times \rho_{\mathrm{mat}} \tag{kg}
\end{equation*}
$$

$\mathrm{m}=\mathrm{M}$ ass of the flammable material, in kg
$\mathrm{f} \quad=$ Fraction of the volume of the pressure tank, filled with the flammable liquefied pressurised gas
$\mathrm{V}=\mathrm{V}$ olume of the tank, in $\mathrm{m}^{3}$
$V_{\text {rel }}=$ A mount of e.g. LPG which will be released in case of a complete tank failure
$\rho_{\text {mat }}=$ D ensity of the flammable material in the pressure tank, in $\mathrm{kg} / \mathrm{m}^{3}$

Step 2
The radius of the fireball can be calculated from the quantity of combusting material:

$$
\begin{equation*}
r_{f b}=c_{9} \times m^{0.325} \tag{m}
\end{equation*}
$$

In which:
$c_{9} \quad=3.24 \mathrm{~m} / \mathrm{kg}^{0.325}$
$r_{\mathrm{fb}}=$ Radius of the fireball, in m
$\mathrm{m}=\mathrm{M}$ ass of the flammable material, in kg

Step 3
The duration of the fireball is:

$$
\begin{equation*}
\mathrm{t}=\mathrm{c}_{10} \times \mathrm{m}^{0.26} \tag{s}
\end{equation*}
$$

in which:

| $\mathrm{C}_{10}$ | $=0.852 \mathrm{~s} / \mathrm{kg}^{0.26}$ |
| :--- | :--- |
| t | $=\mathrm{D}$ uration of the fireball, in s |
| m | $=\mathrm{M}$ ass of the flammable material, in kg |

Step 4
The lift-off height of the fire ball:

$$
\begin{equation*}
\mathrm{H}_{\text {bleve }}=2 \times \mathrm{r}_{\mathrm{fb}} \tag{m}
\end{equation*}
$$

in which:
$H_{\text {bleve }}=H$ eight from the centre of the fire ball to the ground under the fire ball, in $m$

### 6.5.7.2 Calculation of the heat flux at a certain distance

In most literature a uniform heat radiation is assumed. In reality the radiative emission from a fireball varies over its surface. It was found that peak emissions came from areas at the top of the expanding fireball whereas the emission was lower from lower portions of the fireball because of increased soot shielding and poorer mixing with ambient air. They also noted a time dependence of the surface emissive power. After an initial period of intense emission there was a gradual decrease in the SEP. The SEP also varies with fuel type.

For the calculation of the heat flux at a certain distance, parameters such as view factor, fraction of the radiated heat and the surface emissive power, are required. In the view factor the effects of the distance from the object to the centre of the flame are taken into account.
In step 6 the view factor, in step 7 the fraction of the generated heat and in steps 9 the emissive power of the fire ball can be calculated.
The heat flux at a certain distance as a result of the calculations can be obtained in step 14.

Step 5
C alculate the distance $X$ from the centre of the fire ball to the object.

$$
\begin{equation*}
X=\left(X_{\text {bleve }}^{2}+H_{\text {bleve }}^{2}\right)^{1 / 2} \tag{m}
\end{equation*}
$$

In which:
$x_{\text {bleve }}=D$ istance measured over the ground from the projected centre of the fire ball on the ground under the fire ball, and the object, in $m$
$\mathrm{H}_{\text {bleve }}=\mathrm{H}$ eight from the centre of the fire ball to the ground under the fire ball, in m
$X \quad=$ Distance from the centre of the fire ball to the radiated object, in $m$
Figure 6.16 shows the distances from the fire ball to the radiated object, required for calculations.


Figure 6.16 Distances from the centre of the fire ball to the object after lift-off.

Step 6
C alculate maximum value of the view factor at a distance $X$ with:

$$
\begin{equation*}
F_{\text {view }}=\left(r_{\mathrm{fb}} / X\right)^{2} \tag{-}
\end{equation*}
$$

in which:
$F_{\text {view }}=G$ eometric view factor, dimensionless
$r_{\mathrm{fb}}=$ Radius of the fire ball, in $m$
$X \quad=$ Distance from the centre of the fire ball to the radiated object, in $m$
Step 7
C alculate the fraction $F_{s}$ of the generated heat radiated by a fire ball

$$
\begin{equation*}
F_{s}=c_{6} \times\left(P_{\text {sv }}\right)^{0.32} \tag{-}
\end{equation*}
$$

in which:
$c_{6} \quad=0.00325\left(\mathrm{~N} / \mathrm{m}^{2}\right)^{0.32}$
$\mathrm{P}_{\mathrm{sv}}=\mathrm{V}$ apour pressure of flammable material inside the vessel, in $\mathrm{N} / \mathrm{m}^{2}$

Step 8
C alculate the nett available heat for radiation

$$
\begin{equation*}
\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{c}}-\Delta \mathrm{H}_{\mathrm{v}}-\mathrm{C}_{\mathrm{p}} \times \Delta \mathrm{T} \tag{J/kg}
\end{equation*}
$$

in which:
$\Delta \mathrm{H}=\mathrm{N}$ ett available heat, in J/kg
$\Delta H_{c}=$ Combustion heat of the flammable material at its boiling point, in J/kg
$\Delta H_{v}=$ Vaporisation heat of the flammable material at its boiling point, in J/kg
$C_{p}=$ Specific heat capacity at constant pressure, J/(kg•K )
$\Delta T=T$ emperature difference between flame and ambient temperature, in K
Assume $\Delta T=1700 \mathrm{~K}$

Step 9
C alculate the Surface Emissive Power SE $\mathrm{P}_{\text {act }}$

If it is assumed that there is no soot formation, then $S E P_{\text {act }}=S E P_{\max }$

$$
\mathrm{SEP}_{\mathrm{act}}=\Delta \mathrm{H} \times \mathrm{m} \times \mathrm{F}_{\mathrm{s}}\left(4 \times \pi \times \mathrm{r}_{\mathrm{fb}}^{2} \times \mathrm{t}\right)
$$

in which:
SEP ${ }_{\text {act }}=$ Actual Surface Emissive Power, SEP, in $J /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$, which is the average radiation emittance (emissive power) of the flame surface.
$S E P_{\max }=M$ aximum Surface Emissive Power, in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$.

F rom the few measurements of the surface emissive powers of fireballs it is reported that butane fireballs typically have average SEP values of the visible flame between $300 \cdot 10^{3}$ and $350 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$. Spot SEPs from highly emissive areas at the top of the fireballs are up to $500 \cdot 10^{3} \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$.

Step 10
Calculate the actual path length between the surface area of the fire ball and the object.

The actual path length $x$ of radiation from a fire ball is the difference from the centre of the fire ball of the radiated object and distance minus the BL EVE-radius.

$$
\begin{equation*}
x=X-r_{f b} \tag{m}
\end{equation*}
$$

in which:
$x \quad=$ D istance from the surface area of the flame to the object, in $m$

Step 11
D etermine absorption factor for water vapour $\alpha_{w}$ for an average flame temperature of $\mathrm{T}_{\mathrm{f}}$ in K from Figure 6.2, in subsection 6.5.2.4, and for a distance x from the flame surface.

C alculate the partial vapour pressure of water $\mathrm{p}_{\mathrm{w}}$ at $\mathrm{t}{ }^{\circ} \mathrm{C}$ and a relative humidity RH .

$$
\begin{equation*}
p_{w}=R H \times p_{w}^{0} \quad\left(N / \mathrm{m}^{2}\right) \tag{6.72}
\end{equation*}
$$

N ow $p_{w} \times x$ can be calculated.
Figure 6.2 has to be used to find $\alpha_{w}$.

## Step 12

Determine the absorption coefficient for carbon-dioxide $\alpha_{c}$ for an average flame temperature of $T_{f}$ in $K$ from $F$ igure 6.3, in subsection 6.5.2.4, and a distance $x$ from the flame surface.

Now $p_{c} \times x$ can be calculated.

Figure 6.3 has to be used to find $\alpha_{c}$.

## Step 13

The calculation with formula (6.24) in general is much more accurate. If the value of $p_{w} \times x$ is between $10^{4}$ and $10^{5} \mathrm{~N} / \mathrm{m}$, formula (6.29) can be used.

D etermine the atmospheric transmissivity with

$$
\begin{equation*}
\tau_{a}=1-\alpha_{w}-\alpha_{c} \tag{-}
\end{equation*}
$$

or use F igure 6.4 in subsection 6.5.2.4
Step 13a
Calculate the partial vapour pressure of water $p_{w}$ at $t^{\circ} \mathrm{C}$ and a relative humidity RH .

$$
\begin{equation*}
p_{w}=R H \times p_{w}^{0} \quad\left(N / \mathrm{m}^{2}\right) \tag{6.72}
\end{equation*}
$$

An alternative for the calculation of the atmospheric transmissivity $\tau_{a}$ is formula (6.29)

$$
\begin{equation*}
\tau_{\mathrm{a}}=\mathrm{c}_{7} \times\left(\mathrm{p}_{\mathrm{w}} \times \mathrm{x}\right)^{-0.09} \tag{-}
\end{equation*}
$$

in which:
$\mathrm{c}_{7}=2.02\left(\mathrm{~N} / \mathrm{m}^{2}\right)^{0.09} \cdot \mathrm{~m}^{0.09}$
$p_{w}=$ Partial vapour pressure of water in air at a relative humidity RH, in N $/ \mathrm{m}^{2}$
$x=$ D istance from the surface area of the flame to the object in $m$
This formula can only be used for calculations in the range between:

$$
10^{4}<p_{w} \times x<10^{5} \mathrm{~N} / \mathrm{m}
$$

CPR 14E
C hapter 6 of the ' $Y$ ellow B ook'

## Step 14

C alculate the heat flux at a certain distance from the centre of fire ball

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}=S E P_{\mathrm{act}} \times \mathrm{F}_{\mathrm{view}} \times \tau_{\mathrm{a}} \tag{6.4}
\end{equation*}
$$

in which:
$\mathrm{q}^{\prime \prime}=\mathrm{H}$ eat flux at a certain distance, in $\mathrm{J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$
$\tau_{\mathrm{a}} \quad=$ Atmospheric transmissivity
F or the calculation of the $F_{\text {view }}$ the distance $X$ from the centre of the fire ball to the object should be used and for the calculation $\tau_{a}$ the distance $x$, calculated with (6.96) from the surface area of the fire ball should be used.

### 6.6 Application of selected models: calculation example

### 6.6.1 Introduction

In this chapter examples are given of the selected models described in chapter 6.5 of the jet flame, pool fire on land and on water and for the fire ball.
The examples are chosen in such a way that these reflect as much as possible the actual situation.
The examples are presented in steps in a logical order so the approach can easily be translated to a computer program.

### 6.6.2 Jet flames

In this calculation example the heat flux is calculated in 30 steps for an object at a certain distance from a jet flame.
The following input data has been used for the calculation example of a high pressure pipeline (H ole D iameter 100 mm , choked flow) with methane gas:
$\mathrm{W}_{\mathrm{g}}=16.042 \mathrm{~kg} / \mathrm{kmol}=0.016042 \mathrm{~kg} / \mathrm{mol}$
$\mathrm{W}_{\text {air }}=0.02896 \mathrm{~kg} / \mathrm{mol}$
$\mathrm{T}_{\mathrm{s}} \quad=15{ }^{\circ} \mathrm{C}=288.15 \mathrm{~K}$
$\mathrm{T}_{\mathrm{f}}=1200 \mathrm{~K}=926.15^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {air }}=1.01325 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (1 Bar)
$P_{\text {init }}=10^{7} \mathrm{~N} / \mathrm{m}^{2}=\mathrm{Pa}=100 \mathrm{Bar}$
$C_{p}=2201.6 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
$\mathrm{R}_{\mathrm{c}} \quad=8.31451 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{g}=9.80665 \mathrm{~m} / \mathrm{g}$
$\mathrm{u}_{\mathrm{w}}=5 \mathrm{~m} / \mathrm{s}$
$\mathrm{m}^{\prime}=30 \mathrm{~kg} / \mathrm{s}$
$\Theta_{\dot{i}}=85^{\circ}$
$\Theta_{\mathrm{jv}}=\left[\Theta_{\mathrm{j}} \leq \Theta_{\mathrm{jv}} \leq 90^{\circ}\right]$, assumption $\Theta_{\mathrm{jv}}=85^{\circ}$ and wind $\perp$ pipe
$\Delta \mathrm{H}_{\mathrm{c}}=50 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}$
RH $=0.7$
$\mathrm{p}_{\mathrm{w}}=1705 \mathrm{~N} / \mathrm{m}^{2}$ at $15^{\circ} \mathrm{C}$
$\mathrm{p}_{\mathrm{c}} \quad=30.3975 \mathrm{~N} / \mathrm{m}^{2}$ in air ( $0.03 \% \mathrm{CO}_{2}$ in atmosphere)
$\mathrm{T}_{\mathrm{a}}=$ Ambient temperature $15{ }^{\circ} \mathrm{C}=288 \mathrm{~K}$
$\varsigma=0$ (it is assumed that there is no soot formation)
X $\quad=150 \mathrm{~m}$ (D istance release point to receiver)

F irst the flame dimensions will be calculated and the Surface Emmisive Power (SEP). With this data the maximum heat load at a certain distance of the flame can be determined.

## Step 1

D etermine the mass fraction of fuel in a stoichiometric mixture with air:

$$
\begin{align*}
W & =W_{g} /\left(15.816 \times W_{g}+0.0395\right)  \tag{6.30}\\
& =0.0186 /(15.816 \times 0.016042+0.0395) \\
& =0.05471
\end{align*}
$$

## Step 2

C alculate the Poisson constant $\gamma$
Combining formulae (6.31) and (6.32) $\gamma$ can be calculated with:

$$
\begin{aligned}
\gamma \quad & =\left(1-R_{c} /\left(C_{p} \times W_{g}\right)\right)^{-1} \\
& =(1-8.31451 /(2201.6 \times 0.016042))^{-1} \\
& =1.30788
\end{aligned}
$$

(this number will be used in the calculations).

## Step 3

D etermine the temperature of the expanding jet:

$$
\begin{align*}
\mathrm{T}_{\mathrm{j}} & =\mathrm{T}_{\mathrm{s}} \times\left(\mathrm{P}_{\text {air }} / \mathrm{P}_{\text {init }}\right)^{((\gamma-1) / \gamma)}  \tag{6.33}\\
& =288.15 \times\left(1.01325 \cdot 10^{5} / 10^{7}\right)^{(1.30788-1) / 1.30788)} \\
& =97.758 \mathrm{~K}
\end{align*}
$$

## Step 4

D etermine the static pressure at the hole exit plane:

$$
\begin{align*}
\mathrm{P}_{\mathrm{c}} \quad & =\mathrm{P}_{\text {init }} \times(2 /(\gamma+1))^{(\gamma /(\gamma-1))}  \tag{6.34}\\
& =10^{7} \times(2 /(1.30788+1))^{(1.30788 /(1.30788-1))} \\
& =5.443070 \cdot 10^{6} \mathrm{~N} / \mathrm{m}^{2}
\end{align*}
$$

## Step 5

D etermine the $M$ ach-number of the expanding jet:

$$
\begin{align*}
\mathrm{M}_{\mathrm{j}}= & \left(\left((\gamma+1) \times\left(\mathrm{P}_{\mathrm{d}} / \mathrm{P}_{\mathrm{air}}\right)((\gamma-1) /(\gamma)-2) /(\gamma-1)\right)^{1 / 2}\right.  \tag{6.35}\\
= & (((1.30788+1) \times \\
& \left.\left.\left(5.443 \cdot 10^{6} \mathrm{~N} / \mathrm{m}^{2} / 1.01325 \cdot 10^{5}\right)^{((1.30788-1) / 1.30788)}-2\right) /(1.30788-1)\right)^{1 / 2} \\
= & 3.55688
\end{align*}
$$

Step 6
D etermine the exit velocity of the expanding jet

$$
\begin{aligned}
u_{j} \quad & =M_{j} \times\left(\gamma \times R_{c} \times T_{j} / W_{g}\right)^{1 / 2} \\
& =3.55688 \times(1.30788 \times 8.31451 \times 97.758 / 0.016042)^{1 / 2} \\
& =915.60648 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Step 7
D etermine the ratio of wind speed to jet velocity

$$
\begin{align*}
\mathrm{R}_{\mathrm{w}} & =\mathrm{u}_{\mathrm{w}} / \mathrm{u}_{\mathrm{j}}  \tag{6.37}\\
& =5 / 915.60648 \\
& =0.00546
\end{align*}
$$

Step 8
D etermine the density of air:

$$
\begin{align*}
\rho_{\mathrm{air}} & =\left(\mathrm{P}_{\text {air }} \times \mathrm{W}_{\text {air }}\right) /\left(\mathrm{R}_{\mathrm{c}} \times \mathrm{T}_{\text {air }}\right)  \tag{6.38}\\
& =\left(1.01325 \cdot 10^{5} \times 0.02896\right) /(8.31451 \times 288.15) \\
& =1.224785 \mathrm{~kg} / \mathrm{m}^{3}
\end{align*}
$$

C alculate the density in the jet:

$$
\begin{align*}
\mathrm{P}_{\mathrm{j}} \quad & =\mathrm{P}_{\mathrm{c}} \times \mathrm{W}_{\mathrm{g}} /\left(\mathrm{R}_{\mathrm{c}} \times \mathrm{T}_{\mathrm{j}}\right) \\
& =5.443070 \cdot 10^{6} \times 0.016042 /(8.31451 \times 97.758)  \tag{6.40}\\
& =107.43 \mathrm{~kg} / \mathrm{m}^{3}
\end{align*}
$$

Step 9
D etermine combustion source diameter (choked):

$$
\begin{aligned}
D_{s} & =d_{j} \times \sqrt{\frac{P_{j}}{\rho_{\mathrm{air}}}} \\
& =0.1(=100 \mathrm{~mm})-\sqrt{\frac{107.43}{1.224785}} \\
& =0.93656 \mathrm{~m}
\end{aligned}
$$

Step 10
C alculate first $Y$ by iteration with the equation

$$
\begin{equation*}
C_{a} \times Y^{5 / 3}+C_{b} \times Y^{2 / 3}-C_{c}=0 \tag{6.42}
\end{equation*}
$$

This involves the following coefficients:

$$
\begin{aligned}
C_{a} & =0.024 \times\left(g \times D_{\delta} / u_{j}^{2}\right)^{1 / 3} \\
& =0.024 \times\left(9.80665 \times 0.93656 /\left(915.60648^{2}\right)^{1 / 3}\right. \\
& =5.33 \cdot 10^{-4} \\
C_{b} & =0.2 \\
C_{c} & =(2.85 / W)^{2 / 3} \\
& =(2.85 / 0.05471)^{2 / 3} \\
& =13.9482 \\
5.33 & \cdot 10^{-4} \times Y^{5 / 3}+0.2 \times Y^{2 / 3}-13.9482=0
\end{aligned}
$$

as a result of an iteration, becomes $Y=262.716$

## Step 11

D etermine the length of the jet flame in still air:

$$
\begin{align*}
\mathrm{L}_{\text {b0 }} & =\mathrm{Y} \times \mathrm{D}_{\mathrm{s}}  \tag{6.43}\\
& =262.716 \times 0.93656 \\
& =246.05056 \mathrm{~m}
\end{align*}
$$

## Step 12

D etermine the length of the jet flame measured from the tip of the flame to the centre of the exit plane:

$$
\begin{align*}
\mathrm{L}_{\mathrm{b}} & =\mathrm{L}_{b 0} \times\left(\left(0.51 \times \mathrm{e}^{\left(-0.4 \times \mathrm{u}_{w}\right)}+0.49\right)\right) \times\left(1.0-6.07 \cdot 10^{-3} \times\left(\Theta_{\mathrm{j}}-90^{\circ}\right)\right) \\
& =246.05056 \times\left(\left(0.51 \times \mathrm{e}^{(-0.4 \times 5)}+0.49\right)\right) \times\left(1.0-6.07 \cdot 10^{-3} \times\left(85^{\circ}-90^{\circ}\right)\right) \\
& =141.72199 \mathrm{~m} \tag{6.44}
\end{align*}
$$

## Step 13

D etermine the Richardson number on the flame in still air:

$$
\begin{array}{ll}
\operatorname{Ri}\left(\mathrm{L}_{\text {bo }}\right) & =\left(\mathrm{g} /\left(\mathrm{D}_{\mathrm{s}}^{2} \times u_{\mathrm{j}}^{2}\right)\right)^{1 / 3} \times \mathrm{L}_{\text {b0 }}  \tag{6.45}\\
\operatorname{Ri}(246.05056) & \left.=\left(9.80665 /(0.93656)^{2} \times(915.60648)^{2}\right)\right)^{1 / 3} \times 246.05056 \\
& =5.8349
\end{array}
$$

Because $R_{w} \leq 0.05$, the flame is jet dominated, and the tilt angle $\alpha$ is given by:

$$
\begin{aligned}
\alpha \quad & =\left(\Theta_{\mathrm{jv}}-90^{\circ}\right) \times\left(1-\mathrm{e}^{(-25.6 \times \mathrm{Rw})}\right)+8000 \times \mathrm{R}_{\mathrm{w}} / \mathrm{Ri}\left(\mathrm{~L}_{\mathrm{b}}\right) \\
& \left.=\left(85^{\circ}-90^{\circ}\right) \times\left(1-\mathrm{e}^{(-25.6 \times 0.00546)}\right)+8000 \times 0.00546 / 5.8349\right) \\
& =6.8348
\end{aligned}
$$

## Step 14

D etermine the lift-off of the flame (b):

$$
\begin{align*}
\mathrm{K} & =0.185 \times \mathrm{e}^{-20 \mathrm{Rw}}+0.015 \\
& =0.185 \times \mathrm{e}^{-20 \times 0.0546}+0.015=0.180859 \\
\mathrm{~b} & =\mathrm{L}_{\mathrm{b}} \times \frac{\sin \mathrm{K} \alpha}{\sin \alpha}  \tag{6.49}\\
& =141.72199 \times \frac{\sin (0.180859 \times 6.8348)}{\sin 6.8348}= \\
& =25.69
\end{align*}
$$

for $\alpha=0^{\circ}$ or $180^{\circ}$ than $b$ is equal to $0.2 \times L_{b}$ in still air $\left(\alpha=0^{\circ}\right)$, or $b=0.015$ for 'lazy' flames pointing directly into high winds ( $\alpha=0^{\circ}$ )

Step 15
D etermine length of frustum (flame):

$$
\begin{align*}
R_{।} & =\left(L_{b}^{2}-b^{2} \times \sin ^{2}(\alpha)\right)^{1 / 2}-b \times \cos (\alpha)  \tag{6.50}\\
& =\sqrt{(141.72199)^{2}-(25.69)^{2} \times \sin ^{2}(6.8348)}-25.69 \times \cos (6.8348)= \\
& =116.18097 \mathrm{~m}
\end{align*}
$$

Step 16
D etermine the ratio between air and jet density:

$$
\begin{align*}
\rho_{\text {air }} / \rho_{\mathrm{j}} & =\mathrm{T}_{\mathrm{j}} \times W_{\text {air }} /\left(T_{\text {air }} \times W_{\mathrm{g}}\right)  \tag{6.51}\\
& =97.758 \times 0.02896 / 288.15 \times 0.0160428 \\
& =0.612424
\end{align*}
$$

## Step 17

Determine the Richardson number based on the combustion source diameter and factor $C^{\prime}$, used in calculating the frustum base width:

$$
\begin{align*}
& \operatorname{Ri}\left(D_{s}\right)=\left(g /\left(D_{s}^{2} \times u_{j}^{2}\right)\right)^{1 / 3} \times D_{s}  \tag{6.52}\\
& \operatorname{Ri}(0.1958)=\left(9.80665 /(0.93656)^{2} \times(915.60648)^{2}\right)^{1 / 3} \times 0.93656 \\
&=0.0222 \\
& C^{\prime}=1000 \times \mathrm{e}^{(-100 \times R w)}+0.8=1000 \times \mathrm{e}^{-100 \times 0.0062}+0.8=580.0123431 \tag{6.53}
\end{align*}
$$

## Step 18

D etermine frustum base width:

$$
\begin{align*}
\mathrm{W}_{1}= & \mathrm{D}_{\mathrm{s}} \times\left(13.5 \times \mathrm{e}^{(-6 \times R \mathrm{Rw})}+1.5\right) \times\left(1-\left(1-\left(\rho_{\mathrm{air}} / \rho_{\mathrm{j}}\right)^{1 / 2} / 15\right) \times \mathrm{e}^{\left.-70 \times R \mathrm{Ri}(\mathrm{Ds})^{\mathrm{C} \times R \mathrm{w}}\right)}\right. \\
= & 0.93656 \times\left(13.5 \times \mathrm{e}^{(-6 \times 0.00546)}+1.5\right) \times\left(1-\left(1-(0.6124)^{1 / 2 / 15)}\right.\right. \\
& \times \mathrm{e}^{\left.(-70 \times 0.0222)^{580.01 \times 0.05546}\right)} \\
= & 0.71691 \mathrm{~m} \tag{6.54}
\end{align*}
$$

Step 19
D etermine frustum tip width:

$$
\begin{align*}
\mathrm{W}_{2} & =\mathrm{L}_{\mathrm{b}} \times\left(0.18 \times \mathrm{e}^{(-1.5 \times \mathrm{Rw})}+0.31\right) \times\left(1-0.47 \times \mathrm{e}^{(-25 \times \mathrm{Rw})}\right) \\
& =141.72199 \times\left(0.18 \times \mathrm{e}^{(-1.5 \times 0.00546)}+0.31\right) \times\left(1-0.47 \times \mathrm{e}^{(-25 \times 0.00546)}\right) \\
& =40.84751 \mathrm{~m} \tag{6.55}
\end{align*}
$$

Step 20
D etermine the surface area of the frustum, including end discs:

$$
\begin{align*}
A= & \pi / 4 \times\left(W_{1}^{2}+W_{2}^{2}\right)+\pi / 2 \times\left(W_{1}+W_{2}\right) \times\left(R_{1}^{2}+\left(\left(W_{2}-W_{1}\right) / 2\right)^{2}\right)^{1 / 2} \\
= & 3.1416 / 4 \times\left(0.71691^{2}+40.84751^{2}\right)+3.1416 / 2 \times \\
& \left.(0.71691+40.84751) \times(116.18097)^{2}+((40.84751-0.71691) / 2)^{2}\right)^{1 / 2} \\
= & 9008.52 \mathrm{~m}^{2} \tag{6.56}
\end{align*}
$$

Step 20 a
D etermine the surface area of a cylinder with the average of the widths

$$
\begin{align*}
\mathrm{A}= & \pi / 2 \times\left(\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right) / 2\right)^{2}+\pi \times \mathrm{R}_{1} \times\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right) / 2  \tag{6.57}\\
= & 3.1416 / 2 \times((0.71691+40.84751) / 2)^{2}+3.1416 \times 116.18097 \times \\
& (0.71691+40.84751) / 2 \\
= & 8263.79 \mathrm{~m}^{2}
\end{align*}
$$

Step 21
D etermine the net heat released:

$$
\begin{align*}
Q^{\prime} \quad & =m^{\prime} \times \Delta H_{c}  \tag{6.58}\\
& =30 \times 50 \cdot 10^{6} \\
& =1.5 \cdot 10^{9} \mathrm{~J}
\end{align*}
$$

Step 22
D etermine the fraction of heat radiated from the flame surface:

$$
\begin{align*}
\mathrm{F}_{\mathrm{s}} & =0.21 \times \mathrm{e}^{\left(-0.00323 \times \mathrm{u}_{\mathrm{j}}\right)}+0.11  \tag{6.59}\\
& =0.21 \times \mathrm{e}^{(-0.00323 \times 915.6064)}+0.11 \\
& =0.12091
\end{align*}
$$

Step 23
D etermine the theoretical Surface Emissive Power SEP $\mathrm{P}_{\text {act }}$ :

$$
\begin{align*}
S E P P_{a c t} & =F_{s} \times Q^{\prime} / A  \tag{6.60}\\
& =0.12091 \times \frac{1.5 \cdot 10^{9}}{8263.79} \\
& \approx 21.951 \cdot 10^{3} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& =21.951 \mathrm{~kW} / \mathrm{m}^{2}
\end{align*}
$$

## Step 24

Calculate the transformation parameters $X^{\prime}, \Theta^{\prime}$ and X

$$
\begin{aligned}
X^{\prime} \quad & =\left(\left(b \times \sin \Theta_{\mathrm{j}}\right)^{2}+\left(\mathrm{X}-\mathrm{b} \times \cos \Theta_{\mathrm{j}}\right)^{2}\right)^{1 / 2} \\
& =\left(\left(25.69 \times \sin \left(85^{\circ}\right)\right)^{2}+\left(150-25.69 \times \cos \left(85^{\circ}\right)\right)^{2}\right)^{1 / 2} \\
& =149.96 \mathrm{~m} \\
\Theta^{\prime} \quad & =90^{\circ}-\Theta_{\mathrm{j}}+\alpha-\arctan \left(\mathrm{b} \times \sin \Theta_{\mathrm{j}} /\left(\mathrm{X}-\mathrm{b} \times \cos \Theta_{\mathrm{j}}\right)\right) \\
& =90^{\circ}-85+6.8348-\arctan \left(25.69 \times \sin 85^{\circ} /\left(150-25.69 \times \cos 85^{\circ}\right)\right) \\
& =2.00843 \\
X \quad & =X^{\prime}-\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right) / 4 \\
& =149.96-\frac{(0.71691+40.84751)}{4} \\
& =139.5698 \mathrm{~m}
\end{aligned}
$$

Step 25
Calculate the value of the view factor with the formulae presented in Appendix, Section 3, for a tilted cylinder. A tilted cylinder matches the shape of the flame.

At a distance of 46.7 metres from the flame and $\Theta^{\prime}$ of $8.7^{\circ}$, a view factor of 0.0672 can be calculated with the formulae from Appendix (see also step 29).

## Step 26

C alculate the actual Surface E missive Power SEP ${ }_{\text {act }}$, assuming for a methane flame hardly any soot formation. This means that $\varsigma=0$, then

$$
\begin{equation*}
S E P_{\text {act }}=S E P_{\max } \times(1-\varsigma)+S E P_{\text {soot }} \times \varsigma \tag{6.20}
\end{equation*}
$$

becomes

$$
\begin{aligned}
S E P_{\text {act }} & =S E P_{\max } \\
& =21.951 \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

Step 27
D etermine absorption factor for water vapour $\alpha_{w}$ for an average flame temperature of 1200 K from $F$ igure 6.2 and a distance $x$ of 46.7 metres.

C alculate the partial vapour pressure of water $\mathrm{p}_{\mathrm{w}}$ at $15{ }^{\circ} \mathrm{C}$ and a relative humidity RH of 0.7

$$
\begin{align*}
\mathrm{p}_{\mathrm{w}} & =R H \times p_{w}^{0}  \tag{6.72}\\
& =0.7 \times 1705 \\
& =1193.5
\end{align*}
$$

$$
p_{w} \times x=1193.5 \times 139.5698=16.6576 \cdot 10^{4} \mathrm{~N} / \mathrm{m}
$$

F rom Figure 6.2, subsection 6.5.2.4, it can be found that $\alpha_{w}=0.2776$
Step 28
Determine the absorption coefficient for carbon-dioxide $\alpha_{c}$ for an average flame temperature of 1200 K from Figure 6.3 and a distance $x$ of 46.7 metres

$$
p_{c} \times x=30.3975 \times 139.5698=4.242 \cdot 10^{3} \mathrm{~N} / \mathrm{m}
$$

From Figure 6.3, subsection 6.5.2.4, it can be found that $\alpha_{c}=0.04941$

Step 28a
D etermine the atmospheric transmissivity

$$
\begin{align*}
& \tau_{\mathrm{a}}=1-\alpha_{w}-\alpha_{c}  \tag{6.24}\\
& \tau_{\mathrm{a}}=1-0.2776-0.04941=0.67302
\end{align*}
$$

or Figure 6.4, in subsection 6.5.2.4 can be used

Step 28b


An alternative way of calculating the atmospheric transmissivity

$$
\begin{align*}
\tau_{\mathrm{a}} \quad & =2.02 \times\left(\mathrm{p}_{\mathrm{w}} \times x\right)^{-0.08}  \tag{6.29}\\
& =2.02 \times\left(16.6576 \cdot 10^{4}\right)^{-0.08} \\
& =0.772
\end{align*}
$$

There is some difference with the calculated atmospheric transmissivity in step 28b. It is decided that the result of step 28 will be taken for the calculation of the maximum heat flux in step 30.

Step 29
C alculate the view factor $F_{\text {view }}$ with the formulae in Appendix, section 3.1

```
\(R \quad=\left(W_{1}+W_{2}\right) / 4=(0.71691+40.84751) / 4=10.3911 \mathrm{~m}\)
\(X \quad=X^{\prime}=149.96 \mathrm{~m}\)
\(\mathrm{L} \quad=\mathrm{R}_{\mathrm{I}}=116.18097 \mathrm{~m}\)
\(\Theta \quad=\Theta^{\prime}=2.00843^{\circ}\)
a \(=L / R\)
    \(=116.18097 / 10.3911=11.18\)
b \(=X / R\)
    \(=149.96 / 10.3911=14.43166\)
\(A=\sqrt{\left(a^{2}+(b+1)^{2}-2 \times a \times(b+1) \times \sin \theta\right)}\)
    \(=\sqrt{\left(11.18^{2}+(14.43166+1)^{2}-2 \times 11.18 \times(14.43166+1) \times \sin \left(2.00843^{\circ}\right)\right)}\)
    \(=18.736\)
\(B=\sqrt{\left(a^{2}+(b-1)^{2}-2 \times a \times(b-1) \times \sin \theta\right)}\)
    \(=\sqrt{\left(11.18^{2}+(14.43166-1)^{2}-2 \times 11.18 \times(14.43166-1) \times \sin \left(200843^{\circ}\right)\right)}\)
    \(=17.1724\)
\(C=\sqrt{\left(1+\left(b^{2}-1\right) \times \cos ^{2} \theta\right)}\)
    \(=\sqrt{\left(1+\left(14.43166^{2}-1\right) \times \cos ^{2}\left(2.00843^{\circ}\right)\right)}\)
    \(=14.4228\)
\(D \quad=\sqrt{((b-1) /(b+1))}\)
    \(=\sqrt{((14.43166-1)) /(14.43166+1)})\)
    \(=0.93295\)
\(\mathrm{E}=(\mathrm{a} \times \cos \theta) /(\mathrm{b}-\mathrm{a} \times \sin \theta)\)
    \(=\left(11.18 \times \cos \left(2.00843^{\circ}\right)\right) /\left(14.43166-11.18 \times \sin \left(2.00843^{\circ}\right)\right)\)
    \(=0.79587\)
```

$$
\begin{aligned}
F \quad & =\sqrt{\left(b^{2}-1\right)} \\
& =\sqrt{\left(14.43166^{2}-1\right)} \\
& =14.3969
\end{aligned}
$$

The maximum view factors $F_{h}$ and $F_{v}$ can now be calculated with formulae (6.A.14) and (6.A.15), respectively.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{v}}=0.02665 \\
& \mathrm{~F}_{\mathrm{h}}=0.00934
\end{aligned}
$$

The maximum view factor can be calculated with formula (6.A.18).

$$
\begin{align*}
F_{\max } & =\sqrt{\left(F_{v}^{2}+F_{h}^{2}\right)}  \tag{6.A.18}\\
& =\sqrt{\left(0.02665^{2}+0.00934^{2}\right)} \\
& =0.0282
\end{align*}
$$

## Step 30

C alculate the maximum heat flux at a distance of 49.8 metres from the centre of the flame to the radiated object.

$$
\begin{align*}
q^{\prime \prime} & =S E P_{\text {act }} \times F_{\text {view }} \times \tau_{a}  \tag{6.4}\\
& =2.1951 \cdot 10^{4} \times 0.0282 \times 0.673 \\
& =417.236 \mathrm{~J} / \mathrm{m}^{2} \mathrm{~s}=0.417 \mathrm{~kW} / \mathrm{m}^{2}
\end{align*}
$$

### 6.6.3 Pool fires on land (confined)

In this calculation example the heat flux is calculated in 13 steps for an object at a certain distance from a confined pool fire on land.

In this example we consider a pool caused by a release of $28.3 \mathrm{~m}^{3}$ of benzeen with a thickness of about 0.02 m .

The following input has been used for the calculation example:

```
V = 28.3 m
\delta}=0.02\textrm{m
m}=\rho\cdotV=882\times28.3=24960 k
u
m}\mp@subsup{}{\infty}{\prime\prime}=0.085\textrm{kg}/\mp@subsup{\textrm{m}}{}{2}\cdot\textrm{s}(\mathrm{ from table 6.2)
k\times\beta=2.7 m
v = kinematic viscosity of air at 15 ' C , 7.5133\cdot10-6 m}\mp@subsup{\textrm{m}}{}{\circ}/\textrm{s}\mathrm{ (from Annex 1)
g= = 9.80665 m/s
```

```
RH = 0.7 = 70%
pow
p
Ta}=\mathrm{ Ambient temperature 15 ' }\textrm{C}=288.15\textrm{K
\varsigma = 0.8=80%
\DeltaH
Tb}=80.056 ' C (= 353.206 K)
\rhoair }=1.2243 kg/\mp@subsup{m}{}{3
x = 100 m (from centre of pool)
SEP Poot }=20\cdot1\mp@subsup{0}{}{3}\textrm{J}/\mp@subsup{\textrm{m}}{}{2}\cdot\textrm{s
```


## Step 1

D etermine the circular pool diameter:

$$
\begin{align*}
\mathrm{D} \quad & =(4 \times \mathrm{V} /(\pi \times \delta))^{1 / 2}  \tag{6.64}\\
& =(4 \times 28.3 /(3.1416 \times 0.02))^{1 / 2} \\
& =42.445 \mathrm{~m}
\end{align*}
$$

Step 2
Determine the pool burning rate m " at still weather conditions

$$
\begin{align*}
\mathrm{m}^{\prime \prime} & =\mathrm{m}_{\infty}{ }^{\prime \prime} \times\left(1-\mathrm{e}^{\mathrm{k} \times \beta^{\times D}}\right)  \tag{6.66}\\
& =0.085 \times\left(1-\mathrm{e}^{-2.7 \times 42.445}\right) \\
& =0.085 \mathrm{~kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)
\end{align*}
$$

In general the value of the factor ( $1-\mathrm{e}^{-\mathrm{k} \beta^{\times \times D}}$ ) is above 0.95 if the pool diameter is more than 1 metre, so $\mathrm{m}^{\prime \prime} \approx \mathrm{m}_{\infty}{ }^{\prime \prime}$.
In Annex 1 data can be found to calculate the burning rate of some single components, which can be used in the calculation of step 2a.

Step 3
D etermine the characteristic wind velocity $u_{c}$

$$
\begin{align*}
\mathrm{u}_{\mathrm{c}} \quad & =\left(\mathrm{g} \times \mathrm{m} " \times \mathrm{D} / \rho_{\mathrm{air}}\right)^{1 / 3}  \tag{6.14}\\
& =(9.80665 \times 0.085 \times 42.445 / 1.2243)^{1 / 3} \\
& =3.06866 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

Step 4
D etermine the dimensionless wind velocity $u^{*}$

$$
\begin{align*}
u^{*} \quad & =u_{w} / u_{c}  \tag{6.13}\\
& =5 / 3.06866 \\
& =1.62937
\end{align*}
$$

Step 5
D etermine the mean length of the fire

$$
\begin{align*}
\mathrm{L} / \mathrm{D} & =55 \times\left(\mathrm{m}^{1} /\left(\rho_{\mathrm{air}} \times(\mathrm{g} \times \mathrm{D})^{1 / 2}\right)\right)^{0.67} \times\left(\mathrm{u}^{*}\right)^{-0.21}  \tag{6.12}\\
& =55 \times\left(0.085 /\left(1.2243 \times(9.80665 \times 42.445)^{1 / 2}\right)\right)^{0.67} \times 1.62937^{-0.21} \\
& =1.101938
\end{align*}
$$

$$
\begin{aligned}
\mathrm{L} & =1.101938 \times \mathrm{D} \\
& =1.101938 \times 42.445 \\
& =46.7725 \mathrm{~m}
\end{aligned}
$$

## Step 6

D etermine the flame tilt angle $\Theta$ :

$$
\begin{align*}
\mathrm{Fr}_{10} & =\mathrm{u}_{\mathrm{w}}{ }^{2} /(\mathrm{g} \times \mathrm{D})  \tag{6.68}\\
& =5^{2} /(9.80665 \times 42.445) \\
& =0.0545 \\
\mathrm{Re} & =\mathrm{u}_{\mathrm{w}} \times \mathrm{D} / v  \tag{6.69}\\
& =5 \times 42.445 / 7.5133 \cdot 10^{-6} \\
& =2.824 \cdot 10^{7} \\
\tan \Theta / \cos \Theta & =0.666 \times\left(\mathrm{Fr}_{10}\right)^{0.333} \times(\mathrm{Re})^{0.117}  \tag{6.16}\\
& =0.666 \times(0.0545)^{0.333} \times\left(2.824 \cdot 10^{7}\right)^{0.117} \\
& =1.94315
\end{align*}
$$

In general, if $\tan \Theta / \cos \Theta=c$, then $\Theta$ can analytically be calculated by:

$$
\begin{align*}
\Theta \quad & =\arcsin \left(\left(\left(4 \times \mathrm{c}^{2}+1\right)^{1 / 2}-1\right) /(2 \times \mathrm{c})\right)  \tag{6.70}\\
& =\arcsin \left(\left(\left(4 \times 1.94315^{2}+1\right)^{1 / 2}-1\right) /(2 \times 1.94315)\right) \\
& =50.8286^{\circ}
\end{align*}
$$

## Step 7

D etermine the actual elongated flame base dimension

Step 7a)

$$
\begin{align*}
\mathrm{D}^{\prime} / \mathrm{D} & =1.6 \times\left(\mathrm{Fr}_{10}\right)^{0.061} \text { for a conical flame presentation }  \tag{6.18-1}\\
& =1.6 \times(0.0545)^{0.061} \\
& =1.3398 \\
D^{\prime} \quad & =1.3398 \times 42.445 \\
& =56.867 \mathrm{~m}
\end{align*}
$$

Step 7b)

$$
\begin{align*}
D^{\prime} / \mathrm{D} & =1.5 \times\left(\mathrm{Fr}_{10}\right)^{0.069} \text { for a cylindrical flame presentation }  \tag{6.18-2}\\
& =1.5 \times(0.0545)^{0.069} \\
& =1.2272 \\
D^{\prime} \quad & =1.2272 \times 42.445 \\
& =52.0869 \mathrm{~m}
\end{align*}
$$

Step 8
C alculate the Surface Emissive Power SEP theor for a tilted cylindrical flame

$$
\begin{align*}
\text { SEP } & =140 \cdot 10^{3} \times \mathrm{e}^{-0.12 \times \mathrm{D}}+20 \cdot 10^{3} \times\left(1-\mathrm{e}^{-0.12 \times \mathrm{D}}\right)  \tag{6.19}\\
& =140 \cdot 10^{3} \times \mathrm{e}^{-0.12 \times 42.445}+20 \cdot 10^{3} \times\left(1-\mathrm{e}^{-0.12 \times 42.445}\right) \\
& =21 \cdot 10^{3} \mathrm{~W} / \mathrm{m}^{2}
\end{align*}
$$

F rom table 6.6, $\mathrm{F}_{\mathrm{s}}$ has been estimated at 0.40

$$
\begin{align*}
S E P_{\max } & =\mathrm{F}_{\mathrm{s}} \times \mathrm{m}^{\prime \prime} \times \Delta \mathrm{H}_{\mathrm{c}} /(1+4 \times \mathrm{L} / \mathrm{D})  \tag{6.71}\\
& =0.40 \times 0.085 \times 4.015 \cdot 10^{7} /(1+4 \times 1.101938) \\
& =25.24 \cdot 10^{4} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

In literature $\varsigma=80 \%$ has been found

$$
\begin{align*}
S E P_{\text {act }} & =S E P_{\max } \times(1-\varsigma)+\mathrm{SEP}_{\text {soot }} \times 5  \tag{6.20}\\
& =25.24 \cdot 10^{4} \times(1-0.8)+20 \cdot 10^{3} \times 0.8 \\
& =6.6 \cdot 10^{4} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

## Step 9

D etermine absorption factor for water vapour $\alpha_{w}$ for an average flame temperature of 1200 K from Figure 6.2, in subsection 6.5.2.4, and for a distance x of 50 m from the flame surface.

C alculate the partial vapour pressure of water $\mathrm{p}_{\mathrm{w}}$ at $15{ }^{\circ} \mathrm{C}$ and a relative humidity RH of 0.7 .

$$
\begin{align*}
\mathrm{p}_{\mathrm{w}} & =\mathrm{RH} \times \mathrm{p}_{\mathrm{w}}^{0}  \tag{6.72}\\
& =0.7 \times 1705 \\
& =1193.5 \mathrm{~N} / \mathrm{m}^{2} \\
& \\
\mathrm{p}_{\mathrm{w}} \times \mathrm{x} & =1193.5 \times 100 \\
& =11.93 .10^{4} \mathrm{~N} / \mathrm{m}
\end{align*}
$$

From Figure 6.2 it can be found that $\alpha_{w}=0.24513$
Step 10
Determine the absorption coefficient for carbon-dioxide $\alpha_{c}$ for an average flame temperature of 1200 K from Figure 6.3, subsection 6.5.2.4, and a distance $x$ of 50 metres

$$
\begin{aligned}
\mathrm{p}_{\mathrm{c}} \times \mathrm{x} & =30.3975 \times 100 \\
& =3.03975 \cdot 10^{3} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

From Figure 6.3 it can be found that $\alpha_{c}=0.0401285$

## Step 11

The calculation with formula (6.24) is generally much more accurate. If the value of $p_{w} \times x$ is between $10^{4}$ and $10^{5} \mathrm{~N} / \mathrm{m}$, formula (6.29) can be used.

D etermine the atmospheric transmissivity

$$
\begin{aligned}
\tau_{\mathrm{a}} & =1-\alpha_{\mathrm{w}}-\alpha_{\mathrm{c}} \\
& =1-0.24513-0.0401285 \\
& =0.71474
\end{aligned}
$$

or use Figure 6.4 in subsection 6.5.2.4.

Step 12
C alculate the view factor with the formulae from Appendix, section 3

$$
\begin{aligned}
a & =\mathrm{L} / \mathrm{R} \\
& =46.7725 / 21.222 \\
& =2.20396
\end{aligned}
$$

b $\quad=X / R$
$=100 / 21.222$
$=4.712$
$A=\sqrt{\left(a^{2}+(b+1)^{2}-2 \times a \times(b+1) \times \sin \theta\right)}$
$=\sqrt{\left(2.20396^{2}+(4.712+1)^{2}-2 \cdot 2.20396 \times(4.712+1) \times \sin \left(50.8286^{\circ}\right)\right)}$
$=4.2384$
$B=\sqrt{\left(a^{2}+(b-1)^{2}-2 \times a \times(b-1) \times \sin \theta\right)}$
$\left.=\sqrt{\left(2.20396^{2}+(4.712-1)^{2}-2 \times 2.20396 \times(4.712-1) \times \sin \left(50.8286^{\circ}\right)\right.}\right)$
$=2.439498$
$C=\sqrt{\left(1+\left(b^{2}-1\right) \times \cos ^{2} \theta\right)}$
$=\sqrt{\left(1+\left(4.712^{2}-1\right) \times \cos ^{2}\left(50.8286^{\circ}\right)\right)}$
$=3.07555$

D $\quad=\sqrt{((b-1) /(b+1))}$
$=\sqrt{((4.712-1) /(4.712+1)})$
$=0.806135$

$$
\begin{aligned}
\mathrm{E} & =(\mathrm{a} \times \cos \theta) /(\mathrm{b}-\mathrm{a} \times \sin \theta) \\
& =\left(2.20396 \times \cos \left(50.8286^{\circ}\right)\right) /\left(4.712-2.20396 \times \sin \left(50.828^{\circ}\right)\right) \\
& =0.4635 \\
\mathrm{~F} & =\sqrt{\left(\mathrm{b}^{2}-1\right)} \\
& =\sqrt{\left(4.712^{2}-1\right)} \\
& =4.60457
\end{aligned}
$$

The maximum view factors $F_{h}$ and $F_{v}$ can now be calculated with formulae (6.A.14) and (6.A.15), respectively.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{v}}=0.091915 \\
& \mathrm{~F}_{\mathrm{h}}=0.029146
\end{aligned}
$$

The maximum view factor can be calculated with formula (6.A.18).

$$
\begin{align*}
F_{\max } & =\sqrt{\left(F_{\mathrm{V}}^{2}+\mathrm{F}_{\mathrm{h}}^{2}\right)}  \tag{6.A.18}\\
& =\sqrt{\left(0.091915^{2}+0.029146\right)^{2}} \\
& =0.0964
\end{align*}
$$

Step 13
Calculate the maximum heat flux at a distance of 50 metres

$$
\begin{align*}
q^{\prime \prime} \quad & =S E P_{\text {act }} \times F_{\text {view }} \times \tau_{a}  \tag{6.4}\\
& =6.6 \cdot 10^{4} \times 0.0964 \times 0.71474 \\
& =4.581 \cdot 10^{3} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

### 6.6.4 Pool fires on land (unconfined)

In this calculation example the heat flux is calculated in 22 steps for an object at a certain distance from an unconfined pool fire on land.

In this calculation example, we consider a pool caused by an open 4" valve which is connected with a $196 \mathrm{~m}^{3}$ benzeen storage tank.
At some distance of the tank the benzeen is released at ground level. It is assumed that the flow resistance in the pipe can be neglected.

The following input has been used for the calculation example:
$A_{t} \quad=19.63 \mathrm{~m}^{2}$ (diameter of the tank is 5 metres) $=$

$$
\pi \cdot r^{2}=\pi \times\left(\frac{d}{2}\right)^{2}=\pi \cdot\left(\frac{5}{2}\right)^{2}
$$

$\mathrm{m} \quad=\rho \cdot \mathrm{V}=882 \times 196=172872 \mathrm{~kg}$
$\mathrm{h}_{\mathrm{i}} \quad=196 \mathrm{~m}^{3} / 19.6 \mathrm{~m}^{2}=9.98 \mathrm{~m}$
$\mathrm{g}=9.80665 \mathrm{~m} / \mathrm{s}^{2}$
$C_{0}=0.7$
$\mathrm{d}_{\mathrm{h}} \quad=0.1 \mathrm{~m}=100 \mathrm{~mm}$
$\mathrm{m}^{\prime \prime}=\mathrm{m}^{\prime \prime}=0.085 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$
$\mathrm{k} \times \beta=2.7 \mathrm{~m}^{-1}$
$\rho \quad=882 \mathrm{~kg} / \mathrm{m}^{3}$
$\delta \quad=0.02 \mathrm{~m}$ (assumed thickness) $=20 \mathrm{~mm}$
$\Phi\left(\tau_{i}=0\right)=0$, which means that the ignition took place at the beginning of the release while no liquid pool was present before the release.
$\left.v \quad=7.513 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$
$\mathrm{u}_{\mathrm{w}} \quad=5 \mathrm{~m} / \mathrm{s}$
$\mathrm{T}_{\mathrm{f}}=1200 \mathrm{~K}$
$P_{\text {air }}=1.0133 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$P_{\text {init }}=10^{7} \mathrm{~N} / \mathrm{m}^{2}$
$\gamma=1.4$
$\mathrm{RH}=0.7=70 \%$
$\mathrm{p}_{\mathrm{w}}^{0} \quad=1705 \mathrm{~N} / \mathrm{m}^{2}(\mathrm{RH}=1)$ at $15{ }^{\circ} \mathrm{C}$
$\mathrm{p}_{\mathrm{c}} \quad=30.3975 \mathrm{~N} / \mathrm{m}^{2}\left(0.03 \% \mathrm{CO}_{2}\right.$ in atmosphere $)$
$\mathrm{T}_{\mathrm{a}} \quad=$ Ambient temperature $15{ }^{\circ} \mathrm{C}=288.15 \mathrm{~K}$
$\mathrm{T}_{\mathrm{b}} \quad=80.056^{\circ} \mathrm{C}(=353.206 \mathrm{~K})$
$\varsigma \quad=0.8=80 \%$
$\Delta \mathrm{H}_{\mathrm{c}} \quad=4.015 \cdot 10^{7} \mathrm{~J} / \mathrm{kg}$
$\rho_{\text {air }} \quad=1.2243 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{x} \quad=100 \mathrm{~m}$ (from centre of pool)
$S E P_{\text {soot }}=20 \cdot 10^{3} \mathrm{~J} / \mathrm{m}^{2} . \mathrm{S}$
Step 1
C alculate the surface area $\mathrm{A}_{0}$ of the hole:

$$
\begin{aligned}
\mathrm{A}_{0} & =\pi / 4 \times \mathrm{d}_{\mathrm{h}}^{2} \\
& =3.1416 / 4 \times 0.1^{2}=\pi / 4 \times 0.1^{2} \\
& =0.0079 \mathrm{~m}^{2}
\end{aligned}
$$

Step 2
C alculate the initial outflow velocity $\mathrm{v}_{0}$ :

$$
\begin{align*}
v_{0} \quad & =C_{0} \times\left(2 \times \mathrm{g} \times \mathrm{h}_{\mathrm{i}}\right)^{1 / 2}  \tag{6.75}\\
& =0.7 \times(2 \times 9.8665 \times 9.98)^{1 / 2} \\
& =9.7935 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

Step 3
C alculate the acceleration constant a:

$$
\begin{align*}
a \quad & =\left(C_{0} \times A_{0}\left(A_{t}\right)^{2} \times g\right.  \tag{6.76}\\
& =(0.7 \times 0.0079 / 19.63)^{2} \times 9.80665 \\
& =7.827 \cdot 10^{-7} \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

Step 4
The mass burning rate m " of the petrol at still weather conditions is taken from table 6.5.

$$
\mathrm{m}^{\prime \prime}=0.085 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}
$$

Step 5
C alculate $\tau$

$$
\begin{align*}
\tau & =\mathrm{m}^{\prime \prime} \times \mathrm{t} /(\rho \times \delta)  \tag{6.77}\\
& =0.085 \times \mathrm{t} /(882 \times 0.02) \\
& =4.8185 \cdot 10^{-3} \times \mathrm{t}
\end{align*}
$$

Step 6
Calculate $\Phi$

$$
\begin{align*}
\Phi \quad & =m^{\prime \prime} \times \pi \times R^{2} /\left(\rho \times A_{0} \times v_{0}\right)  \tag{6.78}\\
& =0.085 \times 3.1416 \times R^{2} /(882 \times 0.0079 \times 9.7935) \\
& =3.913 \cdot 10^{-3} \times R^{2}
\end{align*}
$$

Step 7
C alculate $\beta^{\prime}$

$$
\begin{align*}
\beta^{\prime} \quad & =\left(a \times \delta \times \rho /\left(v_{0} \times m^{\prime \prime}\right)\right)  \tag{6.80}\\
& =\left(7.7827 \cdot 10^{-7} \times 0.02 \times 882 /(9.7935 \times 0.085)\right) \\
& =1.649 \cdot 10^{-5}
\end{align*}
$$

Step 8
U se the non-dimensional form of the pool spread differential equation, which is applicable for $\tau_{i} \leq \tau \leq \tau_{D}$; it is assumed that there is a fire when the release has started, thus $\Phi\left(\tau_{i}=0\right)=0$ :

$$
\begin{align*}
\Phi(\tau) & =1+\beta^{\prime}(1-\tau)-\left[1-\Phi_{i}+\beta^{\prime}\left(1-\tau_{i}\right)\right] \mathrm{e}^{-(\tau-\tau i)}  \tag{6.82}\\
& =1+1.649 \cdot 10^{-5} \times(1-\tau)-\left(1+1.649 \cdot 10^{-5}\right) \times \mathrm{e}^{-\tau}
\end{align*}
$$

Step 9
D etermine the time at which the pool diameter will be maximal.
This will be obtained, if $\mathrm{d} \Phi / \mathrm{d} \tau=0$ and means that:

$$
\begin{align*}
\tau_{\max } & =\ln \left(\left(1+\beta^{\prime}\right) / \beta^{\prime}\right)  \tag{6.84}\\
& =\ln \left(\left(1+1.649 \cdot 10^{-5}\right) / 1.649 \cdot 10^{-5}\right) \\
& =11.0128
\end{align*}
$$

## F urthermore

$$
\begin{align*}
\tau & =4.8185 \cdot 10^{-3} \times \mathrm{t}  \tag{6.77}\\
\mathrm{t}_{\max } & =11.0128 / 4.8185 \cdot 10^{-3} \\
& =2285 \mathrm{~s} \\
& =0.63 \mathrm{~h}
\end{align*}
$$

## Step 10

D etermine the maximum pool diameter.

$$
\begin{align*}
\Phi_{\max } & =1+\left(1.649 \cdot 10^{-5} \times(1-11.0128)\right)-\left(1+1.649 \cdot 10^{-5}\right) \times \mathrm{e}^{-11.0128}  \tag{6.82}\\
& =1-1.6511 \cdot 10^{-4}-1.6489 \cdot 10^{-5} \\
& =0.9998
\end{align*}
$$

$$
\begin{align*}
\mathrm{R}_{\max } & =\left(\Phi / 3.913 \cdot 10^{-3}\right)^{1 / 2}  \tag{6.78}\\
& =\left(0.9998 / 3.913 \cdot 10^{-3}\right)^{1 / 2} \\
& =15.985 \mathrm{~m}
\end{align*}
$$

$$
\begin{aligned}
D_{\max } & =2 \times R_{\max }=2 \times 15.985 \\
& =31.97 \mathrm{~m}
\end{aligned}
$$

N ow the same calculations from subsection 6.6 .3 can be applied to calculate the flame height and the heat flux at a certain distance from the tank.

## Step 11

D etermine of the total release time $t_{\text {rel }}$ and duration of the fire $t_{\text {tot }}$.
The total time of the benzene release from the tank will be:

$$
\begin{align*}
\mathrm{t}_{\text {rel }} & =\left(\mathrm{A}_{\mathrm{t}} /\left(\mathrm{C}_{0} \times \mathrm{A}_{0}\right)\right) \times\left(2 \times \mathrm{h}_{\mathrm{i}} / \mathrm{g}\right)^{1 / 2}  \tag{6.85}\\
& =(19.63 /(0.7 \times 0.0079)) \times(2 \times 9.98 / 9.80665)^{1 / 2} \\
& =5064 \mathrm{~s} \\
& =1.41 \mathrm{~h}
\end{align*}
$$

This means that:

$$
\begin{align*}
\tau \quad & =4.8185 \cdot 10^{-3} \times \mathrm{t}  \tag{6.77}\\
& =4.8185 \cdot 10^{-3} \times 5064 \\
& =24.40
\end{align*}
$$

F ormula 6.82 can now be filled in, giving the following result:

$$
\begin{aligned}
\Phi & =1+\left(1.649 \cdot 10^{-5} \cdot(1-24.4)\right)-\left(1+1.649 \cdot 10^{-5}\right) e^{-24.4} \\
& =1-3.85866 \cdot 10^{-4}-2.53 \cdot 10^{-11}=0.9996
\end{aligned}
$$

Because $\mathrm{R}=\left(\Phi / 3.913 \cdot 10^{-3}\right)^{1 / 2}$ it means that the pool diameter will not decrease significantly between 0.63 and 1.41 h .

T he total duration of the fire will be the release time plus the time to burn the benzene in the pool completely.

$$
\begin{align*}
\mathrm{t}_{\text {tot }} & =\mathrm{t}_{\text {rel }}+\delta \times \rho / \mathrm{m}^{\prime \prime}  \tag{6.87}\\
& =5064+0.02 \times(882 / 0.085) \\
& =5271.5 \mathrm{~s} \\
& =1.46 \mathrm{~h}
\end{align*}
$$

Step 12
D etermine the characteristic wind velocity $u_{c}$

$$
\begin{align*}
u_{c} \quad & =\left(\mathrm{g} \times \mathrm{m}^{\prime \prime} \times \mathrm{D} / \rho_{\mathrm{air}}\right)^{1 / 3}  \tag{6.14}\\
& =(9.80665 \times 0.085 \times 31.97 / 1.2243)^{1 / 3} \\
& =2.792 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

## Step 13

D etermine the dimensionless wind velocity $u^{*}$

$$
\begin{align*}
u^{*} & =u_{w} / u_{c}  \tag{6.13}\\
& =5 / 2.792 \\
& =1.79
\end{align*}
$$

Step 14
D etermine the mean length of the fire

$$
\begin{align*}
\mathrm{L} / \mathrm{D} & =55 \times\left(\mathrm{m}^{\mathrm{n}} /\left(\rho_{\mathrm{air}} \times(\mathrm{g} \times \mathrm{D})^{1 / 2}\right)\right)^{0.67} \times\left(\mathrm{u}^{*}\right)^{-0.21}  \tag{6.12}\\
& =55 \times\left(0.085 /\left(1.2243 \times(9.80665 \times 31.97)^{1 / 2}\right)\right)^{0.67} \times(1.79)^{-0.21} \\
& =1.1857 \\
\mathrm{~L} \quad & =1.1857 \times \mathrm{D} \\
& =1.1857 \times 31.97 \\
& =37.91 \mathrm{~m}
\end{align*}
$$

Step 15
D etermine the flame tilt angle $\Theta$ :

$$
\begin{align*}
\mathrm{Fr}_{10} & =\mathrm{u}_{\mathrm{w}}{ }^{2} /(\mathrm{g} \times \mathrm{D})  \tag{6.68}\\
& =5^{2} /(9.80665 \times 37.91) \\
& =0.00799 \\
\operatorname{Re} & =\mathrm{u}_{\mathrm{w}} \times \mathrm{D} / \mathrm{v}  \tag{6.69}\\
& =5 \times 37.91 / 7.513 \cdot 10^{-6} \\
& =2.12 \cdot 10^{7} \\
& \begin{aligned}
\tan \Theta / \cos \Theta & =0.666 \times\left(\mathrm{Fr}_{10} 0^{0.333} \times(\mathrm{Re})^{0.117}\right. \\
& =0.666 \times(0.0799)^{0.333} \times\left(2.12 \cdot 10^{7}\right)^{0.117} \\
& =2.0669
\end{aligned} \tag{6.16}
\end{align*}
$$

In general, if $\tan \Theta / \cos \Theta=c$, then $\Theta$ can analytically be calculated by:

$$
\begin{align*}
\Theta \quad & =\arcsin \left(\left(\left(4 \times c^{2}+1\right)^{1 / 2}-1\right) /(2 \times c)\right)  \tag{6.70}\\
& =\arcsin \left(\left(\left(4 \times 2.0669^{2}+1\right)^{1 / 2}-1\right) /(2 \times 2.0669)\right) \\
& =51.9^{\circ}
\end{align*}
$$

## Step 16

D etermine the actual elongated flame base dimension

## Step 16a)

$$
\begin{align*}
D^{\prime} / \mathrm{D} & =1.6 \times\left(\mathrm{Fr}_{10}\right)^{0.061} \text { for a conical flame presentation }  \tag{6.18-1}\\
& =1.6 \times(0.0799)^{0.061} \\
& =1.371 \\
D^{\prime} \quad & =1.371 \times 31.97 \\
& =43.84 \mathrm{~m}
\end{align*}
$$

Step 16b)

$$
\begin{align*}
D^{\prime} / \mathrm{D} & =1.5 \times\left(\mathrm{Fr}_{10}\right)^{0.069} \text { for a cylindrical flame presentation }  \tag{6.18-2}\\
& =1.5 \times(0.0799)^{0.069} \\
& =1.2599 \\
D^{\prime} \quad & =1.2599 \times 31.97 \\
& =40.28 \mathrm{~m}
\end{align*}
$$

Step 17
C alculate the Surface Emissive Power SEP $\max$ for a tilted cylindrical flame

$$
\begin{align*}
\mathrm{SEP}_{\text {act }} & =140 \cdot 10^{3} \times \mathrm{e}^{-0.12 \times \mathrm{D}}+20 \cdot 10^{3} \times\left(1-\mathrm{e}^{-0.12 \times \mathrm{D}}\right)  \tag{6.19}\\
& =140 \cdot 10^{3} \times \mathrm{e}^{-0.12 \times 31.97}+20 \cdot 10^{3} \times\left(1-\mathrm{e}^{-0.12 \times 31.97}\right) \\
& =3019.96+19568.6=22.59 \cdot 10^{3} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

F rom table 6.6, $\mathrm{F}_{\mathrm{s}}$ has been estimated at 0.40

$$
\begin{align*}
\mathrm{SEP}_{\max } & =\mathrm{F}_{\mathrm{s}} \times \mathrm{m}^{\prime \prime} \times \Delta \mathrm{H}_{\mathrm{d}} /(1+4 \times \mathrm{L} / \mathrm{D})  \tag{6.71}\\
& =0.4 \times 0.085 \times 4.0185 \cdot 10^{7} /(1+4 \times 1.1857) \\
& =23.72 \cdot 10^{4} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

In literature $\varsigma=80 \%$ has been found

$$
\begin{equation*}
S E P_{\text {act }}=S E P_{\max } \times(1-\varsigma)+S E P_{\text {soot }} \times \varsigma \tag{6.20}
\end{equation*}
$$

becomes

$$
\begin{aligned}
& =23.72 \cdot 10^{4} \times(1-0.8)+20 \cdot 10^{3} \times 0.8 \\
& =6.34 \cdot 10^{4} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

Step 18
D etermine absorption factor for water vapour $\alpha_{w}$ for an average flame temperature of 1200 K from Figure 6.2, subsection 6.5.2.4, and for a distance x of 100 m from the flame surface.
C alculate the partial vapour pressure of water $\mathrm{p}_{\mathrm{w}}$ at $15{ }^{\circ} \mathrm{C}$ and a relative humidity RH of 0.7.

$$
\begin{align*}
\mathrm{p}_{\mathrm{w}} & =\mathrm{RH} \times \mathrm{p}_{\mathrm{w}}^{0}  \tag{6.72}\\
& =0.7 \times 1705 \\
& =1193.5 \mathrm{~N} / \mathrm{m}^{2} \\
& \\
\mathrm{p}_{\mathrm{w}} \times \mathrm{x} & =1193.5 \times 100 \\
& =119350 \mathrm{~N} / \mathrm{m}
\end{align*}
$$

From F igure 6.2 it can be found that $\alpha_{w}=0.2497$
Step 19
Determine the absorption coefficient for carbon-dioxide $\alpha_{c}$ for an average flame temperature of 1200 K from Figure 6.3, in subsection 6.5.2.4, and a distance x of 100 metres

$$
p_{c} \times x=3039.75 \mathrm{~N} / \mathrm{m}
$$

From Figure 6.3 it can be found that $\alpha_{c}=0.04$

## Step 20

The calculation with formula (6.24) is generally much more accurate. If the value of $p_{w} \times x$ is between $10^{4}$ and $10^{5} \mathrm{~N} / \mathrm{m}$, formula (6.29) can be used.

D etermine the atmospheric transmissivity

$$
\begin{align*}
\tau_{\mathrm{a}} \quad & =1-\alpha_{\mathrm{w}}-\alpha_{\mathrm{c}}  \tag{6.24}\\
& =1-0.2497-0.04 \\
& =0.71
\end{align*}
$$

or Figure 6.4 in subsection 6.5.2.4 can be used.

Step 21
C alculate the view factor with the formulae from Appendix, section 3

$$
\begin{aligned}
\mathrm{a} & =\mathrm{L} / \mathrm{R} \\
& =37.91 / 15.985 \\
& =2.377 \\
\mathrm{~b} & =X / R \\
& =100 / 15.985 \\
& =6.271
\end{aligned}
$$

CPR 14E
Chapter 6 of the ' $Y$ ellow B ook'

$$
\begin{aligned}
& A=\sqrt{\left(a^{2}+(b+1)^{2}-2 \times a \times(b+1) \times \sin \theta\right)} \\
& =\sqrt{\left(2.377^{2}+(6.271+1)^{2}-2 \times 2.377(6.271+1) \times \sin \left(51.9^{\circ}\right)\right)} \\
& =5.595 \\
& B=\sqrt{\left(a^{2}+(b-1)^{2}-2 \times a \times(b-1) \times \sin \theta\right)} \\
& =\sqrt{\left(2.377^{2}+(6.271-1)^{2}-2 \times 2.377(6.271-1) \times \sin \left(51.9^{\circ}\right)\right)} \\
& =3.703 \\
& C=\sqrt{\left(1+\left(b^{2}-1\right) \times \cos ^{2} \theta\right)} \\
& =\sqrt{\left(1+\left(6.271^{2}-1\right) \times \cos ^{2}\left(51.9^{\circ}\right)\right)} \\
& =3.949 \\
& \text { D } \quad=\sqrt{((b-1) /(b+1))} \\
& =\sqrt{((6.271-1) /(6.271-1+1))} \\
& =0.851 \\
& \mathrm{E}=(\mathrm{a} \times \cos \theta) /(\mathrm{b}-\mathrm{a} \times \sin \theta) \\
& =\left(2.377 \times \cos \left(51.9^{\circ}\right)\right) /\left(6.271-2.377 \times \sin \left(51.9^{\circ}\right)\right) \\
& =0.333 \\
& F=\sqrt{\left(b^{2}-1\right)} \\
& =\sqrt{\left(6.271^{2}-1\right)} \\
& =6.191
\end{aligned}
$$

The maximum view factors $F_{h}$ and $F_{v}$ can now be calculated with formulae (6.A.14) and (6.A.15), respectively.
$F_{v} \quad=0.0466$
$\mathrm{F}_{\mathrm{h}}=0.00977$

The maximum view factor can be calculated with formula (6.A.18).

$$
\begin{align*}
F_{\max } & =\sqrt{\left(F_{v}^{2}+F_{h}^{2}\right)}  \tag{6.A.18}\\
& =\sqrt{\left(0.0466^{2}+0.00977^{2}\right)} \\
& =0.0476
\end{align*}
$$

Step 22
C alculate the maximum heat flux at a distance of 25 metres from the flame surface.

$$
\begin{align*}
q^{"} & =S E P_{\text {act }} \times F_{\text {view }} \times \tau_{\mathrm{a}}  \tag{6.4}\\
& =6.34 \cdot 10^{4} \times 0.00476 \times 0.71 \\
& =2.141 \cdot 10^{3} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

### 6.6.5 Fire balls

In this calculation example the heat flux is calculated in 14 steps for an object at a certain distance from a fire ball.

C alculate the heat flux of a fire ball after a BLEVE of a road tanker with a capacity of $45 \mathrm{~m}^{3}$, at a distance of 200 m . Tank is filled for $85 \%$ with propane.

The following input is required for the calculation:
$\mathrm{V}=\mathrm{Capacity}$ of the tank, is $45 \mathrm{~m}^{3}$
$\mathrm{f} \quad=$ Filling degree, is $0.85=85 \%$
$\rho_{\operatorname{lpg}}=$ Density of LPG is $517 \mathrm{~kg} / \mathrm{m}^{3}$ (propane) $\left( \pm 9^{\circ} \mathrm{C}\right.$ )
$\mathrm{P}_{\mathrm{sv}}=16 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}=\mathrm{Pa}=16 \mathrm{Bar}$
$\Delta \mathrm{H}_{\mathrm{c}}=46.013 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}$
$\Delta \mathrm{H}_{\mathrm{v}}=0.426134 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}$
$\mathrm{C}_{\mathrm{p}}=2.582 \cdot 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\left( \pm 9^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{T}=1717 \mathrm{~K}$ (assumed $\mathrm{T}_{\mathrm{f}}=2000 \mathrm{~K} ; \mathrm{T}_{\text {ambient }}=10^{\circ} \mathrm{C}$
$\mathrm{x}_{\text {bleve }}=200 \mathrm{~m}$
$\mathrm{P}_{\mathrm{w}}{ }^{\circ}=17.05 \mathrm{~N} / \mathrm{m}^{2}$
$P_{c}=30.3975 \mathrm{~N} / \mathrm{m}^{2}\left(0.03 \% \mathrm{CO}_{2}\right.$ in atmosphere)
$\mathrm{T}_{\text {boil }}=230 \mathrm{~K}=-43^{\circ} \mathrm{C}$
Step 1
C alculate the amount of LPG release in case of a complete failure of the tank

$$
\begin{align*}
\mathrm{V}_{\text {rel }} & =\mathrm{f} \times \mathrm{V} \\
& =0.85 \times 45 \\
& =38.25 \mathrm{~m}^{3} \\
\mathrm{~m} & =\mathrm{f} \times \mathrm{V} \times \rho_{\mathrm{lpg}}  \tag{6.89}\\
& =\mathrm{V}_{\text {rel }} \times \rho_{\mathrm{lpg}} \\
& =38.25 \times 517 \\
& =19775 \mathrm{~kg}
\end{align*}
$$

## Step 2

T he radius of the fireball can be calculated from the quantity of combusting material:

$$
\begin{align*}
\mathrm{r}_{\mathrm{fb}} \quad & =3.24 \times \mathrm{m}^{0.325}  \tag{6.90}\\
& =3.24 \times 19775^{0.325} \\
& =80.68 \mathrm{~m}
\end{align*}
$$

Step 3
The duration of the fireball is:

$$
\begin{align*}
\mathrm{t} & =0.852 \times \mathrm{m}^{0.26}  \tag{6.91}\\
& =0.852 \times 19775^{0.26} \\
& =11.15 \mathrm{~s}
\end{align*}
$$

## Step 4

The lift-off height of the fire ball, measured from the centre of the fire ball to the ground underneath the fire ball.

$$
\begin{align*}
\mathrm{H}_{\text {bleve }} & =2 \times \mathrm{r}_{\mathrm{fb}}  \tag{6.22}\\
& =2 \times 80.68 \\
& =161.366 \mathrm{~m}
\end{align*}
$$

## Step 5

C alculate the distance $X$ from the centre of the fire ball to the object.

$$
\begin{align*}
X \quad & =\left(x_{\text {bleve }}^{2}+H_{\text {bleve }}^{2}\right)^{1 / 2}  \tag{6.92}\\
& =\sqrt{2000^{2}+161.366^{2}} \\
& =256.98 \mathrm{~m}
\end{align*}
$$

Step 6
C alculate maximum $F_{\text {view }}$ at a distance $X$.

$$
\begin{align*}
F_{\text {view }} & =\left(r_{\mathrm{fb}} / X\right)^{2}  \tag{6.93}\\
& =(80.68 / 256.98)^{2} \\
& =0.09856
\end{align*}
$$

Step 7
C alculate the fraction $F_{s}$ of the generated heat radiated by a fire ball.

$$
\begin{align*}
\mathrm{F}_{\mathrm{s}} & =0.00325 \times\left(\mathrm{P}_{\text {sv }}\right)^{0.32}  \tag{6.21}\\
& =0.00325 \times\left(16 \cdot 10^{5}\right)^{0.32} \\
& =0.314
\end{align*}
$$

Step 8
C alculate the heat available for combustion and radiation.

$$
\begin{align*}
\Delta H & =\Delta H_{c}-\Delta H_{v}-C_{p} \times \Delta T  \tag{6.94}\\
& =4.6013 \cdot 10^{7}-0.426134 \cdot 10^{6}-2.582 \cdot 10^{3} \times 1717 \\
& =41.153 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}
\end{align*}
$$

Step 9
C alculate the Surface Emissive Power SEP act
Assume that there is no soot formation, so $S E P_{\text {act }}=S E P_{\max }$

$$
\begin{align*}
\mathrm{SEP}_{\text {act }} & =\Delta \mathrm{H}_{\mathrm{c}} \times \mathrm{m} \times \mathrm{F}_{\mathrm{s}} /\left(4 \times \pi \times \mathrm{r}_{\mathrm{fb}}^{2} \times \mathrm{t}\right)  \tag{6.95}\\
& =41.153 \cdot 10^{6} \times 19775 \times 0.314 /\left(4 \times \pi \times 80.68^{2} \times 11.15\right) \\
& =28.02 \cdot 10^{4} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

Step 10
Calculate the actual path length between the surface area of the fire ball and the object.

The actual path length $x$ of radiation from a fire ball surface is the hypothenuse minus the BLEVE-radius.

$$
\begin{align*}
x \quad & =X-r_{\mathrm{fb}}  \tag{6.96}\\
& =256.98-80.68 \\
& =176.296 \mathrm{~m}
\end{align*}
$$

This is the distance between the surface area of the fire ball and the object and has to be used in the calculation of $\tau_{\mathrm{a}}$.

Step 11
C alculate the partial vapour pressure of water $\mathrm{p}_{\mathrm{w}}$ at $15{ }^{\circ} \mathrm{C}$ and a relative humidity RH of 0.7.

$$
\begin{align*}
\mathrm{p}_{\mathrm{w}} & =\mathrm{RH} \times \mathrm{p}_{\mathrm{w}}^{0}  \tag{6.72}\\
& =0.7 \times 1705 \\
& =1193.5 \mathrm{~N} / \mathrm{m}^{2} \\
& \\
\mathrm{p}_{\mathrm{w}} \times \mathrm{x} & =1193.5 \times 176.296 \\
& =21.04 \cdot 10^{4} \mathrm{~N} / \mathrm{m}
\end{align*}
$$

From Figure 6.2, $\alpha_{w}=0.223$ can be found.

## Step 12

D etermine the absorption coefficient for carbon-dioxide $\alpha_{c}$ for an average flame temperature of $\mathrm{T}_{\mathrm{f}}$ in 1200 K from F igure 6.3 and a distance x from the flame surface.

Now $p_{c} \times x$ can be calculated.

$$
p_{c} \times x=30.3976 \times 176.296=5.358 \cdot 10^{3} \mathrm{~N} / \mathrm{m}
$$

## From Figure 6.3, $\alpha_{c}=0.0435$ can be found.

Step 13
D etermine the atmospheric transmissivity

$$
\begin{align*}
\tau_{\mathrm{a}} \quad & =1-\alpha_{w}-\alpha_{c}  \tag{6.24}\\
& =1-0.223-0.0435 \\
& =0.7335
\end{align*}
$$

The calculation with formula (6.24) is generally much more accurate. If the value of $p_{w} \times x$ is between $10^{4}$ and $10^{5} \mathrm{~N} / \mathrm{m}$, formula (6.29) can be used.

## Step 13a

An alternative for the calculation of the atmospheric transmissivity $\tau_{a}$

$$
\begin{equation*}
\tau_{\mathrm{a}} \quad=\mathrm{c}_{7} \times\left(\mathrm{p}_{\mathrm{w}} \times \mathrm{x}\right)^{-0.09} \tag{6.29}
\end{equation*}
$$

This formula can only be used for calculations in the range between:

$$
\begin{aligned}
10^{4} & <p_{w} \times x<10^{5} \mathrm{~N} / \mathrm{m} . \\
\tau_{\mathrm{a}} \quad & =2.02 \times\left(\mathrm{p}_{\mathrm{w}} \times \mathrm{x}\right)^{-0.09} \\
& =2.02 \times\left(21.04 \cdot 10^{4}\right)^{-0.09} \\
& =0.67
\end{aligned}
$$

Step 14
C alculate the heat flux at 200 metres from the road tanker

$$
\begin{align*}
q^{\prime \prime} \quad & =S E P_{\text {act }} \times F_{\text {view }} \times \tau_{\mathrm{a}}  \tag{6.4}\\
& =28.02 \cdot 10^{4} \times 0.09856 \times 0.7335 \\
& =20.361 \cdot 10^{3} \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{align*}
$$

### 6.7 Interface with the other models

### 6.7.1 Introduction

In this chapter the interface between other models in the Revised Y ellow Book is given. A chapter has been dedicated to each model.

### 6.7.2 Jet flames

In the jet flame model of Chamberlain the released amount has been calculated with the models that can be found in chapter 2 , subsection 2.5.2, about gas releases through orifices and piping.
T hese formulae are all added to this chapter to be able to render a complete model, as presented in C hamberlain [1987].

### 6.7.3 Pool fires on land

F or pool fires on land, confined and unconfined pool can be distinguished. In chapter 2, subsection 2.5.4, attention has been paid to outflow and in chapter 3, subsection 3.3.3, to the increase in size of an unconfined pool. H owever, spreading of an unconfined burning pool as presented in this chapter, also includes the parameter burning rate. So the models about spreading pools presented in this chapter 6 , subsection 6.5 .5 , differ from models presented in chapter 3 , subsection 3.3.3.1.

### 6.7.4 Pool fires on water

N o models could be found for pool fires on water.

### 6.7.5 Fire balls

F or the fire balls an instantaneous release has been assumed. No input from other chapters is required.

### 6.8 Discussion

### 6.8.1 Introduction

In this chapter strengths and, limitations of the models are given, as well as unknown areas, which need to be investigated. If possible, it is indicated whether research or development is required.

### 6.8.2 Jet flames

T he model from C hamberlain [1987] for a fire jet of gas has been validated for a great number of experiments. The model is only applicable to gas. The experiments where carried out for natural gas flares and cover a range of gas velocities from M ach 0.006 to M ach 1.53.
When the flow becomes choked, the expansion beyond the exit hole is idealised as if it takes place in a convergent-divergent nozzle, using standard orifice equations for isentropic flow. This idealisation is probably a weakness in the theoretical model because this assumption can only be made under certain conditions, such as regards a L aval-tube. On the basis of this assumption all results of the measurements were matched, and will not have an impact on the end results.
The lift-off of a flame, due to the hot flame and a density of the flame tip lower than air has been incorporated in the model.

### 6.8.3 Pool fires on land

Confined pool
For confined pool fires many experiments were carried out with all types of hydrocarbons, including crude oil and liquefied gases.
All relevant parameters are determined for the calculation of the shape. Phenomena such as flame drag and flame tilt, as well as different flame shapes, are described in literature. H owever, little attention has been given how to use these parameters in the calculation of the view factor, and in heat radiation calculations in general.

U nconfined pool
For unconfined pool fires on land many experiments were carried out to measure flame dimensions, the burning rate of the released material, and the influence of wind. Only one theoretical model was found in literature to determine the variation of the diameter of a circular burning pool versus time. The pool was fed from a storage tank. Small-scale measurements were carried out to validate the model but showed incorrect results in the curves, so conclusions drawn should be considered with care. No further measurements were carried out to determine the flame height, flame shape and influence of wind in relation to this type of pool fire. In the model the pool thickness is taken as input parameter, though nothing is said about a good choice of value.

The situation of an unconfined pool described in the model can only occur in case the distance to the tank and the circular pool is large enough, so the pool can fully develop. Also the effect of resistance of the pipe on the flow rate should be taken into account for the feed rate to the pool.
In the study no attention has been paid to the maximum diameter and thickness of the pool. M ore measurements are required to determine the effects of an unconfined pool. T he experiments should be carried out for larger-scale experiments in order to obtain more data about this subject.

### 6.8.4 Pool fires on water

Publications about measurements regarding pool fire on water have not paid attention to e.g. growth of the pool; only stationary situations were considered. In reality pool fires on water will show more or less the characteristics of unconfined pool fires on land. It should be further investigated whether models proposed for pool fires for an unconfined pool on land can be used for water, since the burning rate of crude oil and other hydrocarbons on water seems to be equal to the burning rate on land. The remarks made for an unconfined pool fire in subsection 6.8.2 are also applicable to this type of fire.

### 6.8.5 Fire balls

N o new developments in modelling the dimension of a fireball were found in literature.

### 6.9 Literature

AlChE (1989),
C hemical Process Quantitative Risk A nalysis - guidelines for - , C enter for Chemical Process Safety of the American Institute of Chemical Engineers, 1989.

Alger (1979),
Alger, R.S., C orlett, R.C., G orden, A.S., W illiams, F .A., Some aspects of turbulent pool fires,
Fire T ech. 15 (2), 142-146 (1979).

American G as Association (1974),
LN G Safety Program - Interim Report on Phase II W ork Report no. IS-3-1 (July 1974).

A ravamudan (1979),
A ravamudan, K rishna, M oussa, A.N ., Raj, P.P.K .,
Experiments involving pool and vapor fires from spills if liquefied natural gas on water,
U S D epartment of T ransportation, Report N o. C 6-D-55-79, M arch 1979.

A tallah (1973),
Atallah, R.,
L N G Safety Program Phase II - C onsequences of LNG spills on land,
American G as Association, N ovember 1973, Project 1S-3-1.

Atallah (1990),
Atallah, S. and Shah., J.N.,
LN G Fire
A thermal radiation model for LN G fires,
T opical report GRI-89/0176, GRI, 1990.

B abrauskas, (1983)
Babrauskas, V.,
Estimating L arge Pool Fire Burning R ates,
Fire T echnology, 1983, pp. 251-261.

Bagster (1989),
Bagster, D.G. and Pittblado, R.M .,
Thermal H azards in the Process Industry,
C hemical Engineering Progress, July 1989, pp. 69-75.

B alluff (1985),
B alluff, C ., Brötz, W., Göck, D., Schieß, N ., Schönbucher, A.,
Erforschung von Schadefeuern flüssiger Kohlenwasserstoffe als Beitrage zur sicherheit von Chemieanlagen,
Chem. -Ing.-T ech. 57 (1985) nr. 10, S. 823-834.

Binding (1992),
Binding, T .M . and Pritchard, M .J.,
Fire 2: A new Approach for predicting Thermal Radiation Levels from H ydrocarbon Pool Fires,
I.C hem E Symposium Series N o. 130., V olume 3, 1992.

Brzustowski (1973),
Brzustowski, T.A. and Sommer, E.C.,
Predicting Radiant H eating from Flares,
Proceedings API Division of Refining, 1973, 53, pp. 865-893.
Burgess (1974),
Burgess, D.S. and H erzberg, M.,
Advances in thermal engineering,
J. Wiley and Sons, Chichester, UK,

Chapter 27, p 413, 1974.

Burgess, H ertzberg (1974),
Burgess, D., H ertzberg, M.,
Radiation from pool flames
C hapter 27 from: H eat T ransfer in Flames (N.H. Afgan and J.M . Beer ed.)(1974)
Burgess, Zabetakis (1961),
Burgess, D.S. and Zabetakis, M .G.,
Research on the H azards Associated with the Production and H andling of liquid
H ydrogen,
R.I. 5707, Bureau of $M$ ine, Pittsburgh (1961).

Burgess, Z abetakis (1971),
Burgess, D.S. and Zabetakis, M.G.,
Fire and explosion hazards associated with liquefied natural gas
Bureau of M ines, Report no. 6099, U.S. Department Division, London (December 1971)

Buschman Jr. (1961),
Buschman Jr., A.J. and Pittman, C.M .,
Configuration factors for exchange of radiant energy between antisymmetrical sections of cylinders, cones, and hemispheres and their bases, N ASA, T echnical N ote D 944 (Oct. 1961).

C arne (1971),
C arne, M.,
Buxton-Bund Fire T ests
Report by the Gas Council, Research and Development Division, London (D ecember 1971)

C hamberlain (1987),
C hamberlain, G.A.,
D evelopment in design methods for predicting thermal radiation from flares,
Chem. Eng. Res. Des. Vol. 65. July 1987, pp. 299-309.

C line (1983),
Cline, D.D. and K oenig, L.N.,
The transient G rowth of an U nconfined Pool Fire,
F ire T echnology, Pool fire, pp. 149-162, 1983.

Cowley (1991),
C owley, L.T. and Johnson, A.D.,
Blast and Fire Engineering Project for T opside Structures,
FII Oil and gas Fires: Characteristics and Impact.

Cook (1987),
C ook, D.K., F airweather, M ., H ammonds, J., H ughes, D.J.,
Size and radiative C haracteristics of N atural G as F lares,
Part 2: Empirical M odel,
Chem. Eng. Res. Des. Vol. 65. July 1987, pp. 318-325.

Cunningham (1961),
C unningham, F.G.,
Power input to a small flat plate from a diffusively radiating sphere, with application to earth satellites N A SA,
T echnical N ote D-710 (Aug. 1961).

Fu (1971),
Fu, T.T.,
H eat radiation from fires of aviation fuels,
Fire T echnology, $\underline{7}$ (1), 47-56 (1971).

H ägglund (1976),
Hägglund, B. and Persson, L.E.,
The heat radiation from petroleum fires,
F OA Rapport C 201126-D 6 (July 1976).
H ottel (1967),
H ottel, H.C., Saforim, A.F.,
R adiative transfer
M cG raw Hill, N ew Y ork (1967)

JISE (1982),
Japan Institute for Safety Engineering,
Report on burning of petroleum fires, 1982, (in Japans).

Jones (1992),
Jones, D.,
N omenclature for hazard and risk assessment in the process industry
Institute of C hemical Engineers, second edition, 1992.

L autkaski (1992),
L autkaski, R.,
Validation of flame drag correlations with data from large pool fires, J. Loss Prev. Process Ind., 1992, Vol 5, no 3, pp. 175-180.

Love (1968),
Love, T.J.,
Radiative H eat T ransfer,
C.E. M errill Publishing Company, Columbus, Ohio (1968).

M aezawa (1973),
M aezawa, M .,
Experiments onfire hazards of liquefied flammable gases
Japan Society of Safety Engineering (M ay 1973)

M ay (1973),
M ay, W.G. and M cQueen, W.,
Radiation from large LNG fires,
Combustion Science T echnology, 7 (2), 51-56 (1973).

M inzer (1982),
M inzer, G.A. and E yre, J.A.,
L arge - scale LNG and LPG pool fires,
I. C hem. Eng. Symposium Series, 71, 147-163 (1982).

M odak (1978),
M odak, A.,
Radiation from products of combustion,
T ech. Rep. OAOE6, BU-1, F actory M utual Research C orp., N ordwood, M ass., U SA (1978).

M oorhouse (1982),
M oorhouse, J.,
Scaling Criteria for pool fires derived from large scale experiments,
I. C hem. E. Symposium Series N o. 71, (1982), pp. 165-179.

M udan (1984),
M udan, K.S.,
Thermal Radiation H azards from H ydrocarbon Pool Fires,
Prog. Energy Comb. Science 10,pp. 59-80, 1984.

M udan (1987),
M udan, K.S.,
Geometric view factors for thermal radiation hazard assessment,
Fire Safety Journal, 12:89-96, 1987.

N ASA (1979),
NASA,
On the experiments with 7.5 m and $15 \mathrm{~m} \mathrm{JP}-4$ fuel pool fire measurements, to be published by Dr. M ansfield,
N ASA Ames Research C entre, M offet Field, C alifornia, U SA (1979).

Petty (1983),
Petty, S.E.,
C ombustion of C rude Oil on water,
Fire Safety Journal, 5 (1983) pp. 123-134.

Raj (1977),
Raj, P.K.,
C alculations of thermal radiation hazards from LN G fires, a review of the state of the art,
A.G.A. T ransmission C onference, T 135-148 (M ay 1977).

Ramskill (1988),
Ramskill, P.K.,
A description of the 'Engulf' computer codes - codes to model the thermal response of an LPG tank either fully or partially engulfed by fire,
Journal of H azardous M aterials, 20 (1988) pp. 177-196.

Ramskill (1989),
Ramskill, P.K.,
Engulf-II - A Computer Code to the thermal response of a tank partially or totally engulfed in fire,
SRD /H SE/R 480, July 1989.

Roberts (1982),
Roberts, A.F.,
T hermal radiation hazard from releases of LPG from pressurised storage,
Fire Safety Journal, 4, pp. 197-212, 1982.

Sliepcevich (1966),
Sliepcevich, C.M . and W elker, J.R.,
Bending of wind-blow flames from liquid pools,
Fire T echnology 2, 1966, pp. 127-135.

Sparrow (1970),
Sparrow, M.E. and Cess, R.D.,
Radiation H eat T ransfer,
Brooks/C ole Publishing C ompany, Belmont, C alifornia (1970).

Thomas (1963),
Thomas, P.H.
The size of flames of natural fires.
N ineth Symposium on C ombustion, A cademic Press, N ew Y ork, p 844-859 (1963).

T N O (1978),
T N O-meting,
TN O, H oofdafdeling M aatschappelijke T echnologie, memo 78-04889, (juni 1978).
T N O (1983),
LPG, A study
Comparative risk analysis for the storage, handling, transport and use of LPG and Petrol,
Subreport 1112, 1983.

Y ellow Book (1992),
M ethods for the calculation of physical effects
resulting from releases of hazardous materials (liquids and gases)
Second Edition 1992, CPR 14 E

W ebster (1993),
Webster T hird N ew International Dictionary of the English L anguage U nabridged M erriam-W ebster Inc., Publishers
Springfield, M assachusetts, U SA

W elker (1982),
W elker, J.R.,
Radiation from LPG fires,
W estern States Section, C ombustion Institute Spring M eeting, (1982).

## Appendix 6.1 View factors for some radiator configurations

In this appendix the view factors are given for the following radiator configurations:

1. A spherical radiator;
2. A vertical cylindrical radiator;
3. A vertical flat radiator.

Reference is made to Love [1968] and Sparrow [1970] for other configurations. The view factors are dependent on the position and on the orientation of the receiver with respect to the radiator. With regard to the orientation, it will simply be assumed that the receiver:
a. is flat and with dimensions negligible versus the dimensions of the radiator and the distance to it;
b. is located at ground level;
c. has a specific orientation (to be established at a later stage) with respect to the shortest distance between radiator and receiver.

1. The view factor for a spherical radiator (in particular a fireball),
Cunningham [1961]


Figure 6.A. 1

When the centre of the sphere is located at a distance $X$ from the receiver and the orientation angle $\theta$ (see Figure 6.A.1) meets the requirement:

$$
\begin{equation*}
\theta \leq(\pi / 2)-\phi \tag{rad}
\end{equation*}
$$

in which $\phi$ is half the view angle, the view factor is simply given by:
$F_{\text {view }}=\left(r_{\text {fb }} / X\right)^{2} \times \cos \theta$

T he sphere, in this case, is completely visible.
When the orientation angle is so wide that the sphere is not completely visible, which is the case if:

$$
\begin{equation*}
\theta>\pi / 2-\phi \tag{6.A.3}
\end{equation*}
$$

(Rad)
the view factor is then given by:

$$
\begin{align*}
& \mathrm{F}_{\text {view }}=\frac{1}{2}-\frac{1}{\pi} \sin ^{-1}\left[\frac{\left(\mathrm{X}_{\mathrm{r}}^{2}-1\right)^{1 / 2}}{\mathrm{X}_{\mathrm{r}} \sin \theta}\right]+\frac{1}{\pi \mathrm{X}_{\mathrm{r}}^{2}} \cos \theta \cos ^{-1}\left[-\left(\mathrm{X}_{\mathrm{r}}^{2}-1\right)^{1 / 2} \cot \theta\right] \\
& -\frac{1}{\pi \mathrm{X}_{\mathrm{r}}^{2}}\left(\mathrm{X}_{\mathrm{r}}^{2}-1\right)^{1 / 2}\left(1-\mathrm{X}_{\mathrm{r}}^{2} \cos ^{2} \theta\right)^{1 / 2} \tag{6.A.4}
\end{align*}
$$

in which:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{r}}=\mathrm{X} / \mathrm{r}_{\mathrm{fb}} \tag{-}
\end{equation*}
$$

In Figure 6.A. 2 the view factors, in accordance to (6.A.4) are given for some orientation angles $\theta$.


Figure 6.A. 2 View factors for a spherical radiator as function of the ratio distance/radius (incomplete view)

## 2. The view factor for a vertical cylindrical radiator [Raj, 1977]:

Assume that the plane of the receiver is oriented in such a manner that the normal vector to this plane and the centre line of the cylinder are located in one (vertical) plane (see Figure 6.A.3). The view factor is then dependent (besides $L$ and $X$ ) on the orientation angle $\theta$.


Figure 6.A. 3

We define:
$h_{r}=L / R$
(-)
$x_{r}=X / R$
(-)

$$
\begin{align*}
& A=\left(x_{r}+1\right)^{2}+h_{r}^{2}  \tag{-}\\
& B=\left(x_{r}-1\right)^{2}+h_{r}^{2}
\end{align*}
$$

then, for a horizontal plane at ground level $(\theta=\pi / 2)$ :

$$
\begin{equation*}
F_{h}=\frac{1}{\pi}\left\{\tan ^{-1} \sqrt{\frac{x_{r}+1}{x_{r}-1}}-\left(\frac{x_{r}^{2}-1+h_{r}^{2}}{\sqrt{A B}}\right) \tan ^{-1} \sqrt{\frac{\left(x_{r}-1\right) A}{\left(x_{r}+1\right) B}}\right\} \tag{6.A.10}
\end{equation*}
$$

and for a vertical plane at ground- level $(\theta=0)$ :

$$
\begin{equation*}
F_{v}=\frac{1}{\pi}\left\{\frac{1}{x_{r}} \tan ^{-1}\left(\frac{h_{r}}{\sqrt{x_{r}^{2}-1}}\right)+\left(\frac{h_{r}\left(A-2 x_{r}\right)}{x_{r} \sqrt{A B}}\right) \tan ^{-1} \sqrt{\frac{\left(x_{r}-1\right) A}{\left(x_{r}+1\right) B}}-\frac{h_{r}}{x_{r}} \tan ^{-1} \sqrt{\frac{x_{r}-1}{x_{r}+1}}\right\} \tag{6.A.11}
\end{equation*}
$$

The maximum view factor is: $F_{\text {max }}=\sqrt{\left(F_{h}^{2}+F_{v}^{2}\right)}$

F or the view factor of an inclined cylindrical radiator see reference Raj [1977] of this chapter. The geometric view factors follow from (6.A.10) and (6.A.11) and are presented numerically in table 6.A. 1 and graphically in Figure 6.A.4.

Table 6.A. 1 View factors for a vertical cylindrical radiator $h_{r}=L / R ; x_{r}=X / R$

1) horizontal plane $\left(10^{3} \times F_{h}\right)$

| $\mathbf{x}_{\mathrm{r}}$ | $\mathrm{h}_{\mathrm{r}}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.1 | 0.2 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 6.0 | 10.0 | 20.0 |
| 1.1 | 132 | 242 | 332 | 354 | 360 | 362 | 362 | 362 | 363 | 363 |
| 1.2 | 44 | 120 | 243 | 291 | 307 | 310 | 312 | 312 | 313 | 314 |
| 1.3 | 20 | 65 | 178 | 242 | 268 | 274 | 277 | 278 | 278 | 279 |
| 1.4 | 11 | 38 | 130 | 203 | 238 | 246 | 250 | 251 | 252 | 253 |
| 1.5 | 6 | 24 | 97 | 170 | 212 | 222 | 228 | 229 | 231 | 232 |
| 2.0 | 1 | 5 | 27 | 73 | 126 | 145 | 158 | 160 | 164 | 166 |
| 3.0 | - | - | 5 | 19 | 50 | 71 | 91 | 95 | 103 | 107 |
| 4.0 | - | - | 1 | 7 | 22 | 38 | 57 | 62 | 73 | 78 |
| 5.0 | - | - | - | 3 | 11 | 21 | 37 | 43 | 54 | 61 |
| 10.0 | - | - | - | - | 1 | 3 | 7 | 9 | 17 | 26 |
| 20.0 | - | - | - | - | - | - | 1 | 1 | 3 | 8 |

2) vertical plane $\left(10^{3} \times F_{v}\right)$

| $\mathbf{x}_{\mathbf{r}}$ | $\mathbf{h}_{\mathbf{r}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ | $\mathbf{1 . 0}$ | $\mathbf{2 . 0}$ | $\mathbf{3 . 0}$ | $\mathbf{5 . 0}$ | $\mathbf{6 . 0}$ | $\mathbf{1 0 . 0}$ | $\mathbf{2 0 . 0}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.1 | 330 | 415 | 449 | 453 | 454 | 454 | 454 | 454 | 454 | 455 |  |  |  |  |  |  |
| 1.2 | 196 | 308 | 397 | 413 | 416 | 416 | 416 | 416 | 416 | 417 |  |  |  |  |  |  |
| 1.3 | 130 | 227 | 344 | 376 | 383 | 384 | 384 | 384 | 384 | 385 |  |  |  |  |  |  |
| 1.4 | 94 | 173 | 296 | 342 | 354 | 356 | 356 | 357 | 357 | 357 |  |  |  |  |  |  |
| 1.5 | 71 | 135 | 253 | 312 | 329 | 332 | 333 | 333 | 333 | 333 |  |  |  |  |  |  |
| 2.0 | 28 | 56 | 126 | 194 | 236 | 245 | 248 | 249 | 249 | 250 |  |  |  |  |  |  |
| 3.0 | 9 | 19 | 47 | 86 | 132 | 150 | 161 | 163 | 165 | 167 |  |  |  |  |  |  |
| 4.0 | 5 | 10 | 24 | 47 | 80 | 100 | 115 | 119 | 123 | 125 |  |  |  |  |  |  |
| 5.0 | 3 | 6 | 15 | 29 | 53 | 69 | 86 | 91 | 97 | 100 |  |  |  |  |  |  |
| 10.0 | - | 1 | 3 | 6 | 13 | 19 | 29 | 32 | 42 | 48 |  |  |  |  |  |  |
| 20.0 | - | - | - | 1 | 3 | 4 | 7 | 9 | 14 | 21 |  |  |  |  |  |  |

CPR 14E
Chapter 6 of the ' $Y$ ellow B ook'
3) maximum value $\left(10^{3} \times \mathrm{F}_{\max }\right)$

| $\mathbf{x}_{\mathbf{r}}$ | $\mathbf{h}_{\mathbf{r}}$ |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ | $\mathbf{1 . 0}$ | $\mathbf{2 . 0}$ | $\mathbf{3 . 0}$ | $\mathbf{5 . 0}$ | $\mathbf{6 . 0}$ | $\mathbf{1 0 . 0}$ | $\mathbf{2 0 . 0}$ |  |  |
| 1.1 | 356 | 481 | 559 | 575 | 580 | 581 | 581 | 581 | 581 | 581 |  |  |
| 1.2 | 210 | 331 | 466 | 505 | 517 | 519 | 520 | 521 | 521 | 521 |  |  |
| 1.3 | 132 | 236 | 387 | 448 | 468 | 472 | 474 | 474 | 475 | 475 |  |  |
| 1.4 | 94 | 117 | 323 | 398 | 427 | 433 | 436 | 436 | 437 | 437 |  |  |
| 1.5 | 72 | 138 | 271 | 355 | 392 | 400 | 404 | 404 | 405 | 406 |  |  |
| 2.0 | 28 | 56 | 129 | 208 | 267 | 285 | 294 | 296 | 299 | 300 |  |  |
| 3.0 | 9 | 19 | 48 | 88 | 141 | 166 | 185 | 189 | 195 | 197 |  |  |
| 4.0 | 5 | 10 | 24 | 47 | 83 | 106 | 129 | 134 | 143 | 147 |  |  |
| 5.0 | 3 | 6 | 15 | 29 | 54 | 73 | 94 | 100 | 111 | 117 |  |  |
| 10.0 | - | 1 | 3 | 6 | 13 | 19 | 30 | 34 | 45 | 55 |  |  |
| 20.0 | - | - | - | 1 | 3 | 4 | 7 | 9 | 14 | 22 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |



Figure 6.A.4 Maximum view factors for cylindrical radiators as a function of the relative distance to the axis

## 3. Geometric view factor of the tilted cylindrical flame

We define the geometric view factor $F_{\text {view }}$ as the fraction of total thermal energy emitted by a source which is received or intercepted by a given target or observer. The value of $\mathrm{F}_{\text {view }}$ depends on the relative distance between the source and the target, the geometrical shape of the source and the angular orientation of the source and the target.


Figure 6.A.5 Target and flame geometry for a tilted cylindrical flame

The geometrical view factor $F_{\text {view }}$ is defined as follows:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{diew}}, \mathrm{~A}_{2}=\frac{1}{\pi} \int_{A_{2}} \int\left(\frac{\cos \beta_{1} \cos \beta_{2}}{x^{2}}\right) \mathrm{dA}_{2} \tag{6.A.13}
\end{equation*}
$$

where $x$ is the distance between the centres of $d A_{1}$ and $d A_{2}, \beta_{1}$ is the angle of the normal vector to plane $d A_{1}$ and the line connecting $d A_{1}$ and $d A_{2}$ and $\beta_{2}$ is the angle of the normal vector to plane $d A_{2}$ and the line connecting $d A_{1}$ and $d A_{2}$. In Figure A. 6 the parameters are shown for the infinisimal surfaces $d A_{1}$ and $A_{2}$.


Figure 6.A. 6

M udan [1987] derived analytical geometrical view factor expressions for horizontal and vertical receiving targets for simple fire geometries including cylinder and rectangular parallelepiped.

### 3.1 Cylindrical flames

Consider a cylindrical approximation to the tilted flame as shown by Figure 6.A.5. The vertical and horizontal area view factors are given by the following expressions (also see A tallah [1990]):

$$
\begin{align*}
& \pi F_{v}=-E \tan ^{-1} D+E\left[\frac{a^{2}+(b+1)^{2}-2 b(1+a \sin \theta)}{A B}\right] \tan ^{-1}\left(\frac{A D}{B}\right) \\
& \frac{\cos \theta}{C}+\left[\tan ^{-1}\left(\frac{a b-F^{2} \sin \theta}{F C}\right)+\tan ^{-1}\left(\frac{F^{2} \sin \theta}{F C}\right)\right]  \tag{6.A.14}\\
& \pi F_{h}=\tan ^{-1}\left(\frac{1}{D}\right)+\frac{\sin \theta}{C}\left[\tan ^{-1}\left(\frac{a b-F^{2} \sin \theta}{F C}\right)+\tan ^{-1}\left(\frac{F^{2} \sin \theta}{F C}\right)\right] \\
& {\left[\frac{a^{2}+(b+1)^{2}-2(b+1+a b \sin \theta)}{A B}\right] \tan ^{-1}\left(\frac{A D}{B}\right)}
\end{align*}
$$

$a=L / R\left(L_{b} / R\right.$ or $\left.L_{f} / R\right)$
b $\quad=\mathrm{X} / \mathrm{R}$
$A=\sqrt{\left(a^{2}+(b+1)^{2}-2 \times a \times(b+1) \times \sin \theta\right)}$
$B=\sqrt{\left(a^{2}+(b-1)^{2}-2 \times a \times(b-1) \times \sin \theta\right)}$
$C=\sqrt{\left(1+\left(b^{2}-1\right) \times \cos ^{2} \theta\right)}$
$D \quad=\sqrt{((b-1) /(b+1))}$
$\mathrm{E}=(\mathrm{a} \times \cos \theta) /(\mathrm{b}-\mathrm{a} \times \sin \theta)$
$F=\sqrt{\left(b^{2}-1\right)}$
$L_{f}$ is the tilted flame length. The angle of tilt $\theta$ is measured with respect to the vertical and is positive for targets located downwind from the source and negative for targets located upwind from the source.
Additional forms are derived from calculating the view factors for a target in the crosswind direction, i.e. whose direction is perpendicular to the tilt angle:

$$
\left.\left.\begin{array}{l}
2 \pi F_{h}=2 \tan ^{-1} D \\
+\left(\frac{F \sin \theta}{I}\right)\left[\tan ^{-1}\left(\frac{\frac{a b}{F}+\sin \theta}{I}\right)-\tan ^{-1}\left(\frac{\frac{a b}{F}-\sin \theta}{I}\right)-2 \tan ^{-1}\left(\frac{\sin \theta}{I}\right)\right] \\
-\left(\frac{a^{2}+b^{2}-1}{G}\right)\left[\tan ^{-1}\left(\frac{H D-2 a \sin \theta}{G}\right)+\tan ^{-1}\left(\frac{H D+2 a \sin \theta}{G}\right)\right] \\
2 \pi F_{v}=-\left(\frac{a^{2} \sin \theta \cos \theta}{2\left(a^{2} \sin ^{2} \theta+b^{2}\right)}\right) \ln \left(\frac{a^{2}+b^{2}-1-2 a \frac{F}{b} \sin \theta}{a^{2}+b^{2}-1+2 a \frac{F}{b} \sin \theta}\right] \\
+\left(\frac{\cos \theta}{I}\right)\left[\operatorname { t a n } ^ { - 1 } \left(\frac{a b}{F}+\sin \theta\right.\right. \\
I
\end{array}\right)+\tan ^{-1}\left(\frac{\frac{a b}{F}-\sin \theta}{I}\right)\right] \quad \begin{aligned}
& \text { ( } \left.\left.\frac{a b}{}\right)\right] \\
& +\left(\frac{a b \cos \theta}{b^{2}+a^{2} \sin ^{2} \theta}\right)\left(\frac{a^{2}+b^{2}+1}{G}\right)\left[\tan ^{-1}\left(\frac{H D-2 a \sin \theta}{G}\right)+\tan ^{-1}\left(\frac{H D+2 a \sin \theta}{G}\right)\right]  \tag{6.A.17}\\
& -\left(\frac{2 a b \cos \theta}{b^{2}+a^{2} \sin ^{2} \theta}\right) \tan ^{-1} D
\end{aligned}
$$

where
$G=\sqrt{\left(\left(a^{2}+b^{2}+1\right)^{2}-4 \times\left(b^{2}+a^{2} \times \sin ^{2} \theta\right)\right)}$
$H=a^{2}+(b+1)^{2}$
$1=\sqrt{\left(b^{2}-\sin ^{2} \theta\right)}$
The maximum view factor is estimated from the vector sum of $F_{h}$ and $F_{v}$ :

$$
\begin{equation*}
F_{\max }=\sqrt{\left(F_{v}^{2}+F_{h}^{2}\right)} \tag{-}
\end{equation*}
$$

With minor modifications, Equations (6.A.14) and (6.A.15) can be used to estimate the view factors when the flame base is elevated with respect to the target as shown in Figure 6.A.7, when the target is elevated with respect to the flame base as shown in Figure 6.A. 8 and when the target is in the shadow of the flame as shown in Figure 6.A.9.


Figure 6.A.7 Elevated flame with respect to target


Figure 6.A. 8 Elevated target with respect to flame


Figure 6.A.9 Target in flame shadow

F or an elevated flame base we modify the flame length and the target location:

$$
\begin{equation*}
x_{1}=X+z \times \tan \theta \tag{6.A.19}
\end{equation*}
$$

(m)
$L_{1}=z / \cos \theta$
(m)
$L_{2}=L+L_{1}$
(m)

The view factors are then calculated as follows:
$F_{v}=F_{v}\left(L_{2}\right)-F_{v}\left(L_{1}\right)$
(-)
$F_{h}=F_{h}\left(L_{2}\right)-F_{h}\left(L_{1}\right)$

The view factors are calculated in a similar fashion when the target is elevated with respect to the flame base:
$\mathrm{x}_{1}=\mathrm{X}-\mathrm{z} \times \tan \theta$
(m)
$\mathrm{L}_{1}=\mathrm{z} / \cos \theta$
(m)
$L_{2}=L-L_{1}$
(m)

W hen the observer is in the flame shadow, the vertical view factor must be calculated with a truncated flame length:

$$
\begin{equation*}
\mathrm{L}_{1}=\mathrm{X} / \sin \theta \tag{m}
\end{equation*}
$$

The horizontal view factor is unchanged.

## 4. The view factor for a vertical flat radiator, Raj [1977], Love [1968], Sparrow [1970]

It will be assumed here that the crossing lines of, respectively, the radiator with the ground and the receiver with the ground, are parallel. The view factor will then be calculated as the sum of the factors for plane part I and plane part II (see Figure 6.A.10). F or each of these parts the following is defined:


Figure 6.A. 10

$$
\begin{align*}
& h_{r}=L / b  \tag{-}\\
& x_{r}=X / b \\
& A=1 / \sqrt{\left(h_{r}^{2}+x_{r}^{2}\right)}  \tag{-}\\
& B=h_{r} / \sqrt{1+x_{r}^{2}} \tag{6.A.30}
\end{align*}
$$

(-)
(-)

We have for horizontal plane at ground level $(\theta=\pi / 2)$ :

$$
\begin{equation*}
\mathrm{F}_{\mathrm{h}}=\frac{1}{2 \pi}\left\{\tan ^{-1}\left(\frac{1}{\mathrm{x}_{\mathrm{r}}}\right)-\mathrm{A} \mathrm{x}_{\mathrm{r}} \tan ^{-1} \mathrm{~A}\right\} \tag{6.A.32}
\end{equation*}
$$

For a vertical plane at ground level $(\theta=0)$ :

$$
\begin{equation*}
F_{v}=\frac{1}{2 \pi}\left\{h_{r} A \tan ^{-1} A+\left(\frac{B}{h_{r}}\right) \tan ^{-1} B\right\} \tag{6.A.33}
\end{equation*}
$$

The maximum view factor is given by:

$$
\begin{equation*}
F_{\max }=\sqrt{\left(F_{h}^{2}+F_{v}^{2}\right)} \tag{-}
\end{equation*}
$$

It should be noted (except if $b_{1}=b_{11}$ ) that this is not the maximum view factor of a plane at a distance $X$ from the radiator; this because of the restriction which is made with respect to the orientation of the receiver. The view factors $F_{h}, F_{v}$ and $F_{\max }$ of the radiator can now be obtained simply by adding the values for plane part I and plane part II. N umerical values are given in table 6.A.2, and, $F_{\max }$ versus $X_{r}$ is represented graphically in F igure 6.A.10.

Table 6.A. 2 View factors for a vertical flat radiator $\left(h_{r}=L / b, x_{r}=X / b\right.$, see Figure 6.A.9)

1) horizontal plane $\left(10^{3} \times F_{h}\right)$

| $\mathbf{x}_{\mathbf{r}}$ | $\mathbf{h}_{\mathbf{r}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 3}$ | $\mathbf{0 . 5}$ | $\mathbf{1 . 0}$ | $\mathbf{1 . 5}$ | $\mathbf{2 . 0}$ | $\mathbf{3 . 0}$ | $\mathbf{5 . 0}$ |  |  |  |  |  |  |  |
| 0,1 | 93 | 176 | 218 | 258 | 294 | 306 | 311 | 315 | 317 |  |  |  |  |  |  |  |
| 0,2 | 34 | 94 | 143 | 206 | 271 | 294 | 304 | 311 | 316 |  |  |  |  |  |  |  |
| 0,3 | 17 | 55 | 96 | 164 | 250 | 282 | 296 | 307 | 314 |  |  |  |  |  |  |  |
| 0,4 | 10 | 36 | 69 | 132 | 228 | 267 | 286 | 301 | 309 |  |  |  |  |  |  |  |
| 0,5 | 7 | 25 | 51 | 107 | 205 | 251 | 272 | 290 | 301 |  |  |  |  |  |  |  |
| 1 | 2 | 7 | 16 | 39 | 105 | 153 | 183 | 212 | 230 |  |  |  |  |  |  |  |
| 2 | 0 | 1 | 3 | 8 | 28 | 50 | 71 | 99 | 125 |  |  |  |  |  |  |  |
| 3 | 0 | 0 | 1 | 3 | 10 | 20 | 31 | 50 | 75 |  |  |  |  |  |  |  |
| 5 | 0 | 0 | 0 | 1 | 2 | 5 | 9 | 16 | 31 |  |  |  |  |  |  |  |

2) vertical plane $\left(10^{3} \times F_{v}\right)$

| $\mathbf{x}_{\mathbf{r}}$ | $\mathbf{h}_{\mathbf{r}}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 3}$ | $\mathbf{0 . 5}$ | $\mathbf{1 . 0}$ | $\mathbf{1 . 5}$ | $\mathbf{2 . 0}$ | $\mathbf{3 . 0}$ | $\mathbf{5 . 0}$ |  |  |
| 0,1 | 256 | 347 | 393 | 446 | 481 | 471 | 452 | 417 | 380 |  |  |
| 0,2 | 173 | 285 | 352 | 423 | 470 | 463 | 446 | 412 | 375 |  |  |
| 0,3 | 129 | 233 | 306 | 392 | 453 | 451 | 436 | 404 | 367 |  |  |
| 0,4 | 103 | 193 | 264 | 356 | 431 | 436 | 423 | 394 | 358 |  |  |
| 0,5 | 85 | 163 | 228 | 319 | 406 | 417 | 408 | 382 | 347 |  |  |
| 1 | 40 | 79 | 115 | 178 | 274 | 310 | 319 | 311 | 285 |  |  |
| 2 | 14 | 27 | 41 | 66 | 119 | 156 | 178 | 196 | 193 |  |  |
| 3 | 7 | 13 | 20 | 32 | 62 | 86 | 104 | 126 | 139 |  |  |
| 5 | 2 | 5 | 7 | 12 | 24 | 35 | 45 | 61 | 79 |  |  |

3) maximum value $\left(10^{3} \times F_{\max }\right)$

| $\mathbf{x}_{\mathbf{r}}$ | $\mathbf{h}_{\mathbf{r}}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 3}$ | $\mathbf{0 . 5}$ | $\mathbf{1 . 0}$ | $\mathbf{1 . 5}$ | $\mathbf{2 . 0}$ | $\mathbf{3 . 0}$ | $\mathbf{5 . 0}$ |  |
| 0,1 | 273 | 389 | 449 | 515 | 564 | 562 | 549 | 523 | 495 |  |
| 0,2 | 176 | 300 | 380 | 471 | 543 | 549 | 539 | 517 | 490 |  |
| 0,3 | 130 | 239 | 321 | 425 | 517 | 532 | 527 | 508 | 483 |  |
| 0,4 | 104 | 197 | 273 | 379 | 488 | 511 | 511 | 496 | 473 |  |
| 0,5 | 86 | 165 | 234 | 337 | 455 | 487 | 491 | 480 | 459 |  |
| 1 | 40 | 79 | 116 | 182 | 294 | 346 | 368 | 376 | 367 |  |
| 2 | 14 | 27 | 41 | 67 | 123 | 164 | 192 | 220 | 230 |  |
| 3 | 7 | 13 | 20 | 33 | 62 | 88 | 109 | 136 | 158 |  |
| 5 | 2 | 5 | 7 | 12 | 24 | 36 | 46 | 63 | 85 |  |

CPR 14E
Chapter 6 of the ' $Y$ ellow B ook'


Figure 6.A.11 Maximum view factors of flat radiators as a function of the relative distance to the radiator

Chapter 7
Rupture of vessels
J.C.A.M. van Doormaal, R.M .M. van Wees

## Modifications to Chapter 7 (Rupture of Vessels) with respect to the first print (1997)

N umerous modifications were made concerning typographical errors. A list is given below for the pages on which errors have been corrected.

In the section on initial fragment velocity calculations a scaled velocity correction factor graph is added.

C orrection of F ormula 7.19

Application of selected methods: calculation examples
A lot of numbers are refined, for example the ambient pressure of $0.1^{*} 10^{6}$ is replaced by $1.01325 * 10^{5}$, and values are more accurately read from plots and figures.

A large adjustment is made in step 12 in the calculation examples, in the $3^{\text {rd }}$ edition it was accounted for that the vessel was slightly elevated using values of table 7.4, in the fourth edition this has been removed.

## List of symbols of chapter 7

| $\mathrm{a}_{\mathrm{a}}$ | speed of sound in ambient air (7.9) | $\mathrm{m} / \mathrm{s}$ |
| :---: | :---: | :---: |
| $a_{1}$ | speed of sound in compressed gas (section 7.5.3, step 3b1) | m/s |
| $A_{D}$ | exposed area in plane perpendicular to trajectory (7.22) | $\mathrm{m}^{2}$ |
| $A_{L}$ | exposed area in plane parallel to trajectory (7.22) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\text {plate }}$ | area of plate-like fragment ( T able 7.8) | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\text {sb }}$ | constant for surface burst (7.7) | - |
| $\mathrm{A}_{\text {ke }}$ | fraction of available energy that goes into kinetic energy of the fragments (7.15) | - |
| $\mathrm{A}_{\mathrm{M}}$ | constant for M oore's method (7.19) | - |
| $C_{\text {D }}$ | drag coefficient (7.22) | - |
| $C_{L}$ | lift coefficient (7.22) | - |
| $\mathrm{d}_{\mathrm{v}}$ | vessel diameter (section 7.5.3, step 3b3) | m |
| $\mathrm{e}_{\mathrm{av}}$ | specific liberated energy (7.4) | J/kg |
| $\mathrm{E}_{\text {av }}$ | liberated or available energy (7.1) | J |
| $\mathrm{E}_{\text {ex }}$ | explosion energy or blast wave energy (7.7) |  |
| g | acceleration of gravity (7.22) | $\mathrm{m} / \mathrm{s}^{2}$ |
| h | specific enthalpy (enthalpy per unit mass) (7.2) | J/kg |
| $\mathrm{h}_{1}$ | specific enthalpy in initial state (= at failure) (section 7.5.2, step 4b) | J/kg |
| $\mathrm{h}_{2}$ | specific enthalpy in final state (section 7.5.2, step 4c) | J/kg |
| $\mathrm{hf}_{\text {f }}$ | specific enthalpy of saturated liquid (7.3) | J/kg |
| $\mathrm{h}_{\mathrm{g}}$ | specific enthalpy of saturated vapour (7.3) | J/kg |
| $\mathrm{i}_{5}$ | positive impulse of blast wave (7.14) | Pa.s |
| - | non-dimensional impulse of blast wave (7.14) | - |
| $L_{v}$ | vessel length (section 7.5.3, step 3b3) | m |
| M | mass of empty vessel (7.15) | kg |
| $M_{c}$ | total mass of vessel contents (7.6) | kg |
| $\mathrm{M}_{\mathrm{fl}}$ | mass of released phase or component of the fluid (7.5) | kg |
| $M_{\text {cap }}$ | mass of end cap of cylindrical vessel (T able 7.6) | kg |
| $M_{f}$ | fragment mass (T able 7.6) | kg |
| $\mathrm{n}_{\mathrm{f}}$ | number of fragments (section 7.5.3, step 2) | - |
| p | absolute pressure (7.2) | Pa |
| $\mathrm{pa}_{\mathrm{a}}$ | ambient pressure (7.1) | Pa |
| $\mathrm{p}_{1}$ | vessel's internal pressure (absolute) at failure (7.1) | Pa |
| $\bar{P}_{1}$ | scaled pressure (7.16) | - |
| $\mathrm{p}_{\mathrm{s}}$ | peak side-on pressure (absolute) of blast wave (7.13) | Pa |
| $p_{\text {so }}$ | peak shock pressure directly after burst (7.12) | Pa |


| $\bar{P}_{S}$ | non-dimensional peak side-on overpressure of the blast wave (7.13) | - |
| :---: | :---: | :---: |
| $\bar{P}_{\text {so }}$ | non-dimensional peak shock overpressure directly after burst (7.12) | - |
| $\mathrm{r}_{\mathrm{t}}$ | distance from the centre of the vessel to the target (7.8) | m |
| $\mathrm{r}_{0}$ | equivalent bursting radius (7.10) | m |
| R | gas constant (section 7.5.3, step 3b1) | $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$ |
| $\overline{\mathrm{R}}$ | non-dimensional distance to target (7.8) | - |
| $\mathrm{R}_{\mathrm{f}}$ | maximal flying range of fragment (7.21) | m |
| $\bar{R}_{\text {f }}$ | scaled maximal flying range of fragment (7.21) | - |
| $\overline{\mathrm{R}}_{0}$ | non-dimensional equivalent bursting radius (7.11) | - |
| S | specific entropy (entropy per unit mass) (7.3) | J/(kg•K) |
| $\mathrm{S}_{1}$ | specific entropy in initial state ( $=$ at failure) (7.3) | J/(kg'K) |
| $S_{2}$ | specific entropy in final state (section 7.5.2, step 4c) | J/(kg'K) |
| $\mathrm{Sf}_{\mathrm{f}}$ | specific entropy of saturated liquid (7.3) | J/(kg•K) |
| $\mathrm{S}_{\mathrm{g}}$ | specific entropy of saturated vapour (7.3) | J/(kg'K) |
| Ta | absolute temperature of ambient air (7.9) | K |
| Tb | boiling temperature at atmospheric pressure (section 7.5.2, step 3) | K |
| T ${ }_{\text {c }}$ | critical temperature (section 7.5.2, step 3) | K |
| Tg | absolute temperature of compressed gas (7.9) | K |
| T, | temperature of liquid (section 7.5.2, step 1) | K |
| $\mathrm{T}_{\text {sl }}$ | superheat limit temperature at atmospheric pressure (section 7.5.2, step 3) | K |
| u | specific internal energy (7.2) | J/kg |
| $\mathrm{u}_{1}$ | specific internal energy in initial state (section 7.5.2, step 4b) | J/kg |
| $\mathrm{u}_{2}$ | specific internal energy in final state (7.3) | J/kg |
| $\mathrm{u}_{\mathrm{f}}$ | maximum laminar burning velocity (7.17) | $\mathrm{m} / \mathrm{s}$ |
| $v$ | specific volume (7.2) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{1}$ | specific volume in initial state (= at failure) (section 7.5.2, step 4b) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{2}$ | specific volume in final state (section 7.5.2, step 4c) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $\mathrm{V}_{\mathrm{f}}$ | specific volume of saturated liquid (7.3) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $V_{g}$ | specific volume of saturated vapour (7.3) | $\mathrm{m}^{3} / \mathrm{kg}$ |
| $V_{g}$ | volume of gas-filled part of vessel (7.1) | $\mathrm{m}^{3}$ |
| $\mathrm{V}_{\mathrm{fl}}$ | volume of released phase or component of the fluid (7.5) | $\mathrm{m}^{3}$ |
| $v_{i}$ | initial velocity of fragment (7.15) | $\mathrm{m} / \mathrm{s}$ |
| $\bar{v}_{i}$ | scaled initial velocity of fragment (7.22) | - |
| X | vapour ratio (7.3) | - |
| $\gamma_{a}$ | ratio of specific heats of ambient air (7.9) | - |
| $\gamma_{1}$ | ratio of specific heats of the gas (7.1) | - |
| $\mu_{\mathrm{a}}$ | molar mass of ambient air (7.9) | $\mathrm{kg} / \mathrm{mol}$ |
| $\mu_{1}$ | molar mass of compressed gas (7.9) | kg/mol |

CPR 14E
Chapter 7 of the 'Y ellow B ook'

| $\Phi$ | dimensionless parameter that characterises the <br> energy release (7.17) |  |
| :--- | :--- | :--- |
| $\rho_{\mathrm{a}}$ | density of ambient air (7.21) | - |
| $\Delta \mathrm{H}_{\mathrm{f}}$ | heat of reaction per kg product (7.6) | $\mathrm{kg} / \mathrm{m}^{3}$ |
|  |  | $\mathrm{~J} / \mathrm{kg}$ |

N ote: the numbers betwen brackets refer to equations.

## Glossary of terms

| blast | Rapidly propagating pressure or shock wave in <br> atmosphere with high pressure, high density and <br> high particle velocity. |
| :--- | :--- |
| BLEVE | Boiling Liquid Expanding Vapour Explosion: At <br> vessel rupture the liquefied contents of the vessel <br> boil and flash instantaneously, causing a a <br> considerable blast. When the contents are <br> flammable a large fireball can be formed. |
| explosion | A sudden release of energy that causes a blast. |
| fragment range | Distance a fragment can fly. |
| impulse measure used to quantify the consequences of |  |
| a short duration pressure pulse. It is calculated |  |
| by the integration of the pressure-time curve. |  |
| pressure vessel burst | Vessel burst of a pressurised container (not <br> necessarily a true pressure vessel). |
| pressure wave | Rapidly propagating wave in atmosphere causing <br> a gradual change in gas-dynamic-state: high <br> pressure, high density and high particle velocity. |
| primary effects | Effects that occur in the first instance and that |
| originate from the source itself: blast wave, |  |
| fragments of vessel. |  |

## Table of contents of chapter 7

Modifications to Chapter 7, Rupture of Vessels ..... 3
List of symbols of chapter 7. ..... 5
Glossary of terms ..... 9
7 Rupture of vessels ..... 13
7.1 Introduction ..... 13
7.2 The phenomenon of vessel rupture ..... 15
7.2.1 Effects ..... 15
7.2.2 C auses of vessel ruptures ..... 16
7.2.3 T ypes of bursts ..... 17
7.3 General overview of existing methods ..... 19
7.3.1 Introduction to section 7.3 ..... 19
7.3.2 M ethods for blast effects ..... 19
7.3.3 M ethods for fragmentation effects ..... 21
7.4 Selection of methods ..... 25
7.4.1 Introduction to section 7.4 ..... 25
7.4.2 M ethods for blast effects ..... 25
7.4.3 M ethods for fragment velocity and range ..... 26
7.5 D escription of selected methods ..... 27
7.5.1 Introduction to section 7.5 ..... 27
7.5.2 M ethods for calculating the blast effects ..... 27
7.5.3 M ethods for fragmentation effects ..... 44
7.6 Application of selected methods: calculation examples ..... 59
7.6.1 Introduction to section 7.6 ..... 59
7.6.2 Example 1: blast effects ..... 59
7.6.3 Example 2: fragments ..... 69
7.7 Interfacing with other models ..... 73
7.8 Discussion ..... 75
7.9 Literature. ..... 77

## 7 Rupture of vessels

### 7.1 Introduction

A vessel rupture is coupled with the release of the contents and the release of the internal energy. Depending on the characteristics of the material in the vessel, the released contents can cause a buoyant fireball, a vapour cloud explosion, a flash fire or toxic gases. The sudden release of energy can give rise to damaging blast waves and high velocity fragments.
T his chapter presents methods that enable the prediction of the blast waves, vessel fragmentation and fragment velocities. The other effects mentioned are treated in other chapters, see section 7.7.

A basic understanding of the phenomena of vessel burst is necessary before one can start with any calculations. One must be able to identify the problem under consideration. All types of vessel bursts can be divided into five categories: pressure vessel bursts with non-reactive contents, BLEVEs, runaway reactions, decomposition of energetic materials and internal explosions. For each category the approach to calculate the effects is different.
Section 7.2 provides the essential and basic understanding of the phenomena. A nyone who is not familiar with the subject is advised to start by reading this section.

Section 7.3 provides a general overview of the currently available methods for a quantified analysis. It includes some background to the methods. The aim of the section is also to position the methods selected for detailed description among other existing methods.

Section 7.4 presents the considerations which led to the selection of methods described in this chapter.

Section 7.5 provides the detailed and complete description of the selected methods.
Section 7.6 presents examples of the use of the methods presented in section 7.5.

Section 7.7 directs the user to other chapters for effects of vessel rupture other than blast waves and fragmentation.

Finally section 7.8 provides some information on general restrictions regarding application of the methods.

### 7.2 The phenomenon of vessel rupture

### 7.2.1 Effects

A vessel can rupture due to several causes, but in all situations the effects are similar. Vessel rupture produces three primary effects:

1. release of vessel contents,
2. fragmentation of the vessel coupled with missile effects, and
3. blast due to the expansion of the pressurised contents.

The release of the vessel contents can cause so-called secondary effects, such as a buoyant fireball with heat radiation, a vapour cloud explosion, a flash fire or dispersion of a toxic substance. Whether these secondary effects will occur depends among others on the flammability and toxicity of the contents. The above-mentioned secondary effects are the subject of other chapters and hence not considered here.
The fragments of the vessel can become missiles with high velocities that will be propelled for a long distance and that will hit anything they find on their way. The internal energy of the vessel's contents is partly converted into kinetic energy of the fragments.
A nother part of the internal energy is converted into expansion of the contents of the vessel. T his form of mechanical energy is transmitted to the surrounding atmosphere in the form of a blast wave.
In the surrounding atmosphere, a blast wave is experienced as a transient change in gas-dynamic-state parameters: pressure, density and particle velocity. This means that a blast wave has the potential to crush objects due to the overpressure or to blow them over due to wind force. Generally the parameters increase rapidly or instantaneously after which they decrease gradually to sub-ambient values, i.e. a negative phase is developed. Subsequently, the parameters slowly return to atmospheric values. Rapid and slow are relative terms here. Generally, a blast wave lasts a fraction of a second.
Figure 7.1 shows two examples of very common shapes of a blast wave. $T$ he shape highly depends on the nature of the expansion process. In case of a slow expansion process, the blast consists of a low-amplitude pressure wave that is characterised by a gradual increase in pressure (Figure 7.1a). If, on the other hand, expansion is rapid, the blast is characterised by a steep increase, the so-called shock (Figure 7.1b). The most important shock wave parameters are the peak overpressure $p_{s}$ and the positive impulse $i_{S}$, which is calculated by integration of the pressure-time curve.


Figure 7.1 Blast wave shapes

The shape and power of a blast wave changes during propagation. Pressure waves tend to steepen to shock waves in the far field, and the duration tends to increase. T he peak pressure decreases rapidly during propagation.
C haracteristic for the blast wave from a vessel burst is the large negative phase, usually followed by a second shock (see Figure 7.2).


Figure 7.2 Pressure-time history of a blast wave from a pressure vessel burst, Esparza and Baker [1977]

### 7.2.2 Causes of vessel ruptures

F undamentally, there are two reasons why a vessel fails. Either the pressure inside the vessel rises above the design pressure or the strength of the vessel decreases below the working pressure. T oo high a pressure can arise as a consequence of overfilling, overheating, overheating due to an external fire, a failing pressure control system, a runaway reaction inside the vessel or an internal explosion. A reduction in vessel strength might be caused by corrosion, erosion, overheating, fatigue, a material defect from which a crack starts to grow or an external impact.
A common cause of vessel burst is filling with a blocked vent line or overfilling. This usually happens with vessels that are meant for atmospheric storage. T hese vessels are often weak and the damage is usually limited to the vessel itself, except in cases where the vessel is located indoors. Other common causes are a runaway reaction in a reaction vessel and overheating due to an external fire. T hese are much more violent and cause much damage, especially when the contents are flammable.

Blast and fragmentation effects originate from the transformation of internal energy into mechanical energy. T herefore the blast and fragmentation effects directly depend on the available internal energy. This internal energy is a function of the thermodynamic properties and mass of the vessel contents and is practically determined by two parameters:

- the condition of the vessel at the moment of rupture,
- the condition of the vessel contents.

The condition of vessel and contents relate to the cause of container failure. In case of a fire near/below vessels filled with pressurised liquefied gases for instance, direct flame impingement will weaken the container walls. The pressure at which the container fails will usually be about equal to the pressure at which the safety valve operates. T he temperature of the contents will usually be considerably higher than the ambient temperature.
If a vessel ruptures as a result of excessive internal pressure, its bursting overpressure may be several times higher than its design overpressure. H owever, if the rupture is due to corrosion or mechanical impact, bursting pressure is approximately equal to the working pressure. The temperature in these situations will depend on process conditions.

### 7.2.3 Types of bursts

The calculation of blast and fragmentation effects of vessel bursts can roughly be divided into two steps. In the first step the available energy is calculated, in the second step the effects are based on the energy resulting from the first step. This second step is principally the same for all types of vessel bursts. In the first step however, distinction must be made between various types of vessel bursts. Different methods must be used for each way in which the internal energy can be liberated for transformation into mechanical energy. In relation to the liberation of the internal energy all types of vessel bursts can be subdivided into the following six groups:

- pressure vessel bursts with ideal gas,
- pressure vessel bursts with non-ideal gas or vapour,
- BLEVEs,
- (exothermic) runaway reaction,
- decomposition of energetic materials,
- internal explosion.

Pressure vessel bursts concern vessels containing a pressurised gas or vapour. The only source of energy for blast and fragmentation is the expansion of the gas or vapour. T he liquid does not or only slowly flash, so that it will not supply a significant amount of energy. There is no fundamental difference in behaviour between vessels filled with ideal or non-ideal gases. Only the calculation methods that are to be used for the energy differ.

A BLEVE is an explosion resulting from the failure of a vessel containing a liquid at a temperature significantly above its boiling point at normal atmospheric pressure, e.g. pressure liquefied gases. T he fluid in the vessel is usually a combination of liquid and vapour. B efore rupture, the liquid contained is more or less in equilibrium with the saturated vapour. If the vessel ruptures, vapour is vented and the pressure in the liquid drops sharply. U pon loss of equilibrium, liquid flashes at the liquid-vapour interface, the liquid-container-wall interface, and, depending on temperature, throughout the liquid.
Instantaneous boiling throughout the liquid will occur whenever the temperature of the liquid is higher than the superheat temperature (nucleation temperature). M icroscopic vapour bubbles begin to form and grow, generally at submicron nucleation sites such as impurities, crystals or ions. Through this process, a large fraction of the liquid can vaporise within milliseconds. The liberated energy in such cases is very high, causing high blast pressures and generation of fragments with high
initial velocities, and resulting in propulsion of fragments over long distances. No boiling occurs if the temperature is below the boiling temperature. Between these temperatures, the liquid may boil instantaneously under certain conditions, Venart et al. [1992].

Runaway reactions can occur in a vessel if the heat of reaction or decomposition exceeds the cooling capacity of the vessel. T he runaway itself is characterised by an exponential increase of temperature with time. The pressure increases due to the formation of non-condensable gases and/or an increasing vapour pressure of the liquid components. This process can only be controlled by a properly dimensioned pressure relief device, like a rupture disc or pressure relief valve. If these devices malfunction or if the reaction is faster than foreseen, the pressure may continue to rise until the vessel fails.
$M$ aterials can decompose so fast and release so much energy that a transition from a runaway reaction to a deflagration or even a detonation can occur. T hese materials are called energetic materials. The contents of the vessel may decompose within milliseconds and the reaction of the entire contents may even be completed before the vessel bursts open. The explosions they cause are more like explosions from high explosives than like pressure vessel bursts. In fact, many of these energetic materials can also be made to detonate outside a vessel.

Internal explosions typically occur in storage or transport tanks when a flammable vapour-air or dust-air mixture is ignited, e.g. by a spark. T his mixture burns in a few tenths of a second. Since many of these explosions occur during filling or cleaning, they often cause no more than a jet fire through the opened hatch, but sometimes the vessel ruptures.

For the pressure vessel burst and the BLEVE, the vessel rupture can be due to an excessive pressure or a weakening of the vessel. A runaway reaction and an internal explosion on the other hand, are due to an excessive pressure. In these two situations, energy is not only released by the expansion of the contents of the vessel. An additional source of energy can be respectively the chemical reaction or the combustion, which may continue after failure of the vessel.

### 7.3 General overview of existing methods

### 7.3.1 Introduction to section 7.3

T he scope of this section is to give an overview of the existing methods for predicting the blast fragmentation effects of a vessel burst.
Little research has been carried out to bursting vessels. The number of methods for calculating the effects is therefore limited. M ost of the research deals with pressure vessels with ideal gases. Just a few studies have been devoted to vessels filled with nonideal gases and liquids. Little has been done in the field of vessel ruptures due to a runaway reaction or an internal explosion.

### 7.3.2 Methods for blast effects

M ethods for calculating blast effects of pressure vessel bursts can roughly be divided into two categories:

1. M ethods solving the set of differential equations of fluid mechanics by which the shock wave can be described.
2. Generalised methods based on thermodynamic terms and the available energy for blast generation.
$M$ ethods to solve the equations of fluid mechanics

The differential equations that describe the shock wave are non-steady and nonlinear. $N$ umerical integration techniques are necessary to solve the equations unless many simplifications are allowed. With these simplifications it may be possible to solve the equations analytically.

Analytical work is scarce. A valuable study is the analytical analysis of a bursting membrane in a shock tube with a one-dimensional technique by Liepmann and Roshko [1967]. As a result of this analysis, a relationship for the initial overpressure at the shock front has been obtained, which is valid for all types of pressure vessel bursts. The initial overpressure depends on the pressure in the sphere, the speed of sound and the ratio of specific heats. The equation of Liepmann and Roshko is an implicit equation which can be solved by iteration.
$M$ any numerical methods have been proposed for solving the differential equations and calculating the blast effects, most of them finite-difference methods. M ost work in this area reported in open literature concerns ideal gas. See for instance Baker et al. [1977], Boyer et al. [1958], H uang and Chou [1968] and Guirao et al. [1979], who used several types of methods.
Specialised commercial computer programs for numerical calculation of blast effects from a vessel burst are not available. Some general purpose Eulerian-L agrangian codes, like Autodyn or M SC Pisces, may be used to predict blast and fragment velocities. Within these codes one has to set up the problem oneself. F or that purpose one needs to have knowledge of the chosen code and also of vessel bursts.

M ethods based on thermodynamics

In the second category of the generalised methods, based on thermodynamics, the different states of the vessel contents before the start and after the completion of the explosion process are compared. T he explosion energy can thus be calculated. This explosion energy is an appropriate quantity for comparing the vessel burst with wellknown and well-defined explosions, so that the characteristics of the blast wave can be estimated.

There are two methods that belong to this category. These are the T NT-equivalence method and a method developed by Baker et al. [1977].
The TNT-equivalence method is often-used for blast calculations, since the blast effects from TNT have been well studied and are well-known. Therefore, this approach gives the user access to a large body of blast field, blast-structure interaction and structural response data. Based on the available energy an equivalent amount of T N T , for which the blast effects are known, can be calculated.
One should be well aware of the fact that compared to a TNT-explosion, the shock wave produced by bursting vessels has lower initial overpressures, a slower decay of the overpressure with distance, longer positive phase durations, much larger negative phases and strong secondary shocks. Therefore, the T NT-equivalence method gives only reasonable results for far range, which definition is related to the explosion energy. U sually, one can speak of far range at a distance of 10 to 20 times the vessel diameter or more.

## Pressure vessel bursts

The method proposed by Baker et al. [1977] has been developed for pressure vessel bursts with an ideal gas and was later extended for vessels with non-ideal gases. The method differs from the T N T -equivalence method in the distinction between far and close range for vessels. F or far range, the method makes use of the similarity with high explosives, in this case Pentolite. F or close range, the method is based on results from numerical calculations on vessel bursts with an ideal gas. These numerical calculations were verified by experiments. The close range modification is only applicable to vessels with ideal gases.

In addition to the blast calculation method, Baker gives a simple correction method for including the influence of a nearby surface and a correction method for a cylindrical vessel instead of a spherical one.
The correction method for a nearby surface is based on experimental results with freeair explosions of a high explosive. It was not experimentally validated for pressure vessel bursts by Baker. L ater C ain et al. [1992] showed the validity of the method with a limited number of tests. Other methods are not found in literature. T he influence of a nearby surface appeared to have received little attention. Pittmann [1976] did study the influence of a nearby surface using a two-dimensional code. H is results, however, were inconclusive because of the small number of cases studied and the coarse grid used in the code.
The correction method for cylindrical vessels is based on knowledge of non-spherical explosions of high explosives and on qualitative knowledge of cylindrical vessel bursts only. Although several researchers studied the effects of cylindrical vessel bursts, this did not result in methods for calculating the effects. Only qualitative knowledge has
been gained, for instance that the shock wave along the axis of the vessel is initially considerably weaker than the wave normal to the axis.

## BLEVEs

The work done in the field of BLEVEs is much more limited. M ost studies only produced qualitative knowledge about BLEVEs.
There is the theoretical work of Reid [1976] and some experimental work by Venart et al. [1992], which increases the understanding of the phenomenon of a BL EVE and which gives a method to predict whether a BLEVE will occur or not, but the effects of a BLEVE have not been considered. T his theory is in most cases applicable. The only method for blast predictions for these situations is given by Baker et al. [1977]. Baker's method includes a modification for vessels with flashing liquids, similar to the method for non-ideal gases.

Runaway reactions

H eemskerk [1995] conducted a study into the blast effects of runaway reactions. He concluded that reaction rates are too low to raise the pressure inside the vessel above the failure pressure during the failure process of the vessel. The energy of the ongoing reaction after the moment the vessel ruptures hardly contributes to the blast effects. F or blast calculations a vessel burst due to a runaway reaction can therefore be treated similar to a pressure vessel burst with ideal or non-ideal gases.

Internal explosions

The same is likely to be true for internal explosions, but this has not been studied. A conservative approach is to assume that the combustion is complete and use Baker's method.

Decomposition of energetic materials

The decomposition of energetic materials is always approached with TNTequivalency methods. A main point of discussion is the fraction of energy which contributes to the blast, because often a part of the contents of the vessel does not decompose or decomposes too slowly to be able to fully contribute to the blast. The research effort on energetic materials focuses on the question of explosiveness of materials, $Y$ oshida [1987], H eemskerk [1995]. This is outside the scope of this chapter.

### 7.3.3 Methods for fragmentation effects

The fragmentation of the vessel is coupled with missile effects. T hese socalled primary missile effects (= missiles that originate from the source itself) are determined by number, mass, shape, velocity and trajectory of the fragments. Secondary missiles, objects in the environment of the vessel that are picked up by the blast wave, are not considered.

The methods available for calculating the initial fragment velocity can be divided into three groups:

1. kinetic energy methods,
2. methods based on theoretical considerations,
3. empirical formulae.

The first group of methods is based on the assumption that a particular fraction of the energy will be transferred into kinetic energy of the fragments. The difference between the various methods in this group lies in the difference in definition of the fragment energy. As for blast effects, it is not known which measure for the kinetic energy is most suitable. Some definitions prescribe all or almost all internal energy for the calculation. It may be obvious that an upper limit will be found. Other definitions prescribe a part of all internal energy, based on experimental observations. In cases similar to the experiments these definitions may give a very good result. In other cases they may over- or underestimate the kinetic energy.
Theoretically, these methods are applicable to all types of vessel bursts, except to vessels filled with energetic materials, but it is not always simple to define the kinetic energy.

The second group of methods for estimating the fragment velocity is based on theoretical considerations.
A method for pressure vessels filled with ideal gas was introduced by G rodzovskii and K ukanov [1965] and improved by various researchers. This method takes into account gas flow through the ever-increasing gaps between fragments. Baker et al. [1983] used such a theoretical method to perform a parameter study and to compose with the results a diagram which can be used to determine initial fragment velocity for bursting pressurised vessels filled with ideal gas. The diagram is only applicable to spherical vessels or cylindrical vessels with a length-to-diameter ratio of 10, that have a uniform thickness and contain ideal gases. Furthermore, the diagram has been obtained for vessels bursting into equal fragments. Therefore, one must be careful to apply the diagram for unequal fragments.

A second method belonging to the group of methods based on theoretical considerations is given by Gel'fand et al. [1989]. Gel'fand et al. composed some dimensionless diagrams which can be used to determine the velocity of fragments in the rupture of spherical and cylindrical vessels containing an inert or a reactive gas mixture. F or the reactive mixture two situations are considered: a runaway reaction and a combustion.
The diagrams are based upon a set of differential equations describing the motion of the fragments, the gas state, the energy of the mixture and the kinetics of the chemical reaction. The flow of gas through gaps between the fragments is taken into account. The set has been solved by applying the Runge-K utta numerical integration method. The method of Gel'fand is based on, first, the assumption that non-uniform distribution of parameters with regard to the fragmentation effects may be ignored and, secondly, on the assumption of isentropic flow. T hese assumptions are allowed in case of large fragments.
Only the results for the inert mixture were compared with a limited number of experimental results and did correspond well. Gel'fand et al. state that the velocity estimate in case of a reactive mixture is conservative, whereas the velocity in case of an inert mixture is underestimated by no more than $5 \%$.

The third group contains empirical relations for the initial velocity for vessels filled with ideal gases. M oore [1967] presents an empirical relation which distinguishes spherical and cylindrical vessels. The relation is derived for fragments accelerated from high explosives packed in a casing. Therefore, this equation predicts velocities higher than actual, especially for low vessel pressures and few fragments.
Baum [1987] gives a set of empirical relations to calculate an upper value for the initial fragment velocity from a spherical or cylindrical vessel burst, filled with an ideal gas or a flashing liquid (BLEVEs), into a small or large number of fragments. Some of the equations are based on a very small number of experiments.

F or internal explosions and runaway reactions, only G el'fand et al. [1989] present a method (see above).

The method of Gurney [Brown, 1985], and its adaptation by M oore (see above) could be considered for vessels filled with energetic materials. Gurney's method was derived for cased high explosives.
$M$ ethods to calculate fragment ranges

F or the methods to calculate the fragment ranges (= flying distance), it is not required to distinguish between the four types of vessel bursts. The fragment range is calculated given the initial velocity and the mass of the fragment.

The forces that act upon fragments during their flight are gravity and dynamic fluid forces. The latter can be subdivided into drag and lift components, i.e. friction and uplift.
The simplest method to calculate the fragment range is by neglecting the dynamic fluid forces. Then the range only depends on the initial velocity and the initial trajectory angle. With this method the fragment range is usually considerably overestimated, but when lift forces are high it can also be underestimated.

Baker et al. [1983] solved a set of differential equations for the fragment range which included the fluid-dynamic forces by assuming that the orientation of a fragment during its flight remains the same with respect to its trajectory. They plotted the results in a diagram for practical use. The curves were generated by maximisation of range through variation of the initial trajectory angle. T he curves concern similar lift-to-drag ratios which are not always easy to determine, because these ratios vary with the angle of attack and during the flight. A method to calculate the ratios is also given.

In some accidents rocketing effects are developed. L arge fragments are propulsed for unexpectedly long distances. Baker et al. [1978] provided (1) equations for a simplified rocketing problem and (2) a computer program for a rocketing problem, but they stated that the method was not yet ready to be used for range prediction. Ranges for rocketing fragments can also be calculated from guide-lines by Baum [1987]. The difference between this approach and Baker's approach appear to be small.

## M ass and range distributions of fragments

The methods presented previously give no information on distributions of mass, velocity and range of fragments, and no information on the number of fragments to be expected. T here are no methods that consider these parameters.
Some information might be found in the analysis of results of accidental explosions. Vital information is, however, lacking for most of such events. A pragmatic approach, based on the small amount of information available, is proposed by us to overcome this problem.
Baker et al. [1978] analysed 25 accidental vessel explosions for mass and range distribution, number of fragments and fragment shape, divided into six groups of like events. With statistical analyses estimates of range distributions for the six groups and fragment-mass distributions for three of the six groups were obtained and plotted in diagrams. With these figures it is possible to estimate the percentage of all the fragments which would have a range or mass smaller than, or equal to, a certain value. This is only valid for cases exactly the same as studied. T he quantitative information cannot be generalised because of lacking data.

### 7.4 Selection of methods

### 7.4.1 Introduction to section 7.4

In the field of vessel bursts sometimes only one method is available or even none. When there are more methods, in this section the considerations will be explained for the selection of the methods which will be included in section 7.5.
In general the selection is based on the following criteria:

1. The method should give accurate results.
2. The method should be based on plausible physical assumptions.
3. The method should be easy to apply, also for someone not familiar with the field.
4. The method should preferably be widely applicable.
5. The limits for the applicability of the method should be well defined.

The considerations will be presented as follows:

1. Section 7.4.2 addresses the methods for predicting the blast effects.
2. Section 7.4.3 addresses the methods for predicting the fragment velocity and other fragmentation effects.

### 7.4.2 Methods for blast effects

F or the description in section 7.5 a method based on thermodynamics has been chosen. T he limitation of methods of this category, that the energy available for blast is not well-known and that therefore the method is not very accurate, is outreached by the simpleness of the method and its broad applicability. For these reasons these methods have been used widely. N o specialist knowledge of vessel bursts is necessary to use the method, the opposite of which is true when solving the differential equations of fluid mechanics. M oreover, although the blast energy is not well-known, it is possible to define a conservative approach.

In this category there are only two methods which are more or less generally applicable. These two methods are:

- TNT-equivalence method;
- Baker's method.

Both methods are comparable, except that Baker's method distinguishes between close and far range for pressure vessel bursts with ideal gas. For these scenarios Baker's method is more accurate. Therefore, Baker's method is described in section 7.5.

The method can be used for all six types of vessel bursts with a different definition for the available energy for each type of burst.

### 7.4.3 Methods for fragment velocity and range

In section 7.5 the kinetic energy method is described because it provides a very simple method to obtain a rough estimate of the fragment velocity. T he method is always applicable, to each type of vessel burst and regardless of the number of fragments.

Other, more accurate, methods are: (1) Baker's method for rupture of vessels with inert gases into many fragments, (2) Baker's and Gel'fand's method for rupture of vessels with inert gases into a few fragments, (3) Baum's empirical relation for BLEVEs, (4) Gel'fand's method for runaway reactions and internal explosions.

For pressure vessel ruptures into many fragments, Baker's method and Baum's empirical relation give similar results. The same holds for Baker's and Gel'fand's method for rupture of vessels into a few fragments. For BLEVEs, runaway reactions and internal explosions there is no choice. One can only dispose of Baum's empirical relation, Baker's method and Gel'fand's method.
To be able to calculate the fragment velocity for any situation (except for BLEVEs) it is necessary to describe at least two methods. No method covers all possible situations. There are two possibilities: Gel'fand's and Baker's method, or Gel'fand's and B aum's method. The first option has been chosen because these two methods are similar which makes the application simple for the user. Baum's empirical relations do not give extra information.

M oore's method is included as a check to guarantee that the previous methods are not applied beyond their limits. Furthermore, it is the most appropriate method for vessels filled with very high pressure gas and for vessels filled with energetic materials.

For calculating fragment ranges, the method of Baker has been included. For chunky fragments the method is very easy to use. F or plate-like fragments, for which the lift coefficient is very important, it takes some additional effort to use the method, but there is no acceptable alternative.

Only qualitative remarks can be made about other fragmentation effects, such as the number of fragments and the distribution of mass and range, by way of a pragmatic approach and for a few special situations with use of Bakers statistical analysis. It is no use describing Baker's statistical approach here. It can scarcely be used. It is only applicable to the same situations, same vessels with same contents, as in the cases studied. T he pragmatic approach, proposed by us, is more widely applicable. It is also based on the qualitative data from Baker's statistical analysis. This approach is therefore described in section 7.5 .

### 7.5 Description of selected methods

### 7.5.1 Introduction to section 7.5

In this section the recommended methods to calculate the blast effects and the fragmentation effects are described. It contains all necessary information to perform calculations. No background information on the methods is provided. F or this, the reader should refer to section 7.3, whereas the limitations of the methods are discussed in section 7.8.
The reader should have a little basic understanding of the phenomena of a vessel burst. T herefore, anyone who is unfamiliar with the subject is advised to read section 7.2 first.

The methods to calculate the blast effects are described in section 7.5.2. M ethods to calculate the fragmentation effects are given in section 7.5.3.

### 7.5.2 Methods for calculating the blast effects

The blast effects can be calculated with the procedure described below. First, information on the problem must be gathered. With the data the blast energy must be calculated. F inally the properties of the blast wave at the location of interest are determined.

## Step 1 Collect data

C ollect the following data:
a. vessel contents: ideal or non-ideal gas, vapour or liquid,
b. type of possible vessel burst: pressure vessel burst, BLEVE, runaway reaction, internal explosion or decomposition of energetic material,
c. the vessel's internal pressure (absolute) at failure, $\mathrm{p}_{1}$,
d. the ambient pressure, $p_{a}$,
e. the volume of gas-filled part of vessel, $\mathrm{V}_{\mathrm{g}}$,
f. the ratio of specific heats of the gas, $\gamma_{1}$,
g. the distance from the centre of the vessel to the so-called target, $r_{t}$,
h. the shape of the vessel: spherical or cylindrical,
i. the temperature of the liquid at failure, $\mathrm{T}_{1}$, its boiling temperature at ambient conditions, $\mathrm{T}_{\mathrm{b}}$, and its critical temperature, $\mathrm{T}_{\mathrm{c}}$.

## Ad c and i .

The following table provides guidance regarding pressure and temperature at failure to be assumed for several situations. It is not possible to give an unequivocal advice for decomposition of energetic materials. H ere the approach must be different.


Table 7.1 Characteristic pressure and temperature at failure

| Situation | Pressure at failure | Temperature at failure |
| :---: | :---: | :---: |
| Corrosion of vessel, Erosion of vessel, Material defect, External impact, Fatigue of vessel | Storage or working pressure | Storage or process temperature |
| External fire | $1.21 \times$ opening pressure of safety valve | Determine with use of thermodynamics tables |
| Overfilling (in combination with failing safety valve) | Design pressure $\times$ safety factor (= usually 2.5) | Storage or process temperature |
| Overheating (in combination with failing safety valve) | Design pressure $\times$ safety factor (= usually 2.5) | Determine with use of thermodynamic tables |
| Runaway reaction | Design pressure $\times$ safety factor (= usually 2.5) | Calculate with ideal gas law for that pressure |
| Decomposition of energetic materials | See step 5 | See step 5 |
| Internal explosion | 3-4 $\times$ initial pressure for gas mixtures close to the explosion limits, <br> $8-10 \times$ initial pressure for stoichiometric gas or vapour mixtures, Rombouts [1988] | Liquid: storage or process temperatures Gas: adiabatic flame temperature |

Ad b
T he method for calculating the internal energy depends on the type of vessel burst. That is why one has to identify the problem as one of the following types of vessel bursts, which are described in section 7.2. F or each type of vessel burst it is stated which step one has to continue with:

- Pressure vessel burst with ideal gas
- Pressure vessel burst with non-ideal gas or vapour
- BLEVE (vessel with liquid)
- Runaway reaction, ideal gases non-ideal gases/vapour
- D ecomposition of energetic materials
go to step 2 go to step 4 go to step 3 go to step 2
go to step 4
- Internal explosion
go to step 5
go to step 2

Step 2 C alculation of the liberated energy of a pressure vessel burst or runaway reaction with an ideal gas, or an internal explosion

The liberated energy $\mathrm{E}_{\mathrm{av}}$ of a compressed gas as it expands to atmospheric pressure is calculated as follows:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{av}}=\frac{\left(\mathrm{p}_{1}-\mathrm{p}_{\mathrm{a}}\right) \times \mathrm{V}_{\mathrm{g}}}{\gamma_{1}-1} \tag{J}
\end{equation*}
$$

where
$\mathrm{E}_{\mathrm{av}}=$ liberated/expansion energy of compressed gas [J]
$\mathrm{p}_{1}=$ absolute pressure of gas [Pa]
$\mathrm{pa}_{\mathrm{a}}=$ absolute pressure of ambient air [Pa]
$\mathrm{V}_{\mathrm{g}}=$ volume of gas-filled space of vessel [m³
$\gamma_{1}=$ ratio of specific heats of gas in system [-]
N ext: go to step 6.

Step 3 C heck temperature of liquid

The temperature determines whether or not the liquid in a vessel will boil when depressurised:
$T_{1}<T_{b} \quad: \quad$ the liquid will not boil, only the vapour in the vessel will contribute to a blast wave (= pressure vessel burst with vapour)
$T_{b}<T_{l}<T_{s l} \quad:$ the liquid will boil, possibly BLEVE
$\mathrm{T}_{\mathrm{l}}>\mathrm{T}_{\mathrm{sl}} \quad:$ the liquid will boil explosively, BLEVE
where:
$\mathrm{T}_{\mathrm{b}}=$ boiling temperature at atmospheric pressure [K]
$\mathrm{T}_{\mathrm{c}} \quad=$ critical temperature (i.e. temperature above which a gas cannot be liquefied by pressure alone)
$\mathrm{T}_{\mathrm{sl}}=$ superheat limit temperature at atmospheric pressure, approximately equal to $0.89 \times \mathrm{T}_{\mathrm{c}}$ for many fluids

If the liquid is a mixture of fluids, consider each fluid separately.
C ontinue with step 4.

Step 4 C alculation of the liberated energy in case of a vessel burst or runaway reaction with a non-ideal gas or vapour or liquid (BLEVE)

Step 4a D etermine if the fluid is given in Table 7.2 or Figure 7.3
The work performed by a fluid as it expands has been calculated for the following seven common fluids:

- ammonia
- carbon dioxide
- ethane
- isobutane
- nitrogen
- oxygen
- propane

If the fluid of interest is listed, go to step 4d. If not, go to step 4b.

Step 4b D etermine internal energy in initial state, $u_{1}$

The work done by an expanding fluid (i.e., a liquid or a vapour) is defined as the difference in internal energy $u$ between the fluid's initial and final states. M ost thermodynamic tables and graphs do not present u but only the enthalpy h, absolute pressure p , specific volume v , absolute temperature T and the specific entropy s . Therefore, u must be calculated with the following equation:

$$
\begin{equation*}
\mathrm{u}=\mathrm{h}-\mathrm{pv} \tag{J/kg}
\end{equation*}
$$

where

| $u=$ specific internal energy | $[\mathrm{J} / \mathrm{kg}]$ |
| :--- | :--- |
| $\mathrm{h}=$ specific enthalpy (enthalpy per unit mass) | $[\mathrm{J} / \mathrm{kg}]$ |
| $\mathrm{p}=$ absolute pressure | $[\mathrm{Pa}]$ |
| $\mathrm{v}=$ specific volume | $\left[\mathrm{m}^{3} / \mathrm{kg}\right]$ |

T o use a thermodynamic graph, locate the fluid's initial state on the graph. (F or a saturated fluid, this point lies either on the saturated liquid or on the saturated vapour curve, at a pressure $p_{1}$.) Read the enthalpy $h_{1}$, volume $v_{1}$, and entropy $s_{1}$ from the graph. If thermodynamic tables are used, interpolate these values from the tables. C alculate the specific internal energy in the initial state $u_{1}$ with equation (7.2), both for the vapour phase and the liquid phase.
The thermodynamic properties of mixtures of fluids are usually not known. A crude estimate of a mixture's internal energy can be made by summing up the internal energy of each component.
C ontinue with step 4c.

## Step 4c D etermine internal energy in expanded state, $u_{2}$

The specific internal energy of the fluid in the expanded state $u_{2}$ can be determined as follows: If a thermodynamic graph is used, assume an isentropic expansion (entropy $s$ is constant) to atmospheric pressure $p_{a}$. T herefore, follow the constantentropy line from the initial state to $\mathrm{p}_{\mathrm{a}}$. Read $\mathrm{h}_{2}$ and $\mathrm{v}_{2}$ at this point, and calculate the specific internal energy $u_{2}$ by using of equation (7.2). $T$ his is illustrated in example 1 in section 7.6.2.
If thermodynamic tables are used, read the enthalpy $h_{f}$, volume $v_{f}$, and entropy $s_{f}$ of the saturated liquid at ambient pressure, $p_{a}$, interpolating if necessary. In the same way, read these values ( $h_{g}, v_{g}, s_{g}$ ) for the saturated vapour state at ambient pressure. $T$ hen, use the following equation to calculate the specific internal energy $\mathrm{u}_{2}$ :

$$
\begin{equation*}
u_{2}=(1-X) h_{f}+X h_{g}-(1-X) p_{a} v_{f}-X p_{a} v_{g} \tag{7.3}
\end{equation*}
$$

where

```
X = vapour ratio ( }\mp@subsup{\textrm{S}}{1}{}-\mp@subsup{\textrm{S}}{\textrm{f}}{})/(\mp@subsup{\textrm{s}}{\textrm{g}}{}-\mp@subsup{\textrm{S}}{\textrm{f}}{})\quad[-
s = specific entropy [J/(kg\cdotK )]
```

Subscript 1 refers to initial state
Subscript 2 refers to the expanded state
Subscript f refers to state of saturated liquid at ambient pressure
Subscript g refers to state of saturated vapour at ambient pressure

Equation (7.3) is only valid if $X$ is between 0 and 1 . If not, use a thermodynamic graph, as demonstrated in section 7.6.
Continue with step 4d.

Step 4d Calculate the specific liberated energy
The specific work done by an expanding fluid is

$$
\mathrm{e}_{\mathrm{av}}=\mathrm{u}_{1}-\mathrm{u}_{2}
$$

where $e_{a v}$ is the specific work or specific liberated energy. The results of these calculations are given for seven common gases in T able 7.2 and Figures 7.3 and 7.4. Table 7.2 gives superheat limit temperature $T_{\text {sl }}$, initial conditions and specific work done in expansion based upon isentropic expansion of either saturated liquid or saturated vapour until atmospheric pressure is reached.
Figures 7.3 and 7.4 present the same information for saturated hydrocarbons. N ote that a liquid has much more energy per unit volume than a vapour.

Table 7.2 Expansion work of ammonia, carbon dioxide, nitrogen and oxygen

| Fluid | $\begin{gathered} T_{1} \\ (\mathrm{~K}) \end{gathered}$ | $\begin{gathered} p_{1} \\ \left(10^{5} \mathrm{~Pa}\right) \end{gathered}$ | Liquid |  | Vapour |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\underset{(\mathrm{kJ} / \mathrm{kg})}{e_{\mathrm{av}}}$ | $\begin{gathered} e_{\mathrm{av}} / v_{\mathrm{f}} \\ \left(\mathrm{MJ} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} e_{\mathrm{av}} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} e_{\mathrm{av}} / v_{\mathrm{q}} \\ \left(\mathrm{MJ} / \mathrm{m}^{3}\right) \end{gathered}$ |
| Ammonia,$T_{\mathrm{sl}}=361.0 \mathrm{~K}$ | 324.8 | 21.2 | 82.5 | 46.2 | 297.0 | 4.89 |
|  | 360.0 | 48.0 | 152.5 | 74.7 | 365.0 | 14.80 |
|  | 400.0 | 102.8 | 278.5 | 95.7 | 344.0 | 47.00 |
| Carbon dioxide,$T_{\mathrm{sl}}=270.8 \mathrm{~K}$ | 244.3 | 14.8 | 54.4 | 58.2 | 98.0 | 3.77 |
|  | 255.4 | 21.1 | 60.9 | 62.1 | 109.0 | 6.00 |
|  | 266.5 | 29.1 | 68.1 | 65.6 | 117.0 | 9.17 |
| Nitrogen,$T_{\mathrm{sl}}=112.3 \mathrm{~K}$ | 104.0 | 10.0 | 13.2 | 8.78 | 41.9 | 1.75 |
|  | 110.0 | 14.5 | 18.2 | 11.3 | 47.7 | 2.98 |
|  | 120.0 | 24.8 | 28.6 | 15.0 | 53.5 | 6.66 |
| Oxygen,$T_{\mathrm{sl}}=137.7 \mathrm{~K}$ | 120.0 | 10.1 | 12.8 | 12.5 | 43.9 | 1.73 |
|  | 130.0 | 17.3 | 18.7 | 16.8 | 53.4 | 3.65 |
|  | 140.0 | 27.5 | 27.2 | 22.1 | 60.0 | 7.00 |

CPR 14E
Chapter 7 of the ' $Y$ ellow B ook'


Figure 7.3 Expansion work per unit mass of saturated ethane, propane, and isobutane. The saturated liquid state is on the lower part of the curves. The solid marker indicates the superheat limit temperature


Figure 7.4 Expansion work divided by specific volume of saturated ethane, propane, and isobutane. The saturated liquid state is on the upper part of the curves. The solid marker indicates the superheat limit temperature

C alculate the specific work done by the fluid for the vapour phase and the liquid phase, and in case of a mixture of fluids, for all components.
Continue with step 4 e .

Step 4e C alculate total liberated energy
T o calculate the available energy, multiply the specific expansion work by the mass of the phase or component of the fluid released or else, if energy per unit volume is used, multiply by the volume of the phase or component of the fluid released.

$$
\begin{align*}
& E_{a v}=e_{a v} \times M_{f l}  \tag{J}\\
& E_{a v}=\left(e_{a v} / v\right) \times V_{f l} \tag{J}
\end{align*}
$$

where
$\mathrm{M}_{\mathrm{fl}}=$ mass of released phase or component of the fluid [kg]
$\mathrm{V}_{\mathrm{fl}} \quad=$ volume of released phase or component of the fluid $\quad\left[\mathrm{m}^{3}\right]$
Repeat steps 4 b to 4 e for each phase and component present in the vessel, and add the energies to find the total liberated energy $\mathrm{E}_{\mathrm{av}}$. When this total energy has been found, go to step 6.

Step 5 D etermine the available energy for a decomposition of an energetic material
For a decomposition of an energetic material it is not possible to give an unequivocal advice on the failure pressure. A different approach to calculate the liberated energy is therefore necessary.
The upper limit for the liberated energy is given by the total amount of chemical energy of the decomposition. $T$ his is shown by an example.

The heat of reaction can be found from the difference between the heat of formation of the reactants and that of the reaction products. Y oshida [1987] gives an example for the detonative decomposition of nitromethane. The heats of formation of the reactants and reaction products, in $\mathrm{kJ} / \mathrm{mol}$, are given below the stoichiometic equation.

$$
\begin{array}{lccc}
\mathrm{CH}_{3} \mathrm{NO}_{2}(\mathrm{I}) \rightarrow(3 / 2) \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+(1 / 4) \mathrm{CO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{N}_{2}(\mathrm{~g})+(3 / 4) \mathrm{C}(\mathrm{~s}) \\
-\Delta \mathrm{H}_{\mathrm{f}} 113.4 & 287.3 & 395.2 & 0
\end{array}
$$

The heat of reaction $\Delta \mathrm{H}_{\mathrm{f}}$ is: $(3 / 2) \times 287.3+(1 / 4) \times 395.2-113.4=416.4 \mathrm{~kJ} / \mathrm{mol}$, or 6.8 M J/kg nitromethane. F or more information see Y oshida [1987].

The total chemical energy can now be found by multiplying the heat of reaction with the total mass of product:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{av}}=\mathrm{M}_{\mathrm{c}} \Delta \mathrm{H}_{\mathrm{f}} \tag{J}
\end{equation*}
$$

where
$\Delta H_{f}=$ the heat of reaction per kg product
[J/kg]
$M_{c}=$ the total mass of contents of the vessel
[kg]

This method will considerably overestimate the explosion effects in most cases, because often only part of the vessel's contents decomposes or does not decompose quickly enough to contribute to the blast.
C ontinue with step 6.

Step 6 D etermine the effective blast wave energy, $\mathrm{E}_{\mathrm{ex}}$
T he effective blast wave energy is given by

$$
\begin{equation*}
\mathrm{E}_{\mathrm{ex}}=\mathrm{A}_{\mathrm{sb}} \times \mathrm{E}_{\mathrm{av}} \tag{J}
\end{equation*}
$$

In this equation it is assumed that all available energy will be converted into blast wave energy. With the factor $A_{s b}$, the presence of a reflecting ground surface can be taken into account. $A_{s b}=1$, when the vessel is high in the air, $A_{s b}=2$ when the vessel is less than 15 degrees above the horizon, as seen from the target.
$N$ ote that this method only predicts the peak overpressure of the incident shock wave. The target may receive additional loadings from reflected shock waves. This is especially the case when the vessel is high in the air. T o find the total load in these cases, use the methods described in T M 5-1300 [1990] or consult an expert. C ontinue with step 7.

## Step 7 C alculate $\bar{R}$ of the target

The non-dimensional distance of the so-called 'target', $\overline{\mathrm{R}}$, is defined as

$$
\begin{equation*}
\overline{\mathrm{R}}=\mathrm{r}_{\mathrm{t}}\left[\frac{\mathrm{p}_{\mathrm{a}}}{\mathrm{E}_{\mathrm{ex}}}\right]^{1 / 3} \tag{-}
\end{equation*}
$$

where $r_{t}$ is the distance in metres at which blast parameters are to be determined.
C ontinue with step 8.

Step 8: Check the value of $\bar{R}$
F or $\bar{R} \geq 2$ the basic method gives good results. F or $\bar{R}<2$ however, the basic method gives too high a value. A refined method is available for pressure vessel bursts or runaway reactions with ideal gas.
Therefore, continue according to the following list:
$\bar{R} \geq 2, \quad$ continue with step 9.
$\bar{R}<2$, ideal gas go to step 10.
$\bar{R}<2$, other vessel bursts
continue with step 9 and realise that the results will be conservative.

Step 9 D etermine $\bar{P}_{s}$ for all types of vessel bursts except for a pressure vessel burst with an ideal gas at close range ( $\bar{R}<2$ )
$\bar{P}_{\mathrm{s}}$ is the non-dimensional side-on overpressure of the blast wave. This nondimensional overpressure can be read from Figure 7.5 or 7.6 for the appropriate $\bar{R}$. U se the curve labelled 'high explosive' if Figure 7.5 is used.
N ext: go to step 11.


Figure 7.5 Non-dimensional overpressure versus non-dimensional distance for overpressure calculations, Baker et al. [1977]. $\bar{R}=r_{t}\left(p_{a} / E_{e x}\right)^{1 / 3}$ and $\bar{P}_{s}=p_{s} / p_{a}-1$


Figure $7.6 \quad \bar{P}_{s}$ versus $\bar{R}$ for pentolite, Baker et al. [1977]. $\bar{R}=r_{t}\left(p_{a} / E_{e x}\right)^{1 / 3}, \bar{P}_{s}=p_{s} / p_{a}-1$

Step 10 D etermine $\bar{P}_{5}$ for a pressure vessel burst with an ideal gas and $\bar{R}<2$
( $R$ efined method for the near field)

Because the similarity of the blast waves of vessel bursts and high explosives does not hold for the near field, a refined method is necessary to predict the blast pressures.

## Step 10a Collect additional data

In addition to the data collected in step 1 of the basic method, the following data is needed:

- the ratio of the speed of sound in the compressed gas to its speed in ambient air, $a_{1} / a_{a}$;
- the ratio of specific heats of ambient air, $\gamma_{a}=1.40$, the molar mass is $0.0290 \mathrm{~kg} / \mathrm{mol}$.

For an ideal gas $\left(a_{1} / a_{a}\right)^{2}$ is

$$
\begin{equation*}
\left[\frac{a_{1}}{a_{a}}\right]^{2}=\frac{\gamma_{1} T_{g} \mu_{a}}{\gamma_{a} T_{a} \mu_{1}} \tag{-}
\end{equation*}
$$

where
$\mathrm{T}_{\mathrm{a}}=$ absolute temperature of ambient air [K]
$\mathrm{T}_{\mathrm{g}}=$ absolute temperature of compressed gas
$\mu_{1}=$ molar mass of compressed gas [kg/mol]
$\mu_{\mathrm{a}}=$ molar mass of ambient air
[ $\mathrm{kg} / \mathrm{mol}]$
$\gamma_{a}$ and $\gamma_{1}$ are specific heat ratios
Continue with step 10b.

## Step 10b Calculate the initial distance

This refined method assumes the blast wave to be completely symmetrical. Such a shape would result from the explosion of a hemispherical vessel placed directly on the ground. Therefore, a hemispherical vessel is used instead of the actual vessel for calculation purposes.
C alculate the hemispherical vessel's radius $r_{0}$ from the volume of the gas-filled part of the actual vessel $\mathrm{V}_{\mathrm{g}}$ :

$$
\begin{equation*}
r_{0}=\left[\frac{3 \mathrm{~V}_{\mathrm{g}}}{2 \pi}\right]^{1 / 3}=0.782 \times \mathrm{V}_{\mathrm{g}}^{1 / 3} \tag{m}
\end{equation*}
$$

This is the starting distance on the overpressure versus distance curve. It must be transformed into the non-dimensional starting distance, $\overline{\mathrm{R}}_{0}$, with:

$$
\begin{equation*}
\overline{\mathrm{R}}_{0}=\mathrm{r}_{0}\left[\frac{\mathrm{p}_{\mathrm{a}}}{\mathrm{E}_{\mathrm{ex}}}\right]^{1 / 3} \tag{-}
\end{equation*}
$$

C ontinue with step 10c.

## Step 10c Calculate the initial peak overpressure $\bar{P}_{\text {so }}$

T he peak shock pressure directly after the burst, $\mathrm{p}_{50}$, is much lower than the initial gas pressure in the vessel $p_{1}$. The non-dimensional peak shock overpressure directly after the burst, $\bar{P}_{s 0}$, is defined as $\left(p_{s 0} / p_{a}\right)-1$. It is given by the following expression:

$$
\begin{equation*}
\frac{p_{1}}{\mathrm{p}_{\mathrm{a}}}=\left(\overline{\mathrm{P}}_{\mathrm{so}}+1\right)\left[1-\frac{\left(\gamma_{1}-1\right)\left(\mathrm{a}_{\mathrm{a}} / \mathrm{a}_{1}\right) \overline{\mathrm{P}}_{\mathrm{so}}}{\left[2 \gamma_{\mathrm{a}}\left(2 \gamma_{\mathrm{a}}+\left(\gamma_{\mathrm{a}}+1\right) \overline{\mathrm{P}}_{\mathrm{so}}\right)\right]^{1 / 2}}\right]^{\left(\frac{-2 \gamma_{1}}{\gamma_{1}-1}\right)} \tag{-}
\end{equation*}
$$

where
$\mathrm{p}_{1} \quad=$ initial absolute pressure of compressed gas
$p_{\mathrm{a}}=$ ambient pressure
$\overline{\mathrm{P}}_{\mathrm{so}} \quad=$ non-dimensional peak shock overpressure directly after burst:

$$
\bar{P}_{\mathrm{so}}=\left(\mathrm{p}_{\mathrm{so}} / \mathrm{p}_{\mathrm{a}}\right)-1
$$

$p_{\text {so }}=$ peak shock pressure directly after burst
$\gamma_{a}=$ ratio of specific heats of ambient air
$\gamma_{1}=$ ratio of specific heats of compressed gas
$a_{a} \quad=$ speed of sound in ambient air
$a_{1} \quad=$ speed of sound in compressed gas
[-]
[Pa]
[-]
[-]
[m/s]
[m/s]

This is an implicit equation which can only be solved by iteration. One might use a spreadsheet to solve $\overline{\mathrm{P}}_{50}$. An alternative is to read $\overline{\mathrm{P}}_{50}$ from Figure 7.7 or 7.8.


Figure 7.7 Gas temperature versus pressure for constant $\bar{P}_{\text {so }}$ for $\gamma_{1}=1.4$,
Baker et al. [1977]


Figure 7.8 Gas temperature versus pressure for constant $\bar{P}_{s o}$ for $\gamma_{1}=1.66$,
Baker et al. [1977]

Continue with step 10d.

Step 10d Locate the starting point of Figure 7.5
In steps 10b and 10c, the vessel's non-dimensional radius and the blast wave's nondimensional peak pressure at that radius were calculated. As a blast wave travels outward, its pressure decreases rapidly. The relationship between the peak pressure $\bar{P}_{s}$ and the distance $\overline{\mathrm{R}}$ depends upon the initial conditions. Accordingly, Figure 7.5 contains several curves. Locate the correct curve by plotting ( $\left(\overline{\mathrm{R}}, \overline{\mathrm{P}}_{50}\right.$ ) in the figure. Continue with step 10 e .

Step 10e Determine $\overline{\mathrm{F}}_{\mathrm{S}}$
To determine the non-dimensional side-on overpressure $\overline{\mathrm{P}}_{\mathrm{s}}$, read $\overline{\mathrm{P}}_{\mathrm{s}}$ from Figure 7.5 for the appropriate $\overline{\mathrm{R}}$ (calculated in step 7). Use the curve which goes through the starting point, or else draw a curve through the starting point parallel to the nearest curve.
C ontinue with step 11.

## Step 11 Determine $\overline{ }$

To determine the non-dimensional side-on impulse $\bar{T}$, read $\overline{\mathrm{T}}$ from Figure 7.9 or 7.10 for the appropriate $\overline{\mathrm{R}}$. Use the curve labelled as 'vessel burst'. For $\overline{\mathrm{R}}$ in the range of 0.1 to 1.0 , the $\bar{\Gamma}$ versus $\bar{R}$ curve of $F$ igure 7.10 is more convenient.

C ontinue with step 12.


Figure 7.9 $\overline{1}$ versus $\bar{R}$ for pentolite and gas vessel bursts, Baker et al. [1977], $\bar{R}=r_{t}\left(p_{a} / E_{e x}\right)^{1 / 3}, \bar{l}=\left(i_{s} a_{a}\right) /\left(p_{a}^{2 / 3} E_{e x}^{1 / 3}\right)$


Figure 7.10 $\overline{1}$ versus $\bar{R}$ for gas vessel bursts, Baker et al. [1977], $\bar{R}=r_{t}\left(p_{a} / E_{e x}\right)^{1 / 3}, \bar{l}=\left(i_{s} a_{a}\right) /\left(p_{a}^{2 / 3} E_{e x}^{1 / 3}\right)$

## Step 12 A djust $\bar{P}_{s}$ and $\bar{I}$ for geometry effects

The above procedure gives blast parameters applicable to a completely symmetrical blast wave, such as would result from the expansion of a hemispherical vessel above the ground or a spherical vessel in free air. In practice, vessels are either spherical or cylindrical, and placed at some height above the ground. This influences blast parameters. T o adjust for these geometry effects, $\overline{\mathrm{P}}_{\mathrm{s}}$ and $\overline{\mathrm{I}}$ must be multiplied by some adjustment factors. T able 7.3 and 7.4 give multiplication factors for adjusting the scaled values for cylindrical vessels of various $\bar{R}$ and for vessels elevated slightly above the ground, respectively.
It must be mentioned that for cylindrical vessels the blast field is asymmetrical when placed horizontally. The blast wave is weakest along the axis. T he correction method will only provide the maximum values for a horizontal tank.
Continue with step 13.

Table 7.3 Adjustment factors for $\bar{P}_{s}$ and $\overline{\bar{l}}$ for
cylindrical vessels for various $\bar{R}$

| $\overline{\mathbf{R}}$ | Multiplier for |  |
| :--- | :--- | :--- |
|  | $\overline{\mathbf{P}}_{\mathbf{s}}$ | $\overline{\mathbf{I}}$ |
| $<0.3$ | 4 | 2 |
| $\geq 0.3$ and $\leq 1.6$ | 1.6 | 1.1 |
| $>1.6$ and $\leq 3.5$ | 1.6 | 1 |
| $>3.5$ | 1.4 | 1 |

Table 7.4 Adjustment factors for $\bar{P}_{s}$ and $\bar{l}$ for vessels slightly elevated above the ground

| $\mathbf{N}$ | Multiplier for |  |
| :--- | :--- | :--- |
|  | $\overline{\mathbf{P}}_{\mathbf{s}}$ | $\overline{\mathbf{I}}$ |
| $<1$ | 2 | 1.6 |
| $\geq 1$ | 1.1 | 1 |

## Step 13 Calculate $\mathrm{p}_{\mathrm{s}}, \mathrm{i}_{\mathrm{s}}$

$U$ se the following equations to calculate the side-on peak overpressure $p_{s}-p_{a}$ and the side-on impulse $\mathrm{i}_{\mathrm{S}}$ from the non-dimensional side-on peak overpressure $\overline{\mathrm{P}}_{\mathrm{s}}$ and the non-dimensional side-on impulse $\bar{T}$ :

$$
\begin{align*}
& p_{s}-p_{a}=\bar{p}_{s} \times p_{a}  \tag{Pa}\\
& i_{s}=\frac{\bar{I} \times p_{a}^{2 / 3} \times E_{\mathrm{ex}}^{1 / 3}}{a_{a}}
\end{align*}
$$

where $a_{a}$ is the speed of sound in ambient air in metres per second. For sea-level average conditions, $p_{a}$ is approximately 101.3 kPa and $\mathrm{a}_{\mathrm{a}}$ is $340 \mathrm{~m} / \mathrm{s}$.
C ontinue with step 14.

## Step 14 Check $\mathrm{p}_{\mathrm{s}}$

This method has only a limited accuracy, especially in the near field. U nder some circumstances, the calculated $p_{s}$ might be higher than the initial pressure in the vessel $p_{1}$, which is physically impossible. If this should happen, take $p_{1}$ as the peak pressure instead of the calculated $\mathrm{p}_{\mathrm{s}}$.
$N$ ote that the methods presented above give upper estimates of blast parameters. In practice, overpressures in one case might very well be much lower than predicted by the method, and in another case they might be close to the predicted value. The method is therefore not suitable for analysis of accidents. It is just a tool to predict safe upper values for plant layout etc.

### 7.5.3 Methods for fragmentation effects

The risk from fragments at a particular location is related to the number of fragments that may fall on or fly through that location and their potential to do damage, i.e. their mass and velocity.

CPR 14E
Chapter 7 of the 'Y ellow B ook'


## Step 1 Estimate number of fragments

T here are no methods to predict the number of fragments. An estimate of the number of fragments can only be made by using a pragmatic approach which is based on analyses of accidental explosions.
A pragmatic approach to estimate the number of fragments to be expected is summarised in T able 7.5. It means that in case of a local weakening of the vessel it is most probable that it will break into two pieces, whereas in case of overpressure the vessel will break into more pieces, usually along the welds. A cylinder usually has only a few welds whereas a sphere has much more welds.

Table 7.5 Pragmatic approach to estimate number of fragments

| Situation | Number of fragments |
| :---: | :---: |
| Local weakening | 2 pieces |
| Overpressure |  |
| Cylinder | 2 or 3 pieces |
| Sphere | 10 to 20 pieces |

C ontinue with step 2.

## Step $2 \quad$ Estimate fragment mass, $\mathrm{M}_{\mathrm{f}}$

As is the case for the number of fragments, there is no method available to estimate the mass of the fragment. Only a pragmatic approach can be used.
This pragmatic approach is related to the pragmatic approach for the determination of the number of fragments. K nowing this number $\mathrm{n}_{\mathrm{f}}$, it is easy to calculate the average mass of the fragments, being equal to $M_{V} / n_{f}$.
T his estimate of the average fragment mass can be considered as reasonable in case of rupture into many fragments or in case of rupture into a few equal fragments. T his is the case for spheres.
Cylinders, however, usually do not break into equal parts. They usually break at the end caps. The vessel often projects its end caps along the axis of the vessel and the unfolded shell perpendicular to the vessel's axis.
A survey of possible fragments is given in T able 7.6.

Table 7.6 Fragment mass and shape, pragmatic approach

| Type of vessel | Fragment mass $\mathbf{M}_{\mathbf{f}}$ | Fragment shape |
| :---: | :---: | :---: |
| Sphere, 2 fragments Sphere, many fragments Cylinder, 2 equal pieces Cylinder, 2 unequal pieces Cylinder, 3 unequal pieces Cylinder, many pieces | $\begin{aligned} & \mathrm{M}_{\mathrm{v}} / 2 \\ & \mathrm{M}_{\mathrm{v}} / n_{\mathrm{f}} \\ & \mathrm{M}_{\mathrm{v}} / 2 \\ & 1 \text { piece: } \mathrm{M}_{\text {cap }} \\ & \text { other piece: } \mathrm{M}_{\mathrm{v}}-\mathrm{M}_{\text {cap }} \\ & 2 \text { pieces: } \mathrm{M}_{\text {cap }} \\ & \text { other: }\left(\mathrm{M}_{\mathrm{v}}-2 \mathrm{M}_{\text {cap }}\right) \\ & 2 \text { pieces: } M_{\text {cap }} \\ & \text { rest: }\left(\mathrm{M}_{\mathrm{v}}-2 \mathrm{M}_{\text {cap }}\right) /\left(n_{\mathrm{f}}-2\right) \end{aligned}$ | hemisphere <br> plates <br> half of tank <br> cap/hemisphere <br> tank with one cap missing <br> cap/hemisphere <br> plate <br> cap/hemisphere <br> strip |

C ontinue with step 3.

## Step 3 C alculate fragment velocity

C alculate the fragment velocity according to one of the methods in T able 7.7.

Table 7.7 Selection of methods for fragmentation effects, depending on the type of burst

| Type of burst | Method | Go to step |
| :--- | :--- | :---: |
| Rough estimate for all types of vessel bursts, <br> except decomposition of energetic materials | Kinetic energy method | 3 a |
| Pressure vessel burst | Baker's and/or Gel'fand's <br> method | 3 b |
| Runaway reaction, internal explosion | Gel'fand's method | 3 b |
| BLEVE <br> For high scaled pressures and <br> decomposition of energetic materials | Maum's empirical formula | 3 aa |

C heck the results of the other methods (step 3a and 3b) with the empirical relation of M oore (3c).

Step 3a K inetic energy method to roughly predict the initial fragment velocity and B aum's empirical formula for BLEVEs

The theoretical upper limit and a rough estimate of the initial fragment velocity can be calculated as follows.

## Step 3a1 C ollect data

C ollect the same data as collected in step 1 of the method for calculating the blast effects, see paragraph 7.5.2. D etermine also the total mass of the empty vessel, $M_{v}$.

Step 3a2 C alculate the liberated energy, $\mathrm{E}_{\mathrm{av}}$
C alculate the liberated energy in accordance with the method for blast effects, see paragraph 7.5.2.

Step 3a3 C alculate initial velocity, $\mathrm{v}_{\mathrm{i}}$

This initial velocity of a fragment can be calculated by using of the following equation:

$$
\begin{equation*}
v_{i}=\sqrt{\frac{2 \times A_{\mathrm{ke}} \times E_{\mathrm{av}}}{M_{\mathrm{v}}}} \tag{m/s}
\end{equation*}
$$

where
$\mathrm{E}_{\mathrm{av}}=$ liberated energy [J]
$M_{v}=$ total mass of empty vessel [kg]
$A_{k e}$ is the fraction of the liberated energy that goes into kinetic energy of the fragments. It depends on the situation.
U pper limit $\quad A_{\text {ke }}=0.6$
Rough estimate $\quad A_{k e}=0.2$
BLEVE $\quad A_{k e}=0.04$
Note that with the rough estimate the initial velocity can sometimes be underestimated considerably.
N ext: go to step 3c.

Step 3b B aker's and/or Gel'fand's method to estimate initial fragment velocity

Step 3b1 Collect data
C ollect the following data:

- absolute pressure of gas at failure, $p_{1}$
- ambient pressure, $\mathrm{pa}_{\mathrm{a}}$
- volume of gas-filled part of the vessel, $\mathrm{V}_{\mathrm{g}}$
- specific heat ratio of gases in vessel, $\gamma_{1}$
- speed of sound in gas at failure, $a_{1}, a_{1}^{2}=T_{g} \gamma_{1} R / \mu_{1}$ where
$\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\mathrm{T}_{\mathrm{g}}=$ absolute temperature inside vessel at failure $\quad[\mathrm{K}]$
$\mu_{1}=$ molecular mass
[kg/mol]
- mass of vessel, $\mathrm{M}_{\mathrm{v}}$
- shape of vessel.

In case of a runaway reaction or internal explosion collect also the following data:

- maximum laminar burning velocity of reaction, $u_{f}$. F or a few gases $u_{f}$ is given in T able 5.1 in chapter 'V apour C loud Explosions'.
- heat of reaction per kg of the product, $\Delta \mathrm{H}_{\mathrm{f}}$, which follows from the stoichiometric equation for the reaction, see section 7.5.2, step 5 .

Step 3b2 C alculate the dimensionless scaled overpressure $\bar{P}_{1}$
C alculate the scaled overpressure according to:

$$
\begin{equation*}
\bar{P}_{1}=\left(p_{1}-p_{a}\right) \times V_{g} /\left(M_{v} a_{1}^{2}\right) \tag{-}
\end{equation*}
$$

In case of a runaway reaction or internal explosion also calculate the dimensionless parameter $\Phi$, which characterises the rate of energy release. $\Phi$ is given by:

$$
\begin{equation*}
\Phi=\frac{\Delta \mathrm{H}_{\mathrm{f}} \times \mathrm{u}_{\mathrm{f}}}{\mathrm{a}_{1}^{3}} \tag{-}
\end{equation*}
$$

Step 3b3 Read $v_{\mathrm{i}}$ from Figure 7.11
Choose the proper chart from Figures 7.11. Choose the proper line in this chart and read $v_{i} / a_{1}$ for $\bar{P}_{1}$, as determined in the previous step. If one can choose between Baker's solution and the solution of Gel'fand, it is best to choose the most conservative solution. Since $a_{1}$ has been determined in step $3 b 1$, the initial velocity $\mathrm{v}_{\mathrm{i}}$ is now known.
In case of a runaway reaction the proper line in the chart is determined by the dimensionless parameter $\Phi$ as calculated in step 3 b 2 and by the specific heat ratio $\gamma_{1}$. The lines in the chart for a certain $\gamma_{1}$ are in the same order as in the legend.
In case of a cylinder with a different length-diameter ratio than in the figures, one should determine $v_{i} / a_{1}$ by interpolating between the values for the two closest vessels. Continue with step 3 c .
$\cdots \cdots \cdot n f=2$, Baker
$-\cdots-n f=10$, Baker
$-\cdots-n f=100$, Baker
$\square n f<5$, Gel'fand

Figure 7.11a Fragment velocity versus scaled pressure for a sphere with ideal gas ( $n_{f}$ is number of fragments)

CPR 14E
Chapter 7 of the ' $Y$ ellow B ook'
cylinder $\mathrm{L}_{\mathrm{V}} / \mathrm{d}_{\mathrm{v}}=5$

$\bar{P}_{1}$

Figure 7.11b Fragment velocity versus scaled pressure for a cylinder with a length-diameter ratio of 5, filled with an ideal gas ( $n_{f}$ is number of fragments)


Figure 7.11c Fragment velocity versus scaled pressure for a cylinder with a length-diameter ratio of 10 , filled with an ideal gas ( $n_{f}$ is number of fragments)


Figure 7.11d Fragment velocity versus scaled pressure for a sphere, ruptured because of a runaway reaction (lines are in the same order as in the legend).


Figure 7.11e Fragment velocity versus scaled pressure for a cylinder with a length-diameter ratio of 5, ruptured because of a runaway reaction (lines are in the same order as in the legend).


$P_{1}$
Figure 7.11 fragment velocity versus scaled pressure for a cylinder with a length-diameter ratio of 10, ruptured because of a runaway reaction (lines are in the same order as in the legend).

Step 3c M oore's empirical formula for the initial fragment velocity in case of a high scaled pressure $\bar{P}_{1}$, decomposition of energetic materials, or to check the calculated $v_{i}$.

## Step 3c1 C ollect data

C ollect the same data as collected in step 1 of the method for calculating the blast effects, see paragraph 7.5.2. D etermine also the total mass of the empty vessel $M_{v}$ and the mass of the gas inside the vessel $M_{c}$.

Step 3c2 C alculate the liberated energy, $\mathrm{E}_{\mathrm{av}}$
C alculate the liberated energy in accordance with the method for blast effects, see paragraph 7.5.2.

Step 3c3 Calculate initial velocity, $\mathrm{v}_{\mathrm{i}}$
This initial velocity can be calculated by using of the following equation:

$$
\begin{align*}
& v_{i}=1.092\left[\frac{E_{a v} A_{M}}{M_{v}}\right]^{0.5}  \tag{7.18}\\
& \text { where for spherical vessels } A_{M}=\frac{1}{1+3 M_{c} / 5 M_{v}}  \tag{7.19}\\
& \text { and for cylindrical vessels } A_{M}=\frac{1}{1+M_{C} / 2 M_{v}} \tag{7.20}
\end{align*}
$$

Step 3c4 Check $v_{i}$, calculated according to other method
If the initial velocity calculated before is higher than according to $M$ oore's empirical relation, then this velocity is too high. U se the value found with $M$ oore's equation. C ontinue with step 4.

## Step $4 \quad$ C alculate range of flying fragments

After a fragment is accelerated to a certain initial velocity, the forces acting upon it during flight are those of gravity and fluid dynamics (lift and drag). These forces determine the distance a fragment can fly.

Figure 7.12 plots scaled maximum range $\bar{R}_{f}$ and scaled initial velocity $\bar{v}_{i}$ as a function of the lift-to-drag ratio $C_{L} A_{L} / C_{D} A_{D}$. This figure is based on the assumption that fragment orientation remains constant with respect to the trajectory (constant angle of attack). T he scaled parameters are defined by

$$
\begin{align*}
& \bar{R}_{f}=\frac{\rho_{a} C_{D} A_{D} R_{f}}{M_{f}}  \tag{-}\\
& \bar{v}_{i}=\frac{\rho_{a} C_{D} A_{D} v_{i}^{2}}{M_{f} g}
\end{align*}
$$

(-)
where

| $\bar{R}_{f}$ | $=$ scaled maximal range | $[-]$ |
| :--- | :--- | :--- |
| $R_{f}$ | $=$ maximal range | $[\mathrm{m}]$ |
| $\bar{v}_{i}$ | $=$ scaled initial velocity | $[-]$ |
| $v_{i}$ | $=$ initial velocity | $[\mathrm{m} / \mathrm{s}]$ |
| $\rho_{a}$ | $=$ density of ambient atmosphere | $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$ |
| $C_{D}=$ drag coefficient | $[-]$ |  |
| $C_{L}=$ lift coefficient | $[-]$ |  |
| $A_{D}$ | $=$ exposed area in plane perpendicular to trajectory | $\left[\mathrm{m}^{2}\right]$ |
| $A_{L}$ | $=$ exposed area in plane parallel to trajectory | $\left[\mathrm{m}^{2}\right]$ |
| $g$ | $=$ gravitational acceleration | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ |
| $M_{f}$ | $=$ mass of fragment | $[\mathrm{kg}]$ |



Figure 7.12 Scaled curves for fragment range predictions. ----: solution for no wind resistance, $R_{f}=v_{i}^{2} / g$

U sing Figure 7.12 the maximum fragment range can be predicted as follows.

Step 4a D etermine the following parameters

- $\rho_{a}$, density of ambient atmosphere ( $\mathrm{kg} / \mathrm{m}^{3}$ )
- the (average) value for $C_{D} A_{D}\left(m^{2}\right)$, by using $T$ able 7.8. The average value is needed in case of tumbling, which often occurs.
- the value for the lift-to-drag ratio $C_{L} A_{L} / C_{D} A_{D}$, with use of $T$ able 7.8. For blunt and tumbling objects the lift equals zero.

Table 7.8 Drag and lift of fragments

| Shape | $\mathbf{C}_{\mathbf{D}} \mathbf{A}_{\mathbf{D}}$ | $\mathbf{C}_{\mathrm{L}} \mathbf{A}_{\mathrm{L}} / \mathbf{C}_{\mathbf{D}} \mathbf{A}_{\mathbf{D}}$ |
| :--- | :--- | :--- |
| Plate (tumbling) | $0.585 \times \mathrm{A}_{\text {plate }}$ | 0 |
| Plate (no tumbling, face on) | $1.17 \times \mathrm{A}_{\text {plate }}$ | 0 |
| Plate (no tumbling, edge on) | $0.1 \times \mathrm{A}_{\text {plate }}$ | 0 to $10^{1)}$ |
| Hemisphere (tumbling) | $0.615 \times \pi / 4 \times \mathrm{d}_{\mathrm{v}}{ }^{2}$ | 0 |
| Hemisphere (no tumbling) | $0.47 \times \pi / 4 \times \mathrm{d}_{\mathrm{v}}{ }^{2}$ | 0 |
| Half a tank (rocketing) | $0.47 \times \pi / 4 \times \mathrm{d}_{\mathrm{v}}{ }^{2}$ | 0 |
| Cylinder (edge on) | $1.20 \times \mathrm{d}_{\mathrm{v}} \times \mathrm{L}_{\mathrm{v}}$ | 0 |
| Strips (tumbling) | $0.99 \times \mathrm{A}_{\text {strip }}$ | 0 |

1) The value depends on the plate's angle. Use the value which gives the maximum fragment range, or calculate a number of possible ranges.

## Step 4b C alculate the scaled initial velocity

The scaled initial velocity is given by equation (7.22).

$$
\begin{equation*}
\bar{v}_{i}=\frac{\rho_{a} C_{D} A_{D} v_{i}^{2}}{M_{f} g} \tag{-}
\end{equation*}
$$

Step 4c Read scaled maximal range from Figure 7.12

Step 4d Calculate $R_{f}$
By using of equation (7.21) the maximal range $R_{f}$ can be calculated.

$$
\begin{equation*}
\bar{R}_{f}=\frac{\rho_{a} C_{D} A_{D} R_{f}}{M_{f}} \tag{-}
\end{equation*}
$$

### 7.6 Application of selected methods: calculation examples

### 7.6.1 Introduction to section 7.6

Bursting vessels can generate blast and propel fragments to several hundred metres distance. In this section calculation methods to predict the hazards of vessel bursts are demonstrated. The calculation methods have been described in section 7.5.
Section 7.6 .2 and 7.6 .3 respectively provide examples of blast effects and of fragmentation effects. In all these examples, one tank is considered with its environment. Different types of vessel bursts are studied by assuming different contents for the tank.
In the examples, data are just listed and equations are used without repeating them. The numbers of the equations are given, so that the reader can easily retrace them in section 7.5. Decision points are explained in accordance with the flow charts.
Like the description of the test method, the examples are also presented stepwise. T he numbers of each step in the examples correspond to those in the description of the methods and in the chart flows.

### 7.6.2 Example 1: blast effects

C onsider a cylindrical vessel, used for the storage of propane, which has been repaired. After the repair, the vessel is pressure tested with nitrogen gas at a pressure $25 \%$ above the design pressure. If the vessel bursts during the test, a large storage tank, located 15 m from the vessel, and a control building, located 100 m from the vessel, might be endangered. What would be the side-on overpressure and impulse at these points?
After a successful pressure test, the vessel is re-entered into service. The safety valve is set at 1.5 M Pa ( 15 bar ) overpressure. What might happen if the vessel was exposed to a fire? C onsider the vessel being filled for $80 \%$ with propane.

## Solution for gas-filled vessel

## Step 1 C ollect data

a. Nitrogen at ambient temperature can be regarded as an ideal gas.
b. Since the vessel contains an ideal gas, we are dealing with a pressure vessel burst.
c. The design overpressure of the vessel is 1.92 M Pa , the test pressure is $25 \%$ higher. Therefore, the absolute internal pressure $p_{1}$ is:
$\mathrm{p}_{1}=1.25 \times 1.92 \times 10^{6}+0.1 \times 10^{6}=2.5 \mathrm{M} \mathrm{Pa}(25$ bar $)$
d. The ambient pressure $\mathrm{p}_{\mathrm{a}}$ is 101325 Pa .
e. The volume of the vessel is $25 \mathrm{~m}^{3}$.
f. The ratio of specific heats of nitrogen, $\gamma_{1}$, is 1.40.
g. The distance from the centre of the vessel to the 'target', $r_{t}$, is 100 m for the control building and 15 m for the large storage tank.
h. The shape of the vessel is cylindrical. It is placed horizontally, on the ground.

## Step 2 E nergy calculation

The energy of the compressed gas is calculated using equation (7.1).
Substitution gives:

$$
\mathrm{E}_{\mathrm{av}}=\frac{\left(2.5 \times 10^{6}-0.1 \times 10^{6}\right) \times 25}{1.4-1}=150 \mathrm{MJ}
$$

## Step 6 Effective blast energy

Assuming that all energy is available for blast energy and using the fact that the vessel is placed on the ground, the calculated liberated energy must be multiplied by a factor 2 in order to obtain the effective blast energy. So, $\mathrm{E}_{\mathrm{ex}}=300 \mathrm{M} \mathrm{J}$.

Step 7 Calculate the non-dimensional distance $\bar{R}$ of the acceptor.

The non-dimensional range $\overline{\mathrm{R}}$ is calculated using equation (7.8).
Substitution gives for the control building:

$$
\overline{\mathrm{R}}=100 \times\left(\frac{0.1 \times 10^{6}}{300 \times 10^{6}}\right)^{1 / 3}=6.97
$$

And for the large storage tank: $\overline{\mathrm{R}}=1.05$

## Step 8 Check $\bar{R}$

The non-dimensional range $\overline{\mathrm{R}}$ is checked to see whether the basic method can be followed or the refined method must be used. The control building lies at a nondimensional range of 6.9 , so the basic method can be followed. T he range of the large storage tank is less than 2 , so the refined method must be used to obtain an accurate result.

First, the blast parameters at the control building will be determined.

Step 9 D etermine $\bar{P}_{S}$
The non-dimensional side-on peak overpressure $\bar{P}_{s}$ at the control building is read from Figure 7.6. For $\overline{\mathrm{R}}=6.9, \overline{\mathrm{P}}_{\mathrm{s}}=0.028$.

## Step 11 D etermine $\bar{T}$

The non-dimensional side-on impulse $\bar{\Gamma}$ at the control building is read from Figure 7.10. For $\bar{R}=6.9, \bar{I}=0.0075$.

Step 12 A djust $\bar{P}_{s}$ and $\bar{I}$ for geometry effects

To account for the fact that the blast wave from the vessel will not be perfectly symmetrical, $\overline{\mathrm{P}}_{\mathrm{s}}$ and $\overline{\mathrm{T}}$ are adjusted, depending on $\overline{\mathrm{R}}$. To account for a cylindrical vessel, $\overline{\mathrm{P}}_{\mathrm{s}}$ is multiplied by 1.4. Thus, $\overline{\mathrm{P}}_{\mathrm{s}}$ becomes:

$$
\bar{P}_{\mathrm{s}}=1.4 \times 0.028=0.0391
$$

No adjustment of $\bar{I}$ is necessary at this range.

Step 13 C alculate $p_{s}$ and $i_{s}$

To calculate the side-on peak overpressure $p_{s}-p_{a}$ and the side-on impulse $i_{s}$ from the non-dimensional side-on peak overpressure $\bar{P}_{\mathrm{s}}$ and the non-dimensional side-on impulse $\overline{1}$, equations (7.13) and (7.14) are used.
The ambient speed of sound $\mathrm{a}_{\mathrm{a}}$ is approximately $340 \mathrm{~m} / \mathrm{s}$. Substitution gives:

$$
\begin{aligned}
& p_{s}-p_{a}=0.0391 \times 101325=3.97 \mathrm{kPa} \\
& i_{s}=\left(0.0075 \times(101325)^{2 / 3} \times\left(300 \times 10^{6}\right)^{1 / 3}\right) / 340=32 \mathrm{~Pa} \cdot \mathrm{~s}
\end{aligned}
$$

Step 14 Check $p_{s}$
Because the accuracy of this method is limited, $p_{s}$ needs to be checked against $p_{1}$. In this case, $p_{s}$ is much smaller than $p_{1}$, so no corrections have to be made.
Thus, the calculated blast parameters at the control building are: a side-on peak overpressure of 3.97 kPa and a side-on impulse of $32 \mathrm{~Pa} \cdot \mathrm{~s}$.

As shown above, the distance to the large storage tank is too small to use the basic method with good results. Therefore, the refined method is used to calculate the blast parameters at the large storage tank.

## Step 10a Collect additional data

- The ratio of the speed of sound in the compressed nitrogen and the speed of sound in the ambient air, $a_{1} / a_{a}$, is approximately 1 .
- The ratio of specific heats of the ambient air is 1.40.


## Step 10b C alculate the starting distance

The starting distance is computed with equation (7.10). Substitution gives:

$$
r_{0}=0.782 \times 25^{1 / 3}=2.29 \mathrm{~m}
$$

$r_{0}$ must be transformed into the non-dimensional starting distance $\bar{R}_{0}$ with equation 7.11. Substitution gives:

$$
\bar{R}_{0}=2.29 \times\left(0.1 \times 10^{6} / 300 \times 10^{6}\right)^{1 / 3}=0.16
$$

Step 10c Calculate the initial peak overpressure $\bar{P}_{\text {so }}$
The non-dimensional peak overpressure of the shock wave directly after the burst of the vessel, $\bar{P}_{50}$, can be read from Figure 7.7. The result is: $\bar{P}_{50}=3.05$, eight times less than the initial pressure in the vessel.

Step 10d L ocate the starting point on Figure 7.5
T o select the proper curve in Figure 7.5, the starting point $\bar{R}_{0}, \overline{\mathrm{P}}_{50}$ is drawn in the figure.

Step 10e D etermine $\bar{P}_{S}$
To determine the non-dimensional side-on peak overpressure $\bar{P}_{s}$ at the large storage tank, $\bar{P}_{s}$ is read from Figure 7.5. The non-dimensional distance was computed before as $\bar{R}=1.05$. F ollowing the curve from the starting point, $a \bar{P}_{s}$ of 0.36 is found. The procedure is continued with step 11.

## Step 11 D etermine $\bar{T}$

The non-dimensional side-on impulse $\bar{I}$ at the tank is read from Figure 7.9. For $\bar{R}=1.05, \bar{I}=0.048$.

## Step 12 A djust $\bar{P}_{s}$ and $\bar{I}$ for geometry effects

To account for the fact that the blast wave from the vessel will not be perfectly symmetrical, $\bar{P}_{s}$ and $\bar{I}$ are adjusted, depending on $\bar{R}$. To account for the vessel's placement slightly above ground level, $\bar{P}_{s}$ is multiplied by 1.1. To account for the cylindrical shape of the vessel, $\overline{\mathrm{P}}_{\mathrm{s}}$ is multiplied by 1.6 and $\overline{\mathrm{I}}$ is multiplied by 1.1. Thus, $\bar{P}_{s}$ and $\bar{I}$ become:

$$
\begin{aligned}
& \bar{P}_{S}=1.6 \times 0.36=0.576 \\
& \bar{I}=1.1 \times 0.048=0.053
\end{aligned}
$$

Step 13 Calculate $p_{s}$ and $i_{s}$
To calculate side-on peak overpressure $p_{s}-p_{a}$ and side-on impulse $i_{s}$ from the nondimensional side-on peak overpressure $\bar{P}_{s}$ and the non-dimensional side-on impulse $\bar{T}$, equation (7.13) and (7.14) are used.

The ambient speed of sound $\mathrm{a}_{\mathrm{a}}$ is approximately $340 \mathrm{~m} / \mathrm{s}$. Substitution gives:

$$
\begin{aligned}
& p_{s}-p_{a}=0.576 \times 101325=58 \mathrm{kPa} \\
& \left.i_{s}=0.053 \times(101325)^{2 / 3} \times\left(300 \times 10^{6}\right)^{1 / 3}\right) / 340=225 \mathrm{~Pa} \cdot \mathrm{~s}
\end{aligned}
$$

## Step 14 Check $p_{s}$

Because the accuracy of this method is limited, $p_{s}$ needs to be checked against $p_{1}$. In this case, $p_{s}$ is much smaller than $p_{1}$, so no corrections have to be made.
Thus, the calculated blast parameters at the large storage vessel are: a side-on peak overpressure of 63 kPa and a side-on impulse of $230 \mathrm{Pa.s}$.

## Solution for liquid-filled vessel

## Step $1 \quad$ Collect data

a. The vessel contains pressure liquefied propane.
b. The possible type of vessel burst is a BLEVE .
c. The failure overpressure is assumed to be 1.21 times the opening pressure of the safety valve. $T$ hus, $p_{1}$ is:

$$
\mathrm{p}_{1}=1.21 \times 1.5+0.1=1.9 \mathrm{M} \mathrm{~Pa}(19 \mathrm{bar})
$$

d. The ambient pressure $\mathrm{p}_{\mathrm{a}}$ is assumed to be 101325 Pa .
e. The volume of the vessel is $25 \mathrm{~m}^{3}$.
f. The distance from the centre of the vessel to the receptor is 100 m for the control building and 15 m for the large storage tank.
g. The shape of the vessel is cylindrical. It is placed horizontally, on saddles.
h. The ambient temperature is 293 K . The temperature of saturated propane at a vapour pressure of 1.9 M Pa is 327.7 K .

## Step 3 C heck temperature of liquid

The boiling temperature and superheat limit temperature are given in Perry and Green [1984]: $T_{b}=231 \mathrm{~K}, \mathrm{~T}_{\mathrm{sl}}=326 \mathrm{~K}$. The temperature of the propane is above superheat limit temperature. So, a BLEVE may occur.

Step 4a Check if the fluid is in Table 7.2 or Figure 7.3
Although the specific expansion energy of propane is included in the list of fluids in Figure 7.3, steps 4b to 4d are followed for this demonstration. It will be demonstrated both by using a thermodynamic graph and a thermodynamic table.

Step 4b and 4c using a thermodynamic table

Step 4b D etermine $u_{1}$
Thermodynamic data for propane can be found in e.g. Perry and Green [1984]. These are presented in T able 7.9.

Table 7.9 Thermodynamic data for propane

| $\mathbf{T}_{\mathbf{1}}$ <br> $(\mathbf{K})$ | $\mathbf{p}_{\mathbf{1}}$ <br> $(\mathbf{M P a})$ | $\mathbf{h}_{\mathbf{f}}$ <br> $(\mathbf{k J / k g})$ | $\mathbf{h}_{\mathbf{g}}$ <br> $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{v}_{\mathbf{f}}$ <br> $\left(\mathbf{m}^{3} / \mathbf{k g}\right)$ | $\mathbf{v}_{\mathbf{g}}$ <br> $\left(\mathbf{m}^{3} / \mathbf{k g}\right)$ | $\mathbf{s}_{\mathbf{f}}$ <br> $(\mathbf{k J / k g K})$ | $\mathbf{s}_{\mathbf{g}}$ <br> $(\mathbf{k J / k g K})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 327.7 | 1.90 | 674.31 | 948.32 | $2.278 \times 10^{-3}$ | 0.0232 | 4.7685 | 5.6051 |
| 230.9 | 0.10 | 421.27 | 849.19 | $1.722 \times 10^{-3}$ | 0.419 | 3.8721 | 5.7256 |

The vessel is assumed to be filled with saturated liquid and vapour. The specific internal energy of the saturated liquid can be computed by substituting the appropriate thermodynamic data of $T$ able 7.9 in equation (7.2):

$$
u_{1}=674.31 \times 10^{3}-1.90 \times 10^{6} \times 2.278 \times 10^{-3}
$$

It follows that: $\mathrm{u}_{1}=669.98 \mathrm{~kJ} / \mathrm{kg}$.
The specific internal energy of the saturated vapour can be computed in the same way:

$$
\mathrm{u}_{1}=948.32 \times 10^{3}-1.90 \times 10^{6} \times 0.0232=904.24 \mathrm{~kJ} / \mathrm{kg}
$$

Step 4c D etermine $u_{2}$
The specific internal energy of the fluid after expansion to the ambient pressure, $\mathrm{u}_{2}$, is calculated using equation (7.3).
For the saturated liquid, the vapour ratio $X$ is:

$$
X=(4.7685-3.8721) /(5.7256-3.8721)=0.484
$$

and $u_{2}$ is:

$$
\begin{aligned}
& u_{2}=(1-0.484) \times 421.27 \times 10^{3}+0.484 \times 849.19 \times 10^{3}- \\
& (1-0.484) \times 0.1 \times 10^{6} \times 1.722 \times 10^{-3}-0.484 \times 0.1 \times 10^{6} \times 0.419 \\
& =608.01 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

For the saturated vapour, $\mathrm{X}=0.935$ and $\mathrm{u}_{2}=782.19 \mathrm{~kJ} / \mathrm{kg}$

Step $4 b$ and $4 c$ using a thermodynamic graph

## Step 4b D etermine $u_{1}$

Figure 7.13 gives an schematic view of the enthalpy-pressure graph of propane. Clearly visible is the curve indicating the saturated state. T he top of this curve is the critical point. On the left of this point is the liquid state, and on the right the vapour state. T he graph also shows lines of constant temperature T, constant specific volume $v$, constant entropy $s$ and constant vapour ratio $X$. T he thermodynamic data can also be drawn in other types of graphs, e.g. an enthalpy-entropy graph.


Figure 7.13 Enthalpy-pressure graph of propane (schematic)

The vessel is assumed to be filled with saturated liquid and saturated vapour. The specific internal energy of the saturated liquid can be computed with equation (7.2). The initial state can be found on the graph by locating the point on the saturated liquid curve which has a pressure of 1.9 M Pa . T he specific enthalpy of that state is $674 \mathrm{~kJ} / \mathrm{kg}$. The specific volume of this state cannot be read from the graph. It can be assumed that it is negligible. T his gives for the specific internal energy:

$$
u_{1}=674 \times 10^{3}-1.90 \times 10^{6} \times 0.0
$$

It follows that: $u_{1}=674 \mathrm{~kJ} / \mathrm{kg}$.
T he specific internal energy of the saturated vapour can be computed the same way. In this case, the specific volume is not negligible.

$$
\mathrm{u}_{1}=948 \times 10^{3}-1.90 \times 10^{6} \times 0.023=904.3 \mathrm{~kJ} / \mathrm{kg}
$$

Step 4c D etermine $u_{2}$

The state of the fluid after expansion can be found by following the constant entropy curve from the initial state to the state with atmospheric pressure. $T$ he final state is a mixture of liquid and vapour if the initial state is saturated liquid or vapour. The specific enthalpy of the final state can be read directly from the graph: $h_{2}=6.28 \cdot 10^{3} \mathrm{~J} / \mathrm{kg}$. T he specific volume must be computed from the vapour ratio X in the final state and the specific volume $v$ of the saturated liquid and vapour at atmospheric pressure.

$$
\begin{equation*}
v_{2}=(1-X) v_{f}+X v_{g} \quad\left(m^{3} / \mathrm{kg}\right) \tag{7.23}
\end{equation*}
$$

In practice, the specific volume of the saturated liquid is negligible, so the specific volume after expansion from the saturated liquid state becomes:

$$
v_{2}=0.48 \times 0.42=0.20 \mathrm{~m}^{3} / \mathrm{kg}
$$

This results in:

$$
\mathrm{u}_{2}=628 \times 10^{3}-0.1 \times 10^{6} \times 0.20=608 \mathrm{~kJ} / \mathrm{kg}
$$

for the specific internal energy after expansion from the saturated liquid state.

Similarly, for expansion from the saturated vapour state the specific volume in the final state is $0.395 \mathrm{~m}^{3} / \mathrm{kg}$ and $\mathrm{u}_{2}=782 \mathrm{~kJ} / \mathrm{kg}$

## Step 4d C alculate the specific work

The specific work done by the fluid in expansion is calculated using equation 7.4. Substitution of the values for the saturated liquid gives:

$$
e_{a v}=669.98 \times 10^{3}-608.01 \times 10^{3}=61.97 \mathrm{~kJ} / \mathrm{kg}
$$

and for the saturated vapour:

$$
\mathrm{e}_{\mathrm{av}}=904.24 \times 10^{3}-782.19 \times 10^{3}=122.05 \mathrm{~kJ} / \mathrm{kg}
$$

N ote that these values could also have been read from Figure 7.3.

## Step 4e Calculate the energy of the explosion

The energy of the explosion is calculated using equation (7.5). In this equation the mass of the released liquid is given by dividing the volume of the released liquid by its specific volume.
When the vessel is full, $80 \%$ of the volume is occupied by liquid. The mass of the liquid is approximately:

$$
M_{\mathrm{fl}}=0.80 \times 25 / 2.278 \times 10^{-3}=8780 \mathrm{~kg}
$$

In fact, the specific volume of propane at ambient temperature should have been used, but that makes little difference in the result.

The mass of the vapour is:

$$
M_{\mathrm{fl}}=0.20 \times 25 / 0.0232=215.5 \mathrm{~kg}
$$

F or the explosion energy for the saturated liquid, this results in:

$$
\mathrm{E}_{\mathrm{av}}=61.97 \times 10^{3} \times 8780=544.1 \mathrm{M} \mathrm{~J}
$$

and for the saturated vapour:

$$
E_{a v}=122.05 \times 10^{3} \times 215.5=26.3 \mathrm{MJ}
$$

Assuming that the blast of the expansion of the vapour is synchronous with the blast from the flashing of the liquid, the total energy of the surface explosion is:

$$
\mathrm{E}_{\mathrm{av}}=544.1 \times 10^{6}+26.3 \times 10^{6}=570.4 \mathrm{MJ}
$$

Step 6 D etermine the effective blast wave energy

The available energy must be multiplied by 2 because it is a surface explosion. So,

$$
E_{e x}=2 \times 570.4=1140.8 \mathrm{MJ}
$$

Step 7 C alculate $\bar{R}$ of receptor

The non-dimensional range of the 'target' is calculated using equation (7.8). This results for the large storage vessel in:

$$
\overline{\mathrm{R}}=15 \times\left(101325 / 1140.8 \times 10^{6}\right)^{1 / 3}=0.67
$$

and for the control building:

$$
\overline{\mathrm{R}}=100 \times\left(101325 / 1140.8 \times 10^{6}\right)^{1 / 3}=4.5
$$

Computations are continued with step 9.

Step 9 D etermine $\bar{P}_{S}$
The non-dimensional side-on peak overpressure $\bar{P}_{S}$ at the large storage tank is read from Figure 7.5. The non-dimensional distance $\bar{R}=0.67$. Reading from the curve labelled 'high explosive', a $\bar{P}_{\mathrm{s}}$ of 1.12 is found.
T he procedure is continued with step 11.

Step 11 Determine $\overline{1}$

The non-dimensional side-on impulse $\bar{I}$ at the tank is read from Figure 7.10. For $\overline{\mathrm{R}}=0.67, \overline{\mathrm{I}}=0.068$.

Step 12 Adjust $\bar{P}_{s}$ and $\bar{I}$ for geometry effects
To account for the fact that the blast wave from the vessel will not be perfectly symmetrical, $\bar{P}_{\mathrm{s}}$ and $\overline{\mathrm{I}}$ are adjusted, depending on $\overline{\mathrm{R}}$. T he multiplication factors to account for the cylindrical shape are taken from T ables 7.3 and 7.4.
Thus $\bar{P}_{s}$ and $\bar{I}$ become:

$$
\begin{aligned}
& \bar{P}_{\mathrm{s}}=1.6 \times 1.12=1.79 \\
& \Gamma=1.1 \times 0.068=0.075
\end{aligned}
$$

Step 13 Calculate $p_{s}$ and $i_{s}$
To calculate the side-on peak overpressure $p_{s}-p_{a}$ and the side-on impulse $i_{s}$ from the non-dimensional side-on peak overpressure $\bar{P}_{s}$ and the non-dimensional side-on impulse $\bar{T}$, equation (7.13) and (7.14) are used. The ambient speed of sound $a_{a}$ is approximately $340 \mathrm{~m} / \mathrm{s}$. Substitution gives:

$$
\begin{aligned}
& p_{s}-p_{a}=1.79 \times 101325=181.7 \mathrm{kPa}(1.82 \mathrm{bar}) \\
& i_{\mathrm{s}}=\left(0.075 \times(101325)^{2 / 3} \times\left(1140.8 \times 10^{6}\right)^{1 / 3}\right) / 340=501 \mathrm{~Pa} \cdot \mathrm{~s}
\end{aligned}
$$

Step 14 Check $p_{s}$
B ecause the accuracy of this method is limited, $p_{s}$ needs to be checked against $p_{1}$. In this case, $p_{s}$ is smaller than $p_{1}$, so no corrections are necessary.
Thus, the calculated blast parameters at the large storage vessel are: a side-on peak overpressure of 182 kPa and a side-on impulse of 501 Pa.s.

The same procedure must be followed to calculate the pressure and impulse at the control building. A side-on peak overpressure of 6.6 kPa and a side-on impulse of 79 Pa.s can be found.

N ote the following points:

- The explosion of the propane filled vessel has much more energy than the gasfilled vessel, and therefore causes a much more severe blast.
- This calculation takes into account only the blast from the expansion of the contents of the vessel. In fact, this blast may be followed by a blast from a vapour cloud explosion or heat radiation from the fireball of the BLEVE. These possibilities must be considered separately, with the methods presented in other chapters, see section 7.7.


### 7.6.3 Example 2: fragments

As an example to demonstrate the use of the theoretically and empirically derived equations for fragmentation effects, the vessel of example 1 is considered again. As additional information it is given that the vessel has hemispherical end caps with a mass of 193 kg , a mass of 3859 kg and a length-to-diameter ratio of 10. Two different situations will be examined for maximum fragment range: failure during testing, and failure due to an external fire.

## Case 1: Failure during testing

## Step 1 E stimate number of fragments

Since we have to do with a cylindrical vessel, it is most probable that it will break into two or three parts.

## Step 2 E stimate fragment mass

It is most probable that the vessel will break at the end caps. E ach end cap has a mass of 193 kg . T he cylinder has a mass of $3859-2 \times 193=3473 \mathrm{~kg}$.

Step 3 C alculate initial fragment velocity

Step 3a Calculate a rough estimate for the initial fragment velocity using the kinetic energy method

In example 1 an energy of 150 MJ has been calculated.
The following initial velocity is found:

$$
v_{i}=\left(\frac{2 \times 0.2 \times 150 \times 10^{6}}{3859}\right)^{0.5}=125 \mathrm{~m} / \mathrm{s}
$$

Step 3b Calculate initial fragment velocity using B aker's or Gel'fand's method

The speed of sound in the gas at failure is:

$$
\mathrm{a}_{\mathrm{i}}=\left(\frac{293 \times 1.40 \times 8314.51}{28.01}\right)^{0.5}=349.2 \mathrm{~m} / \mathrm{s}
$$

The value of the scaled pressure equals (equation 7.16):

$$
\bar{P}_{1}=\frac{\left(2.5 \times 10^{6}-101325\right) \times 25}{3859 \times 349.2^{2}}=0.133
$$

The proper chart for the present example is given in Figure 7.11c. F rom this chart it can be read that $v_{i} / a_{1}$ equals 0.16 according to $G$ el'fand's method. So,

$$
v_{i}=0.16 \times a_{1}=0.16 \times 349.2=55.6 \mathrm{~m} / \mathrm{s}
$$

Or with Baker's method, $\overline{\mathrm{v}}_{\mathrm{i}}=0.296$. So,

$$
v_{i}=0.296 \times a_{1}=0.296 \times 349.2=103.3 \mathrm{~m} / \mathrm{s}
$$

N ote that Baker's method is more conservative. N ote that by applying the rough method in the present example, the velocity is overestimated.

## Step 3c Check with M oore's equation

The total mass of nitrogen in the vessels follows from the ideal gas law

$$
M_{c}=\frac{p_{1} V_{g}}{T_{g} R} \times \mu_{i}=\frac{2.5 \times 10^{6} \times 25}{293 \times 8.31} \times 28.013 \times 10^{-3}=720 \mathrm{~kg}
$$

Equation (7.20) gives

$$
A_{M}=\frac{1}{1+720 /(2 \times 3859)}=0.915
$$

Substitution in equation (7.18) gives

$$
v_{i}=1.092 \times\left[\frac{150 \times 10^{6} \times 0.915}{3859}\right]^{0.5}=206 \mathrm{~m} / \mathrm{s}
$$

This value is much higher than the initial velocity according to Gel'fand's method or Baker's method. N o correction is necessary, $v_{i}=103.3 \mathrm{~m} / \mathrm{s}$ according to Baker's method.

## Step 4 C alculate maximal range

The maximal range is calculated here for the end cap. F or the range of the rest of the cylinder the calculation is similar.

## Step 4a C ollect data

- $\rho_{\mathrm{a}}=1.20 \mathrm{~kg} / \mathrm{m}^{3}$
- The end cup will probably be tumbling. Therefore the drag and lift coefficients for a tumbling hemisphere are used. T he vessel diameter is 1.50 m .
$-C_{D} A_{D}=0.615 \times \pi / 4 \times 1.50^{2}=1.087 \mathrm{~m}^{2}$
$-C_{L} A_{L} / C_{D} A_{D}=0$

Step 4b C alculated scaled initial velocity with equation (7.22)

$$
\bar{v}_{i}=\frac{1.2 \times 1.087 \times 103.3^{2}}{193 \times 9.81}=7.35
$$

Step 4c Read $\bar{R}_{f}$ from Figure 7.12

$$
\bar{R}_{f} \approx 2.38
$$

Step 4d Calculate $R_{f}$ with equation (7.21)

$$
R_{f}=\frac{\bar{R}_{f} M_{f}}{\rho_{a} C_{D} A_{D}}=\frac{2.38 \times 193}{1.2 \times 1.087}=352 \mathrm{~m}
$$

It can be concluded that both the storage tank and the control building may be hit by the end cap.

## Case 2: Failure due to external fire

## Step 1 E stimate number of fragments

D ue to the external fire the vessel is locally weakened. Therefore, it is most probable that it will break into two parts.

Step 2 Estimate fragment mass
The fragment mass depends on the location of impingement of the fire. We assume that the vessel will break into two equal parts with a mass of $3859 / 2=1930 \mathrm{~kg}$.

Step 3 Calculate initial fragment velocity

Step 3a Calculate the initial fragment velocity for a BLEVE

In example 1 an energy of 570.4 MJ has been calculated.
The following initial velocity is found:

$$
v_{i}=\left(\frac{2 \times 0.04 \times 570.4 \times 10^{6}}{3859}\right)^{0.5}=108.7 \mathrm{~m} / \mathrm{s}
$$

Step 3c Check with M oore's equation
The mass of vapour in the vessel has been calculated in step 4 e of example 1 : $M_{\mathrm{fl}}=215.5 \mathrm{~kg}$.

Equation (7.20) gives

$$
A_{M}=\frac{1}{1+215.5 /(2 \times 3859)}=0.97
$$

Substitution in equation (7.18) gives

$$
v_{i}=1.092 \times\left[\frac{570.4 \times 10^{6} \times 0.97}{3859}\right]^{0.5}=414 \mathrm{~m} / \mathrm{s}
$$

This value is much higher than the initial velocity according to Baum's method. No correction is necessary. $v_{i}=108.7 \mathrm{~m} / \mathrm{s}$.

## Step 4 Calculate maximal range

We assume that each half of the vessel will travel parallel to its original axis.

## Step 4a Collect data

- $\rho_{\mathrm{a}}=1.20 \mathrm{~kg} / \mathrm{m}^{3}$
$-C_{D} A_{D}=0.47 \times \pi / 4 \times 1.50^{2}=0.831 \mathrm{~m}^{2}$
$-C_{L} A_{L} / C_{D} A_{D}=0$

Step 4b C alculated scaled initial velocity with equation (7.22)

$$
\bar{v}_{i}=\frac{1.2 \times 0.831 \times 108.7^{2}}{1930 \times 9.81}=0.62
$$

Step 4c R ead $\bar{R}_{f}$ from Figure 7.12.

$$
\overline{\mathrm{R}}_{\mathrm{f}} \approx 0.495
$$

Step 4d Calculate $R$ with equation (7.21)

$$
\imath_{f}=\frac{\bar{R}_{f} M_{f}}{\rho_{a} C_{D} A_{D}}=\frac{0.495 \times 1930}{1.2 \times 0.831}=958 \mathrm{~m}
$$

It can be seen that such a rocketing fragment can travel large distances.

### 7.7 Interfacing with other models

Vessel rupture is an initial event. Therefore, there are no links from other models to the methods for vessel rupture.

The (total) rupture of a vessel causes several physical effects at the same time:

1. pressure effects,
2. fragments,
3. instantaneous release of chemicals in case of no ignition, and
4. buoyant fireballs in case of ignition of flammable chemicals.

The modelling of these simultaneous physical effects has been carried out fully independently.
Complete models for coping with pressure effects and fragments are described in this chapter. The results of these models are not required by any other model in this Y ellow Book.

The modelling of the instantaneous release of chemicals in case of no ignition has been described in C hapter 2 'Outflow and Spray release'. Subsequently, vapour cloud dispersion and vapour cloud explosion have been described in Chapter 4 and 5 respectively.
The modelling of the heat load caused by a buoyant fireball in case of ignition has been described in C hapter 6 'H eat load from fires'.

### 7.8 Discussion

The aim of this section is to discuss the applicability of the presented methods and to mention their limitations.

In this chapter the phenomena of vessel bursts have been described. M ethods to predict blast and fragment effects have been presented and selected.
F rom the description of the phenomena has emerged that the result of a vessel burst, e.g. blast and fragments, strongly depends on the cause of the failure. Because of the complexity of the failure process and the number of variables, the research has not yet resulted in accurate prediction methods to quantify blast and fragment effects. B ased on the current knowledge of the phenomena methods have been selected which are generally applicable. With the selected and presented methods one can predict the blast effects and also the velocities and flight distances of fragments in a conservative way.
Because of lack of detailed knowledge of several aspects of the phenomena, the currently available methods have their limitations. In order to guide the user, the main limitations of the presented methods are listed below.

With respect to blast:

- A choice has to be made on which measure of explosion energy is responsible for the generation of blast. In the method presented in Section 7.5 the energy of a gasfilled pressure vessel and an internal explosion is calculated with Brode's formula (7.1), the energy for vessels filled with vapour by use of the formula for work done in expansion and for a chemical reaction by use of the chemical energy. Scientifically, this is annoying, because there is no good motivation for the choice of one measure of energy over another. In practice this is less of a problem, because the results of all formulae do not differ much. All these formulae give conservative results for the blast energy.
- In order to take the influence of the earth surface into account for the blast parameters, the results for high explosives have to be used, because insufficient data is available on vessel bursts. Because of the differences in the short range between the blast effects due to a vessel burst and an explosion of high explosives, the given procedure is conservative, as has been shown by a few experiments.
- M ore or less the same holds for the influence of non-spherical releases on blast parameters. Also for this situation the data from high explosives is used to take the effect into account.
- For BLEVEs, non-ideal gases, runaway reactions and internal explosions, no specific models have been developed. Therefore, an adaptation of the method for pressure vessel bursts with ideal gases is used. The necessary approximations for the non-ideal situations have been chosen in such a way that the presented method is conservative.

With respect to fragment generation:

- T here is a lack of a solid experimental or theoretical basis to choose the fraction of explosion energy that contributes to fragment generation.
- The failure mode depends on parameters such as material, wall thickness and initial pressure. The number of fragments is not known in advance. Therefore, methods have been presented for predicting the effect of failure into two parts or failure into a large number of fragments.

In summary, the presented methods enable the user to predict the phenomena of blasts and fragments in a conservative way. W orst case scenarios can be predicted, but one should be well aware of the feature of conservatism if the methods are used for accident analysis.

### 7.9 Literature

Baker, W.E., K ulesz, J.J., Ricker, R.E., Bessey, R.L., W estine, P.S., Parr, V.B., Oldham, G.A. (1977),
W orkbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels,
N ASA CR-134906, N ASA Scientific and T echnical Information Office, W ashington, D.C.

Baker, W.E., K ulesz, J.J. et al. (1978),
W orkbook for estimating the effects of accidental explosions in propellant handling systems,
NASA Contractor report no. 3023, NASA Scientific and Technical Information Office, W ashington, D.C.

Baker, W .E., C ox, P.A., W estine, P.S., K ulesz, J.J, Strewlow R.A. (1983),
Explosion H azards and Evaluation,
Elsevier Publishing C ompany, Amsterdam.

Baum M.R. (1987),
Disruptive failure of pressure vessels: preliminary design guide lines for fragment velocity and the extent of the hazard zone,
Advances in Impact, Blast Ballistics and Dynamic Analysis of Structures, ASME PVP, Vol. 124., pp. 175-181.

Boyer, D.W., Brode, H.L., G lass, I.I., H all, J.G . (1958),
Blast from a pressurized sphere,
UTIA Report No. 48, January 1958.

Brown, S.J. (1985),
Energy release protection for pressurized systems,
Part I. Review of studies into blast and fragmentation, Appl. M ech. Rev., Vol. 38, No. 12, pp. 1625-1651, Dec. 1985.

C ain M .R, Sharp D.E., C oleman, M .D . (1992),
Pressure vessel burst test program / Progress report No. 3,
AIAA Paper 92-3608 920725, Presented at the 28th AIAA/SAE/ASM E/ASEE Joint Propulsion C onference and Exhibit, N ashville, T N , 6-8 July 1992.

Esparza, and Baker, W.E. (1977),
$M$ easurement of Blast W aves from B ursting Pressurized F rangible Spheres,
N ASA CR-2843, N ational Aeronautics and Space Administration, W ashington DC.

Gel'fand, B.E., Frolov, S.M ., and Bartenev, A.M . (1989),
$C$ alculation of the rupture of a high-pressure reactor vessel, Combustion, Explosion and Shock Waves, Vol. 24, No. 4, pp. 488-496.

Grodzovskii, G.L. and K ukanov, F.A. (1965),
$M$ otions of fragments of a vessel bursting in a vacuum, Inzhenemyi Zhumal, Vol. 5, No. 2, pp. 352-355.

Guirao, C.M. et al. (1979),
On the Scaling of Blast W aveshock waves from F uel-Air Explosives,
Proceedings of 6th Symposium on Blast Simulation, C ahors, F rance.

H eemskerk, A.H. (Ed.) (1995),
Guidelines for Chemical Reactivity E valuation and Application to Process D esign, AIChE, C enter for C hemical Process Safety, N ew Y ork, 1995.

H uang, S.L., and Chou, P.C. (1968),
Calculations of Expanding Shock W aves and L ate-Stage Equivalence,
D rexel Institute of T echnology Report 125-12, A pril 1968.

Liepmann, H.W., and Roshko, A. (1967),
Elements of G asdynamics,
John Wiley and Sons, Inc. N ew Y ork.

M oore, C.V. (1967),
N uclear Engineering and D esign, Vol. 5, pp 81-97.
Perry, R.H., G reen D. (1984),
Perry's Chemical Engineers' H andbook,
6th N ew Y ork, M cG raw-H ill.

Pittmann, J.F. (1976),
Blast and Fragments from Superpressure V essel Rupture,
N SWC/W OL/T R 75-87, N aval Surface W eapons C enter, W hite O ak, Silver Spring, M aryland.

Reid, R.C. (1976),
Superheated Liquids,
Liquids in the superheated state, far from being a laboratory curiosity, occur more often than thought and may cause industrial accidents,
American Scientist, V olume 64, M arch-A pril 1976, pp 146-156.

Rombouts, E. (1988),
$M$ ethoden voor het berekenen van physische effekten,
CPR-14, T weede druk, 1988.

TM 5-1300 (1990),
Structures to resist the effects of accidental explosions,
D eparments of the Army, the N avy, and the Air F orce, T M 5-1300, N AVFAC
P-397, AFR 88-22, W ashington, DC , N ovember 1990.

Venart, J.E.S., Rutledge, G.A., Sumathipala, K ., Sollows, K . (1992),
To BLEVE or not to BLEVE: Anatomy of a Boiling Liquid Expanding Vapour Explosion,
7th Loss Prevention Symposium, 1992, T aormina.

Y oshida, T . (1987),
Safety of Reactive C hemicals,
Elsevier, Amsterdam, 1987.

Chapter 8
Interfacing of models
C.J.H. van den Bosch

## Glossary of terms

| consequences or damage | A measure of the expected loss due to injury of <br> people, loss of property or harm to the <br> environment, or a combination of these. |
| :--- | :--- |
| hazard |  |
| hazardous chemical |  |
|  | A chemical or physical condition that has the <br> potential of causing damage. |
| instantaneous release |  |
|  | A chemical which, by virtue of its chemical |
| properties, constitutes a hazard. |  |$\quad$| The escape of a particular quantity of hazardous |
| :--- |
| chemical over a relatively short time-span, |
| typically a few seconds |


| source term | Physical phenomena that take place at a release of a chemical from its containment before entering the environment of the failing containment, determining: <br> - the amount of chemical entering the surroundings in the vicinity of the containment, <br> - the dimensions of the area or space in which this process takes place, <br> - the thermodynamic state of the released chemical, such as concentration, temperature, and pressure, <br> - velocities of the outflowing chemical at the boundaries of the source region. |
| :---: | :---: |
| source term model | M odels that provide (quantitative) information about the source term, to be input into a subsequent dispersion or other physical effect model. |

## Table of contents of chapter 8

Glossary of terms ..... 8.2
8.1 Introduction of chapter 8 ..... 8.5
8.1.1 Relation with previous chapters ..... 8.5
8.2 Factors that determine scenarios ..... 8.6
8.2.1 Initial conditions ..... 8.7
8.2.2 Release types ..... 8.7
8.2.3 Immediate surroundings ..... 8.8
8.2.4 Dispersion into the (far) atmosphere ..... 8.8
8.2.5 Physical effects directly causing damage ..... 8.9
8.3 Interfacing of models in general ..... 8.11
8.4 Interfacing of models: calculation examples ..... 8.13
8.4.1 Introduction of the scenario examples ..... 8.13
8.4.2 C alculation example: Scenario 1 ..... 8.13
8.4.3 Calculation example: Scenario 2 ..... 8.16
8.4.4 Calculation example: Scenario 3 ..... 8.33
8.4.5 BLEVE ..... 8.36
8.5 Discussion and conclusions ..... 8.39
8.6 References ..... 8.40

### 8.1 Introduction of chapter 8

Safety and risk assessment studies are used to evaluate the risk of activities involving hazardous materials. The assessment of the hazards requires knowledge of the danger each hazardous material could present to human beings and to properties, qualitatively and quantitatively, due to explosion, intoxication, and fires.

In the previous chapters the physical effects related to hazardous materials have been addressed independently. Due to the way scientific research is organised most models have been developed to describe an isolated specific physical and/or chemical phenomenon. Where in reality transitions go fluently from one stage to the following stage of the event that starts with the release of hazardous material and ends with the exposure to people and properties, the modelling of the complete process takes often place stepwise.
M ost of the time more than one model is needed. T hese models have to be 'coupled', meaning that their results, i.e. the predictions of the models (output data) have to be adapted and transferred to serve as input to other subsequent models.
Thus, a particular scenario is represented by a chain of models.
The procedure of adaptation and transfer of data is usually addressed by 'interfacing'.
In this final chapter the interfacing of models will be treated in a general way, and the interfacing will be put into perspective of so-called scenarios.

The line between the physical effect models to vulnerability or consequence models that estimate the damage to people and properties, will be drawn.

This chapter of the Yellow Book will comprise the following. First, a systematic approach will be explained regarding how to compile a list with accident scenarios in principle. Secondly, 'interfacing methods' between similar effect models will be addressed in general. N ext, representative scenarios will be given, that will be worked out numerically as calculation examples.

### 8.1. Relation with previous chapters

C hapter 4 'Vapour Cloud D ispersion’ is more or less the central chapter of the Y ellow Book. T his chapter has no special paragraph about interfacing. Interfacing of models into dispersion models are treated in the chapters: Outflow \& Spray Release, Pool Evaporation, Vapour Cloud Explosions.

F or the description of other interfacing to models, logical backward chaining has been followed: one has to find required input data from models in prior chapters.

Release of hazardous material, spray release, due to rupture of containments, pipe breaks or cracks in vessels or pipe walls, are initiating events. Therefore, no links of the models described in chapter 2 'Outflow and Spray Release' to prior models exist. Vessel rupture is also an initiating event. Therefore no links to prior models exist. The description of the resulting blast effects and fragmentation in chapter 7 'Rupture of Vessels' is sufficient.

### 8.2 Factors that determine scenarios

The way in which a hazardous material can lead to consequences varies enormously.
The processes involved depend on the properties of hazardous material, the process or system conditions, the way in which the accidental decontainment takes place, and possible subsequent reactions with the environment. A hazardous material can be toxic, flammable or both. The containment may be slightly damaged or totally ruptured by some kind of mechanical impact, or by being set on fire.
Released into the atmosphere, the hazardous material may:

- cause fire and/or explosions,
- lead to atmospheric concentrations of toxic materials to which humans can be exposed, causing immediate toxic effects,
- lead to pollution of the environment.

In order to cope with the wide variety of possible accident developments, the concept of '(accident) scenario' is used.

In the following a rather restricted definition of scenario is used:
$\mathrm{A}(\mathrm{n})$ (accident) scenario is a qualitative description of a particular route by which a (released) hazardous material can lead to one type of physical effect having consequences for human beings and or properties.

In order to identify possible scenarios involving hazardous materials, a formal and somewhat schematic but systematic approach has been chosen: first, the factors are identified that determine a scenario, secondly, possible realistic scenarios are identified by combining the possible 'values' of these factors.

In general, a scenario is determined by the following factors:

A1. C hemical composition : single compound, mixture
A2. Initial process condition : pressure, temperature
B. Release type : small opening, total rupture
C. Immediate surroundings : mechanical/chemical interaction
D. Dispersion : atmospheric dispersion, dispersion in water bodies or in the ground
E. Physical effect : heat flux, blast, atmospheric concentrations of hazardous materials

These factors will be elucidated in the following sections.

### 8.2.1 Initial conditions

Given the chemical composition of the hazardous material, (partial) pressure and temperature determine the aggregation state of the compound. The Y ellow Book deals with gases or vapours and liquids only, thus, the following process conditions are considered:

1. compressed gas,
2. refrigerated (liquefied) gases,
3. non-boiling liquids,
4. pressurised liquefied gases

These process conditions determine to a large extend the physical phenomena that will occur during the release of the material. An overview is given in the table below. These topics have been addressed in detail in chapters 2 and 3.

Table 8.1 Overview of physical phenomena during the release of material

| Process condition | Pre-dispersion effects |
| :--- | :--- |
| Refrigerated gases | (sub-)Sonic release into the atmosphere <br> Non-boiling liquids <br> Pressurised liquefied gases <br> evaporating |
| Pool formation, evaporating but non-boiling <br> Flash off, <br> possibly followed by (immediate) evaporation of a liquid <br> spray due to entrainment of atmospheric air; (partial) rain-out <br> may lead to pool formation and subsequent pool evaporation |  |

### 8.2.2 Release types

The following release types are considered:

1. finite duration release,
2. instantaneous release.

## Ad 1.

The containment may be damaged partially, resulting in an opening to the environment which is relatively small compared to the total amount of hazardous material in the process. This opening could be a hole in the wall of the containment, or a rupture of a pipe: relatively short piping in installations or relatively long transport pipelines.

## Ad 2.

A containment can rupture totally. T his causes the content, at least the larger part of the inventory, to be released into the environment in a relatively short time.

These topics have been addressed in detail in chapter 2.

### 8.2.3 Immediate surroundings

D epending on the process conditions, the released gas or liquid will interact with the immediate surroundings. These interactions have a direct effect on the (thermodynamic) state of the hazardous material entraining into the atmosphere. $N$ ear the source the dispersion is often still dominated by the effects of the release itself.
Liquids may spread over land or water (floating) or sink or solve into the subsoil or into water.

The mechanical interactions influencing the way the entrainment into the atmosphere (atmosphere, water body, or subsoil) takes place, are:

1. free entrainment: outflow, jet, spreading,...,
2. restricted entrainment: collision with obstacles, bund,... .

Physical-chemical interactions may take place due to a reaction of the hazardous material with the atmosphere (combustion), or with water or subsoil (chemical reaction).
It is also conceivable that a sudden change in physical conditions of released chemicals results in auto-reactions such as decomposition or polymerisation. $M$ any topics mentioned here have been addressed in chapters 3 and 6.

Table 8.2 Possible interactions with the environmental of the containment of the material released

| Environmental compartment | Possible physical-chemical interaction |
| :---: | :---: |
| 1. Interaction with atmosphere | 1.1. no chemical reaction <br> 1.2. combustion <br> 1.3. auto-reaction |
| 2. Interaction with water | 2.1. floating <br> 2.2. solving <br> 2.3. sinking <br> 2.4. reaction <br> 2.5. auto-reaction |
| 3. Interaction with subsoil | 3.1. no chemical reaction <br> 3.2. absorption <br> 3.3. reaction <br> 3.4. auto-reaction |

### 8.2.4 Dispersion into the (far) atmosphere

In the ' $Y$ ellow B ook' only atmospheric dispersion is considered.

G ases, vapours and liquid sprays may disperse into the atmosphere.

### 8.2.5 Physical effects directly causing damage

The following physical effects can cause damage to people and properties:

1. heat flux,
2. blast,
3. atmospheric concentrations of hazardous material.

Ad 1.
H eat flux is associated with fire. Combustion can occur in all thermodynamic states: solids, liquids and gases, after ignition. Pressurised gas releases may lead to flares or to local fires. Liquid pools may lead to pool fires. Totally ruptured vessels with pressurised flammable gas can lead to fire balls in case of an ignited BLEVE. T hese topics have been addressed in detail in chapter 6 .

## Ad 2.

Two types of explosions can be distinguished: physical and chemical explosions. A physical explosion is a catastrophic rupture of a pressurised gas-filled vessel; the sudden failure of the vessel causes blast in its immediate environment. These topics have been addressed in detail in chapter 7 .

In a chemical explosion a chemical reaction is generating the energy of the resulting blast. C hemical explosions may be subdivided into two classes.
First, gases/vapours, liquids and solids may be explosive by themselves: a rapid autoreaction causes the blast.
Secondly, gases/vapours and liquid sprays may form a flammable mixture with air. After ignition a blast may occur if the flammable gas mixture is (partly) confined by obstacles. These topics have been addressed in detail in chapter 5 .

## Ad 3.

If a released toxic hazardous material is dispersed into the atmosphere, damaging effects may only be expected due to some kind of physical contact: exposure to the skin, swallowing, inhalation, etc.
In the end a release may also result in low concentration pollution of the environment. The topic of atmospheric dispersion has been addressed in detail in chapter 4.

To be able to estimate the expected consequences (damage), besides the characteristics of potential targets or receptors (people, properties) the consequence models require (basic) input from the physical effect models.

F or safety and risk assessment studies this input is the main physical effect parameter of interest!

CPR 14E
Chapter 8 of the ' $Y$ ellow B ook'

The required input depends on the type of consequence, as has been illustrated below.

Table 8.3 Physical effects required for estimation of consequences (damage)

| Mechanism | Determining factor | Basic physical effects |
| :--- | :--- | :--- |
| 1. Intoxication | Dose (Toxic load) <br> $D_{c}=\int c(x, y, z, t)^{n} \times d t$ | Atmospheric concentration as <br> a function of time |
| 2. Explosions | Blast | Maximum overpressure and <br> positive phase duration |
| 3. Fires | Heat load <br> $D_{H}=\int q_{H}(x, y, z, t)^{m} \times d t$ | Heat flux as a function of time |

### 8.3 Interfacing of models in general

Having identified the five factors that determine a scenario, all combinations of the possible 'values' of the factors can be constructed, resulting in a list of possible scenarios. Afterwards, a screening has to be carried out to sort out all combinations that are physically unrealistic.

In this final chapter we will treat the interfacing of models in a general way, and the interfacing is put into the perspective of so-called scenarios.

In order to avoid duplications, the interfacing in the perspective of the scenarios is presented here on a higher abstraction level.
The scheme below shows all possible links between the steps within a scenario on a higher level: links between groups of models.

Table 8.4 Possible steps between groups of models within a scenario

```
gases or - dispersion - (VCE) blast
spray release
gas release - heat flux from fire
liquid release or - evaporation - dispersion - (explosion) blast
spray release
liquid release - heat flux from fire
```

$N$ ote that for intoxication the prediction of the concentrations by atmospheric dispersion model suffices.

This means that the interfacing between the following group of models has to be addressed.

CPR 14E
Chapter 8 of the ' $Y$ ellow B ook'

Table 8.5 Interfacing between groups of models

| Model type 1 | Model type 2 | Phenomenon | Explaining <br> paragraph |
| :--- | :--- | :--- | :--- |
| 1. gas release | dispersion | atmospheric dispersion of heavy <br> gas or neutral gas or jet release <br> atmospheric dispersion of <br> heavy gas/spray mixture | 2.7 .2 .2 |
| 2. spray release | dispersion | 2.7.2.3 |  |
| 3. spray release | pool evaporation | liquid rain-out of a spray | 3.7 .2 .2 |
| 4. dispersion | blast | vapour cloud explosion | 5.7 |
| 5. gas release | heat flux from fire | flares | 6.7 .2 |
| 6. liquid release | evaporation | pool formation |  |
| 7. evaporation | dispersion | pool evaporation | 3.7 .2 .3 |
| 8. liquid release | heat flux from fire | pool fires | 3.7 .3 |

T his interfacing of models has already been described in the individual chapters and will not be repeated here.
Table 8.5 indicates in which chapter and paragraph a particular interfacing of models has been described.

### 8.4 Interfacing of models: calculation examples

### 8.4.1 Introduction of the scenario examples

T he following scenarios are more or less illustrative and will be worked out as calculation examples in the following paragraphs.

The scenario descriptions below are expressed as much as possible in terms of combinations of 'values' of the scenario factors presented previously:

1. The hazardous material is a compressed gas, a hole in its containment permits release to the atmosphere freely, the flammable gas jet is immediately ignited and forms a flare, causing heat flux at some distance;
2. The hazardous material is a refrigerated gas stored under atmospheric pressure, and through a leak in the container liquid is being released freely, so a spreading boiling floating pool on water will be formed, and evaporation leads to atmospheric concentrations of hazardous material;
3. The hazardous material is a pressurized liquefied gas; a full bore pipe rupture permits release to the atmosphere, followed by evaporation of a liquid spray due to mixing with atmospheric air; between obstacles the flammable gas is ignited after a delay and an explosion or deflagration may occur;

T he physical phenomena related to a BLEVE have been treated in different chapters. In order to give an overall picture of the BLEVE, an integral calculation example will be given here, so:
4. A BLEVE (Boiling Liquid Expanding Vapour Explosion) shows the following physical effects able to cause damage: heat radiation, pressure waves and fragmentation.

No intermediate results of the models will be presented in this chapter, except for the GASP model. H ere we merely take the opportunity to demonstrate the capabilities of this model.

### 8.4.2 Calculation example: Scenario 1

## Concise scenario description

Compressed methane $\left(\mathrm{CH}_{4}\right)$ is released from a vessel through a pipe and after ignition a flare results.
The (maximum) heat load at maximum outflow rate of methane, and the heat load at average outflow rate of methane gas will be estimated at several distances to the vessel.

## Required models and methods

The time-varying methane gas out flow can be estimated by the models given in paragraph 2.5.2.

The heat load and the dimensions of the flare can be estimated by the C hamberlain model given in paragraph 6.5.3.

According to table 8.5 methods about interfacing of gas release models to fire models have been given paragraph 6.7.2. H owever, the outflow of methane is estimated by models presented in chapter 2.

N umerical elaboration

## Outflow

Input:

| Initial pressure | $\mathrm{P}_{0}$ | $=60.0 \mathrm{E}+05$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| :--- | :--- | :--- | :--- |
| Initial temperature | $\mathrm{T}_{0}$ | $=288.15$ | K |
| V essel volume | V | $=100$ | $\mathrm{~m}^{3}$ |
| Pipe length | $\mathrm{I}_{\mathrm{p}}$ | $=100$ | m |
| Pipe diameter | $\mathrm{d}_{\mathrm{p}}$ | $=0.2$ | m |
| Internal roughness pipe | $\varepsilon$ | $=4.5 \mathrm{E}-05$ | m |
| Leak size | $\mathrm{d}_{\mathrm{h}}$ | $=0.1$ | m |
| D ischarge coefficient | $\mathrm{C}_{\mathrm{d}}$ | $=1$ |  |

O utput:

| $M$ ass flow at 0 s | $\mathrm{q}_{\mathrm{s}}$ | $=46.29$ | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| $M$ ass flow at 50 s | $\mathrm{q}_{\mathrm{s}}$ | $=24.40$ | $\mathrm{~kg} / \mathrm{s}$ |
| G as pressure at 50 s | P | $=28.66 \mathrm{E}+05$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| G as temperature at 50 s | T | $=243.13$ | K |

$N$ ote, that the symbols are according to chapter 2 'Outflow and Spray Release'.

## Jet flame

## Input ( $t=0 \mathrm{~s}$ ):

M ass flow rate
Initial gas pressure
Initial temperature
H eight source
Tilt of hole axis
Wind velocity at 10 m height
Ambient temperature
Relative humidity
F raction $\mathrm{CO}_{2}$ atmosphere
H orizontal distance (X-coordinate)

| $\mathrm{m}^{\prime}$ | $=46.29$ | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- |
| $\mathrm{P}_{\text {init }}$ | $=60.00 \mathrm{E}+05$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| $\mathrm{~T}_{\mathrm{s}}$ | $=288.15$ | K |
| $\mathrm{~b} \cdot \sin \Theta_{\mathrm{j}}$ | $=5$ | m |
| $\Theta_{\mathrm{j}}$ | $=0$ | 0 |
| $\mathrm{u}_{\mathrm{w}}$ | $=2$ | $\mathrm{~m} / \mathrm{s}$ |
| $\mathrm{T}_{\mathrm{a}}$ | $=288.15$ | K |
| RH | $=0.7$ |  |
| $\mathrm{p}_{\mathrm{c}}$ | $=30$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| X | $=50$ | m |

Output ( $t=0 \mathrm{~s}$ ) :
Heat radiation flux
Safe distance ( $q^{\prime \prime}=1.0 \mathrm{E}+03 \mathrm{~W} / \mathrm{m}^{2}$ )
Surface Emissive Power flare
Angle between hole axis and flame axis
F rustum lift-off height
Width of frustum base
Width of frustum tip
Length of frustum (flame)
Tilt central axis flare
View factor
Atmospheric transmissitivity

| $q^{\prime \prime}$ | $=3.10 E+03$ | $\mathrm{~W} / \mathrm{m}^{2}$ |
| :--- | :--- | :--- |
| $X$ | $=123.12$ | m |
| $\mathrm{XE} P_{\text {act }}$ | $=170.67+03$ | $\mathrm{~W} / \mathrm{m}^{2}$ |
| $\alpha$ | $=3.89$ | 0 |
| b | $=9.69$ | m |
| $\mathrm{~W}_{1}$ | $=2.57$ | m |
| $\mathrm{~W}_{2}$ | $=13.61$ | m |
| $\mathrm{R}_{\mathrm{I}}$ | $=56.98$ | m |
| $\Theta_{j}-\alpha$ | $=3.89$ | $\circ$ |
| $\mathrm{~F}_{\text {view }}$ | $=0.02$ |  |
| $\tau_{\mathrm{a}}$ | $=0.78$ |  |

## Jet flame

Input ( $\mathrm{t}=50 \mathrm{~s}$ ) :
M ass flow rate
Initial gas pressure
Initial temperature
H eight source
Tilt of hole axis
Wind velocity at 10 m height
Ambient temperature
Relative humidity
F raction $\mathrm{CO}_{2}$ atmosphere
H orizontal distance (X-coordinate)

| $\mathrm{m}^{\prime}$ | $=24.40$ | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- |
| $\mathrm{P}_{\text {init }}$ | $=28.66 \mathrm{E}+05$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| $\mathrm{~T}_{\mathrm{s}}$ | $=243.13$ | K |
|  |  |  |
| $\mathrm{~b} \cdot \sin \Theta_{\mathrm{j}}$ | $=5$ | m |
| $\Theta_{\mathrm{j}}$ | $=0$ | 0 |
| $\mathrm{u}_{\mathrm{w}}$ | $=2$ | $\mathrm{~m} / \mathrm{s}$ |
| $\mathrm{T}_{\mathrm{a}}$ | $=288.15$ | K |
| RH | $=0.7$ |  |
| $\mathrm{p}_{\mathrm{c}}$ | $=30$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| X | $=50$ | m |

O utput ( $t=50 \mathrm{~s}$ ) :

| H eat radiation flux | $\mathrm{q}^{\prime \prime}$ | $=2.38 \mathrm{E}+03$ | $\mathrm{~W} / \mathrm{m}^{2}$ |
| :--- | :--- | :--- | :--- |
| Safe distance $\left(\mathrm{q}^{\prime \prime}=1.0 \mathrm{E}+03 \mathrm{~W} / \mathrm{m}^{2}\right)$ | X | $=92.63$ | m |
| Surface Emissive Power flare | SEP $\mathrm{a}_{\text {act }}=166.0 \mathrm{E}+03$ | $\mathrm{~W} / \mathrm{m}^{2}$ |  |
| Angle between hole axis and flame axis | $\alpha$ | $=4.29$ | $\circ$ |
| F rustum lift-off height | b | $=7.52$ | m |
| Width of frustum base | $\mathrm{W}_{1}$ | $=2.14$ | m |
| Width of frustum tip | $\mathrm{W}_{2}$ | $=10.70$ | m |
| Length of frustum (flame) | $\mathrm{R}_{\mathrm{I}}$ | $=40.20$ | m |
| Tilt central axis flare | $\Theta_{\mathrm{j}}-\alpha$ | $=4.49$ | $\circ$ |
| View factor | $\mathrm{F}_{\text {view }}$ | $=0.02$ |  |
| Atmospheric transmissitivity | $\tau_{a}$ | $=0.78$ |  |

$N$ ote, that the symbols are according to chapter 6 ' H eat fluxes from fires'.

### 8.4.3 Calculation example: Scenario 2

## Concise scenario description

Refrigerated ammonia ( $\mathrm{NH}_{3}$ ), stored in a vertical cylinder, is incidentally released through a leak in the container wall into the surroundings. A crack occurs in the wall of a pipeline connected to the storage. T he cross-sectional area of the crack is about $10 \%$ of the cross-sectional area of the pipeline.
After three hours the release of ammonia can be stopped.
An ammonia liquid pool will spread on the ground and evaporate.
Some atmospheric concentrations of ammonia, toxic to humans, will be estimated at several distances from the source.

Required models and methods

The time-varying outflow of initially non-boiling ammonia liquid from a vessel can be estimated by the models given in paragraph 2.5.4 of chapter 'Outflow and Spray release'.

The evaporation of a initially boiling and later on non-boiling ammonia pool on land can be calculated by the GASP model presented in paragraph 3.5.2 of chapter 'Pool evaporation'.

Atmospheric concentrations of the toxic (heavy) ammonia gas can be estimated by the SLAB model presented in paragraph 4.5.5.2 of chapter 'Vapour cloud dispersion'.

According to table 8.5 methods about interfacing of liquid release models to pool evaporation models have been given in paragraph 3.7.2.3, and about interfacing of pool evaporation models to dispersion models in paragraph 3.7.3.

N umerical elaboration

## Outflow

Input:

| Vessel volume | V | $=30000$ | $\mathrm{~m}^{3}$ |
| :--- | :--- | :--- | :--- |
| Length cylinder | $\mathrm{h}_{\mathrm{v}}$ | $=30$ | m |
| Filling degree | $\phi$ | $=0.75$ |  |
| Pressure above liquid | P | $=101325$ | $\mathrm{~N} / \mathrm{m}^{2}$ |
| Pipe length | $\mathrm{I}_{\mathrm{p}}$ | $=1$ | m |
| Pipe diameter | $\mathrm{d}_{\mathrm{p}}$ | $=0.4$ | m |
| Internal roughness pipe | $\varepsilon$ | $=4.5 \cdot 10^{-5}$ | m |
| Leak size | $\mathrm{d}_{\mathrm{h}}$ | $=0.1265$ | m |
| H eight leak | $\mathrm{h}_{\mathrm{h}}$ | $=0 \mathrm{~m}$ |  |
| Initial temperature | $\mathrm{T}_{0}$ | $=237.3$ | K |
| D ischarge coefficient | $\mathrm{C}_{\mathrm{d}}$ | $=1$ |  |
| Time after start release | t | $=10800$ | s |

O utput:

| Outflow rate liquid | at $t=0 \mathrm{~s}$ <br> at $t=3600 \mathrm{~s}$ | $\mathrm{q}_{\mathrm{s}}$ | $=180.59$ | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{q}_{\mathrm{s}}$ | $=176.70$ | $\mathrm{~kg} / \mathrm{s}$ |  |
| at $\mathrm{t}=7200 \mathrm{~s}$ | $\mathrm{q}_{\mathrm{s}}$ | $=172.81$ | $\mathrm{~kg} / \mathrm{s}$ |  |
| at $\mathrm{t}=10800 \mathrm{~s}$ | $\mathrm{q}_{\mathrm{s}}$ | $=168.92$ | $\mathrm{~kg} / \mathrm{s}$ |  |
| A verage outflow rate until $\mathrm{t}=10800 \mathrm{~s}$ | $\mathrm{q}_{\mathrm{s}, \mathrm{av}}$ | $=174.8$ | $\mathrm{~kg} / \mathrm{s}\left(0.255 \mathrm{~m}^{3} / \mathrm{s}\right)$ |  |
| Liquid density | $\rho_{\mathrm{L}}$ | $=684.4$ | $\mathrm{~kg} / \mathrm{m}^{3}$ |  |
| Filling degree at 10800 s | $\phi$ | $=0.66$ |  |  |
| H eight of liquid at 10800 s | $\mathrm{~h}_{\mathrm{L}}$ | $=19.69$ | m |  |
| T otal mass released at 10800 s | Q | $=0.1926 \cdot 10^{7} \mathrm{~kg}$ |  |  |

N ote that the symbols are according to chapter 2 'Outflow and Spray release'.

## Pool evaporation

GASP models a semi-continuous release of refrigerated ammonia onto land. Ammonia is spilt at a rate of $0.255 \mathrm{~m}^{3} / \mathrm{s}$ through an aperture of $0.0126 \mathrm{~m}^{2}$. The implied discharge velocity is $20.3 \mathrm{~m} / \mathrm{s}$.
T he temperature at the discharge point is 239.72 K .
The pool spread is unrestricted. H eat is being transferred from light concrete subsoil, with conductivity $0.418 \mathrm{~J}(\mathrm{~m} \cdot \mathrm{~s} \cdot \mathrm{~K})$ and diffusivity $2.5 \mathrm{~m}^{2} / \mathrm{s}$, into the pool. Perfect thermal contact is assumed. T he capillary depth has been set equal to the average roughness of the light concrete subsoil.
The atmospheric temperature is $15{ }^{\circ} \mathrm{C}(288.15 \mathrm{~K})$ and the windspeed is $4.5 \mathrm{~m} / \mathrm{s}$.
The net solar radiation can be estimated by equations (4.36) and (4.37) presented in chapter 4 'Vapour cloud dispersion'. H owever, for the sake of simplicity a value of $100 \mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)$ for the net solar radiation has been used.

Initial liquid release conditions

D ischarge aperture
D ischarge velocity

| $A_{h}$ | $=1.2568 E-02$ | $\mathrm{~m}^{2}$ |
| :--- | :--- | :--- |
| $u_{d}$ | $=20.32$ | $\mathrm{~m} / \mathrm{s}$ |

Initial pool conditions

Initial volume of pool
Initial radius of pool Initial depth of pool Initial front velocity I nitial temperature
C apillary depth

| V | $=2.0313 \mathrm{E}-02$ | $\mathrm{~m}^{3}$ |
| :--- | :--- | :--- |
| r | $=6.3250 \mathrm{E}-02$ | m |
| h | $=1.616$ | m |
| u | $=0.3976$ | $\mathrm{~m} / \mathrm{s}$ |
| $\mathrm{T}_{0}$ | $=239.7$ | K |
| $\mathrm{I}_{\mathrm{h}}$ | $=5.0000 \mathrm{E}-03$ | m |

A tmospheric conditions

Wind speed at 10 metres
Atmospheric temperature
Atmospheric friction velocity
$\mathrm{u}_{\mathrm{a}, 10}=4.500$

Roughness length
Roughness length pool

$$
\mathrm{T}_{\mathrm{a}} \quad=288.15
$$

m/s
$\mathrm{u}_{*} \quad=0.2368$
K
$\mathrm{z}_{0, \mathrm{a}} \quad=5.0000 \mathrm{E}-03$
m
$\mathrm{z}_{0, \mathrm{p}} \quad=2.3000 \mathrm{E}-04$

H eat transfer to the pool

Thermal conductivity
$\lambda_{\mathrm{s}} \quad=0.4180$
$\mathrm{J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{k})$
Thermal diffusivity
$\mathrm{a}_{\mathrm{s}} \quad=2.500$
$\mathrm{m}^{2} / \mathrm{s}$

Physical properties of ammonia at $T=239.7 \mathrm{~K}$

M olecular weight

| $\mu_{i}$ | $=17.03 \cdot 10^{-3}$ | $\mathrm{~kg} / \mathrm{mol}$ |
| :--- | :--- | :--- |
| $\mathrm{T}_{\mathrm{m}}$ | $=195.5$ | K |
| $\mathrm{~T}_{\mathrm{b}}$ | $=239.7$ | K |
| $\mathrm{~T}_{\mathrm{C}}$ | $=405.6$ | K |
| $\mathrm{~L}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{b}}\right)$ | $=1.3715 \mathrm{E}+06$ | $\mathrm{~J} / \mathrm{kg}$ |
| n | $=0.3800$ |  |
| $\mathrm{C}_{\mathrm{A}}$ | $=16.95$ |  |
| $\mathrm{C}_{\mathrm{B}}$ | $=2133$. | K |
| $\mathrm{C}_{\mathrm{C}}$ | $=-32.98$ | K |
| $\mathrm{C}_{\mathrm{p}, \mathrm{L}}$ | $=4416$. | $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ |
| $\mathrm{C}_{\mathrm{p}, \mathrm{V}}$ | $=1987$. | $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ |
| $\rho_{\mathrm{L}}$ | $=682.7$ | $\mathrm{~K} \mathrm{~g} / \mathrm{m}^{3}$ |
| $\sigma$ | $=3.5385 \mathrm{E}-02$ | $\mathrm{~N} / \mathrm{m}$ |
| $\eta_{\mathrm{L}}$ | $=2.5032 \mathrm{E}-04$ | $\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ |
| $\eta_{\mathrm{V}}$ | $=8.1553 \mathrm{E}-06$ | $\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ |
| $\lambda_{\mathrm{L}}$ | $=0.6194$ | $\mathrm{~J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| $\lambda_{\mathrm{V}}$ | $=1.9841 \mathrm{E}-02$ | $\mathrm{~J} /(\mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K})$ |
| D | $=1.4622 \mathrm{E}-05$ | $\mathrm{~m} 2 / \mathrm{s}$ |

## Properties of air

Density

| $\rho_{\mathrm{a}}$ | $=1.225$ | $\mathrm{~kg} / \mathrm{m}^{3}$ |
| :--- | :--- | :--- |
| $\eta_{\mathrm{a}}$ | $=1.7894 \mathrm{E}-05$ | $\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ |
| $v_{\mathrm{a}}$ | $=1.4607 \mathrm{E}-05$ | $\mathrm{~m}^{2} / \mathrm{s}$ |
| $\mathrm{Pr}_{\mathrm{a}}$ | $=0.7104$ |  |
| $\mu_{\mathrm{a}}$ | $=28.96 \cdot 10^{-3}$ | $\mathrm{~kg} / \mathrm{mol}$ |

Viscosity
K inematic viscosity
Prandtl number
$\mu_{\mathrm{a}}=0.7104$
Effective molecular weight
$\mu_{\mathrm{a}} \quad=28.96 \cdot 10^{-3} \quad \mathrm{~kg} / \mathrm{mol}$

Constants

T urbulent friction parameter
Von K arman's constant
T urbulent Schmidt number
T urbulent Prandtl number
L aminar Schmidt number
$C_{f}=1.3000 \mathrm{E}-03$
$\kappa \quad=0.4000$
$\mathrm{Sc}_{\mathrm{t}}=0.8500$
$\mathrm{Pr}_{\mathrm{t}}=0.85$
$\mathrm{Sc}_{1}=0.9990$

Output
M aximum vaporisation rate

## after time

Pool has evaporated at time
$q_{s, \max }=174.2 \quad \mathrm{k} / \mathrm{s}$
$\mathrm{t} \quad=1.0800 \mathrm{E}+04 \mathrm{~s}$
$\mathrm{t} \quad=1.1342 \mathrm{E}+04 \mathrm{~s}$

Intermediate results of SLAB can be found at the end of this paragraph.
$N$ ote that the symbols are according to chapter 3 'Pool evaporation'.

## Heavy gas dispersion

From table 8.6 it appears that the pool reaches its maximum radius 31.66 m , at $t=1377$ after the start of the release. After $t=11342 \mathrm{~s}$ the pool has evaporated. After $\mathrm{t}=10800 \mathrm{~s}$ (3 hours) the liquid pool surface will keep its maximum size, but the pool will partially dry up.

While the pool will have its maximum size for about $87.9 \%$ of the time, the source dimension for the dispersion model SLAB will be assumed to be equal to maximum size of the pool, thus:

$$
\begin{aligned}
A_{S} & =\pi \cdot r_{p, \max ^{2}} \\
& =3150 \mathrm{~m}^{2}
\end{aligned}
$$

After $t=10800 \mathrm{~s}$ (3 hours) about $\mathrm{Q}_{\mathrm{v}} \approx 1.86+06 \mathrm{~kg}$ of ammonia has evaporated. This implies an average evaporation rate:

$$
\mathrm{q}_{\mathrm{s}, \mathrm{av}}=172.2 \mathrm{~kg} / \mathrm{s}
$$

For a conservative estimation, the duration of the source, as input for the SLAB dispersion model, will be set equal to the time the liquid pool has evaporated, thus:

$$
\mathrm{t}_{\mathrm{s}}=11342 \mathrm{~s}
$$

Input:

| M ass flow rate of the source | q | $=172.2$ | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- |
| D uration of release | $\mathrm{t}_{\mathrm{r}}$ | $=11342$ | s |
| Source radius | $\mathrm{b}_{0}$ | $=31.66$ | m |
| T emperature after release | T | $=239.72$ | K |
| Wind velocity at 10 m height | $\mathrm{u}_{\mathrm{a}}$ | $=4.5$ | $\mathrm{~m} / \mathrm{s}$ |
| Pasquill stability class | D |  |  |
| Relative humidity | $\mathrm{p}_{\mathrm{w}} / \mathrm{p}_{\mathrm{s}, \mathrm{w}}=70 \%$ |  |  |
| Ambient temperature | $\mathrm{T}_{\mathrm{a}}$ | $=288.15$ | K |
| Roughness length | $\mathrm{z}_{0, \mathrm{p}}$ | $=1$ |  |
| Concentration averaging time | $\mathrm{t}_{\mathrm{av}}$ | $=60$ | s |
| Time t after start release | t | $=1800$ | s |
| Height receptor | z | $=1.5$ | m |

Threshold 1\% lethality after 30 minutes exposure $C_{1 \%, 30}=1,871 \mathrm{mg} / \mathrm{m}^{3}$
Threshold 50\% lethality after 30 minutes exposurec ${ }_{50 \%, 30}=5,999 \mathrm{mg} / \mathrm{m}^{3}$
Threshold 99\% lethality after 30 minutes exposurec ${ }_{99 \%}, 30=19,233 \mathrm{mg} / \mathrm{m}^{3}$

O utput:

| D istance to threshold $\mathrm{c}_{1 \%}$ | $\mathrm{x}_{1 \%}$ | $=41.5$ | m |
| :--- | :--- | :--- | :--- |
| D istance to threshold $\mathrm{c}_{50 \%}$ | $\mathrm{x}_{50 \%}$ | $=40.3$ | m |
| D istance to threshold $\mathrm{c}_{99 \%}$ | $\mathrm{x}_{99 \%}$ | $=39.0$ | m |

C learly, the relative light ammonia-air-mixture will rise from the pool.
N ote that the source area is $3150 \mathrm{~m}^{2}$.
N ote that the symbols are according to chapter 4 'V apour cloud dispersion'.

CPR 14E
Chapter 8 of the ' $Y$ ellow B ook'

Table 8.6

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\underset{(\mathrm{m})}{\mathbf{r}}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathbf{h} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.0000 | $6.3250 \mathrm{E}-02$ | 0.0000 | 1.616 | $2.0313 \mathrm{E}-02$ |
| 5.0338E-04 | $6.3469 \mathrm{E}-02$ | 4.3812E-07 | 1.615 | 2.0442E-02 |
| $2.4550 \mathrm{E}-03$ | 6.4676E-02 | 2.1707E-06 | 1.593 | 2.0940E-02 |
| 6.1352E-03 | 6.8472E-02 | 5.6723E-06 | 1.485 | $2.1880 \mathrm{E}-02$ |
| 1.1777E-02 | 7.7885E-02 | $1.2071 \mathrm{E}-05$ | 1.224 | $2.3321 \mathrm{E}-02$ |
| 1.8536E-02 | $9.3989 \mathrm{E}-02$ | 2.2489E-05 | 0.9025 | $2.5047 \mathrm{E}-02$ |
| 2.7798E-02 | 0.1223 | 4.4693E-05 | 0.5831 | 2.7413E-02 |
| 3.8736E-02 | 0.1619 | 8.9195E-05 | 0.3669 | 3.0206E-02 |
| 5.5937E-02 | 0.2315 | 2.2189E-04 | 0.2054 | $3.4599 \mathrm{E}-02$ |
| 7.6240E-02 | 0.3198 | $5.2831 \mathrm{E}-04$ | 0.1238 | $3.9784 \mathrm{E}-02$ |
| 9.9749E-02 | 0.4256 | $1.1731 \mathrm{E}-03$ | 8.0461E-02 | $4.5788 \mathrm{E}-02$ |
| 0.1308 | 0.5676 | 2.6759E-03 | 5.3077E-02 | 5.3721E-02 |
| 0.1718 | 0.7545 | 6.1692E-03 | 3.5888E-02 | 6.4191E-02 |
| 0.2273 | 1.001 | $1.4464 \mathrm{E}-02$ | $2.4887 \mathrm{E}-02$ | 7.8371E-02 |
| 0.3085 | 1.339 | $3.5931 \mathrm{E}-02$ | $1.7585 \mathrm{E}-02$ | $9.9111 \mathrm{E}-02$ |
| 0.4319 | 1.789 | 9.4027E-02 | $1.2974 \mathrm{E}-02$ | 0.1306 |
| 0.5909 | 2.261 | 0.2186 | 1.0643E-02 | 0.1712 |
| 0.7524 | 2.641 | 0.4025 | $9.6679 \mathrm{E}-03$ | 0.2125 |
| 0.9425 | 2.999 | 0.6879 | $9.2016 \mathrm{E}-03$ | 0.2610 |
| 1.202 | 3.384 | 1.186 | $9.0513 \mathrm{E}-03$ | 0.3273 |
| 1.526 | 3.758 | 1.961 | 9.1793E-03 | 0.4101 |
| 1.875 | 4.079 | 2.962 | 9.4702E-03 | 0.4993 |
| 2.331 | 4.417 | 4.496 | 9.9360E-03 | 0.6157 |
| 2.897 | 4.758 | 6.708 | $1.0549 \mathrm{E}-02$ | 0.7601 |
| 3.615 | 5.112 | 9.952 | 1.1315E-02 | 0.9435 |
| 4.539 | 5.488 | 14.76 | $1.2237 \mathrm{E}-02$ | 1.180 |
| 5.743 | 5.900 | 21.96 | 1.3302E-02 | 1.487 |
| 7.382 | 6.386 | 33.36 | $1.4494 \mathrm{E}-02$ | 1.906 |
| 9.578 | 6.977 | 51.35 | $1.5637 \mathrm{E}-02$ | 2.466 |
| 12.56 | 7.752 | 80.99 | $1.6476 \mathrm{E}-02$ | 3.229 |
| 16.67 | 8.816 | 132.3 | $1.6727 \mathrm{E}-02$ | 4.278 |
| 21.87 | 10.13 | 217.1 | 1.6396E-02 | 5.605 |
| 28.14 | 11.60 | 351.3 | 1.5832E-02 | 7.207 |
| 37.08 | 13.42 | 603.9 | $1.5198 \mathrm{E}-02$ | 9.489 |
| 48.64 | 15.41 | 1036. | $1.4650 \mathrm{E}-02$ | 12.44 |
| 64.42 | 17.65 | 1807. | $1.4127 \mathrm{E}-02$ | 16.47 |
| 77.84 | 19.27 | 2620. | $1.3768 \mathrm{E}-02$ | 19.90 |
| 97.99 | 21.35 | 4094. | $1.3305 \mathrm{E}-02$ | 25.05 |
| 130.4 | 24.02 | 7049. | $1.2697 \mathrm{E}-02$ | 33.33 |
| 179.2 | 26.86 | $1.2632 \mathrm{E}+04$ | 1.2039E-02 | 45.79 |
| 194.2 | 27.51 | $1.4568 \mathrm{E}+04$ | 1.1894E-02 | 49.61 |
| 197.8 | 27.65 | $1.5050 \mathrm{E}+04$ | 1.1863E-02 | 50.54 |
| 213.6 | 28.21 | $1.7207 \mathrm{E}+04$ | 1.1752E-02 | 54.58 |
| 239.2 | 28.87 | $2.0852 \mathrm{E}+04$ | 1.1673E-02 | 61.11 |

CPR 14E
Chapter 8 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\underset{(\mathrm{ka})}{\mathbf{Q}_{\mathrm{v}}}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 277.9 | 29.48 | $2.6614 \mathrm{E}+04$ | 1.1728E-02 | 71.00 |
| 328.0 | 30.04 | $3.4352 \mathrm{E}+04$ | $1.1809 \mathrm{E}-02$ | 83.79 |
| 390.5 | 30.72 | $4.4411 \mathrm{E}+04$ | 1.1703E-02 | 99.75 |
| 453.0 | 31.13 | $5.4840 \mathrm{E}+04$ | $1.1628 \mathrm{E}-02$ | 115.7 |
| 515.5 | 31.28 | $6.5440 \mathrm{E}+04$ | $1.1655 \mathrm{E}-02$ | 131.7 |
| 590.3 | 31.44 | $7.8235 \mathrm{E}+04$ | $1.1648 \mathrm{E}-02$ | 150.8 |
| 665.0 | 31.56 | $9.1149 \mathrm{E}+04$ | 1.1621E-02 | 169.9 |
| 752.9 | 31.59 | $1.0640 \mathrm{E}+05$ | $1.1628 \mathrm{E}-02$ | 192.3 |
| 842.7 | 31.63 | $1.2201 \mathrm{E}+05$ | 1.1623E-02 | 215.2 |
| 947.4 | 31.64 | $1.4025 \mathrm{E}+05$ | 1.1621E-02 | 242.0 |
| 1070. | 31.65 | $1.6158 \mathrm{E}+05$ | 1.1621E-02 | 273.2 |
| 1213. | 31.65 | $1.8654 \mathrm{E}+05$ | 1.1621E-02 | 309.8 |
| 1377. | 31.66 | $2.1517 \mathrm{E}+05$ | 1.1621E-02 | 351.7 |
| 1568. | 31.66 | $2.4853 \mathrm{E}+05$ | 1.1621E-02 | 400.6 |
| 1794. | 31.66 | $2.8788 \mathrm{E}+05$ | 1.1621E-02 | 458.2 |
| 2077. | 31.66 | 3.3712E+05 | 1.1621E-02 | 530.4 |
| 2376. | 31.66 | 3.8931E+05 | 1.1621E-02 | 606.8 |
| 2617. | 31.66 | $4.3142 \mathrm{E}+05$ | 1.1621E-02 | 668.5 |
| 2820. | 31.66 | $4.6668 \mathrm{E}+05$ | 1.1621E-02 | 720.1 |
| 3022. | 31.66 | $5.0194 \mathrm{E}+05$ | 1.1621E-02 | 771.8 |
| 3224. | 31.66 | $5.3720 \mathrm{E}+05$ | 1.1621E-02 | 823.4 |
| 3426. | 31.66 | $5.7247 \mathrm{E}+05$ | 1.1621E-02 | 875.1 |
| 3652. | 31.66 | $6.1179 \mathrm{E}+05$ | 1.1621E-02 | 932.7 |
| 3901. | 31.66 | $6.5518 \mathrm{E}+05$ | 1.1621E-02 | 996.2 |
| 4149. | 31.66 | $6.9856 \mathrm{E}+05$ | $1.1621 \mathrm{E}-02$ | 1060. |
| 4393. | 31.66 | $7.4104 \mathrm{E}+05$ | 1.1621E-02 | 1122. |
| 4608. | 31.66 | 7.7847E+05 | 1.1621E-02 | 1177. |
| 4844. | 31.66 | 8.1975E+05 | 1.1621E-02 | 1237. |
| 5081. | 31.66 | 8.6103E+05 | 1.1621E-02 | 1298. |
| 5318. | 31.66 | $9.0231 \mathrm{E}+05$ | $1.1621 \mathrm{E}-02$ | 1358. |
| 5555. | 31.66 | $9.4359 \mathrm{E}+05$ | $1.1621 \mathrm{E}-02$ | 1419. |
| 5791. | 31.66 | $9.8487 \mathrm{E}+05$ | 1.1621E-02 | 1479. |
| 6028. | 31.66 | $1.0262 \mathrm{E}+06$ | 1.1621E-02 | 1540. |
| 6265. | 31.66 | $1.0674 \mathrm{E}+06$ | 1.1621E-02 | 1600. |
| 6502. | 31.66 | $1.1087 \mathrm{E}+06$ | 1.1621E-02 | 1660. |
| 6738. | 31.66 | $1.1500 \mathrm{E}+06$ | 1.1621E-02 | 1721. |
| 7002. | 31.66 | $1.1960 \mathrm{E}+06$ | 1.1621E-02 | 1788. |
| 7275. | 31.66 | $1.2436 \mathrm{E}+06$ | 1.1621E-02 | 1858. |
| 7499. | 31.66 | $1.2827 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 1915. |
| 7723. | 31.66 | $1.3217 \mathrm{E}+06$ | 1.1621E-02 | 1972. |
| 7947. | 31.66 | $1.3608 \mathrm{E}+06$ | 1.1621E-02 | 2030. |
| 8190. | 31.66 | $1.4031 \mathrm{E}+06$ | 1.1621E-02 | 2092. |
| 8440. | 31.66 | $1.4467 \mathrm{E}+06$ | 1.1621E-02 | 2155. |
| 8671. | 31.66 | $1.4870 \mathrm{E}+06$ | 1.1621E-02 | 2215. |
| 8872. | 31.66 | $1.5221 \mathrm{E}+06$ | 1.1621E-02 | 2266. |

CPR 14E
C hapter 8 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} \mathbf{Q}_{\mathbf{v}} \\ (\mathrm{kg}) \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 9083. | 31.66 | $1.5589 \mathrm{E}+06$ | 1.1621E-02 | 2320. |
| 9339. | 31.66 | $1.6035 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 2385. |
| 9623. | 31.66 | $1.6530 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 2458. |
| 9907. | 31.66 | $1.7025 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 2530. |
| $1.0163 \mathrm{E}+04$ | 31.66 | $1.7472 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 2596. |
| 1.0393E+04 | 31.66 | $1.7872 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 2654. |
| $1.0600 \mathrm{E}+04$ | 31.66 | $1.8234 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 2707. |
| $1.0800 \mathrm{E}+04$ | 31.66 | $1.8582 \mathrm{E}+06$ | $1.1621 \mathrm{E}-02$ | 2758. |
| $1.0803 \mathrm{E}+04$ | 31.66 | $1.8587 \mathrm{E}+06$ | 1.1403E-02 | 2758. |
| $1.0811 \mathrm{E}+04$ | 31.63 | 1.8602E+06 | $1.0711 \mathrm{E}-02$ | 2758. |
| $1.0825 \mathrm{E}+04$ | 31.42 | $1.8625 \mathrm{E}+06$ | $9.7747 \mathrm{E}-03$ | 2758. |
| $1.0839 \mathrm{E}+04$ | 30.84 | $1.8650 \mathrm{E}+06$ | 8.9467E-03 | 2758. |
| 1.0839E+04 | 30.84 | $1.8650 \mathrm{E}+06$ | 8.9429E-03 | 2758. |
| $1.0841 \mathrm{E}+04$ | 30.73 | $1.8653 \mathrm{E}+06$ | 8.8424E-03 | 2758. |
| $1.0850 \mathrm{E}+04$ | 30.19 | 1.8667E+06 | 8.4520E-03 | 2758. |
| $1.0865 \mathrm{E}+04$ | 28.95 | 1.8691E+06 | 7.8567E-03 | 2758. |
| 1.0889E+04 | 26.56 | $1.8723 \mathrm{E}+06$ | 7.1861E-03 | 2758. |
| $1.0915 \mathrm{E}+04$ | 23.58 | $1.8752 \mathrm{E}+06$ | $6.7325 \mathrm{E}-03$ | 2758. |
| $1.0948 \mathrm{E}+04$ | 19.25 | $1.8779 \mathrm{E}+06$ | $6.7530 \mathrm{E}-03$ | 2758. |
| $1.0970 \mathrm{E}+04$ | 15.75 | 1.8791E+06 | 7.8008E-03 | 2758. |
| 1.0986E+04 | 12.86 | $1.8796 \mathrm{E}+06$ | $1.0058 \mathrm{E}-02$ | 2758. |
| 1.0997E+04 | 10.93 | $1.8799 \mathrm{E}+06$ | $1.2839 \mathrm{E}-02$ | 2758. |
| 1.1006E+04 | 9.915 | 1.8801E+06 | $1.4751 \mathrm{E}-02$ | 2758. |
| $1.1008 \mathrm{E}+04$ | 9.830 | 1.8801E+06 | $1.4841 \mathrm{E}-02$ | 2758. |
| $1.1009 \mathrm{E}+04$ | 9.812 | $1.8802 \mathrm{E}+06$ | $1.4839 \mathrm{E}-02$ | 2758. |
| $1.1011 \mathrm{E}+04$ | 9.793 | $1.8802 \mathrm{E}+06$ | $1.4728 \mathrm{E}-02$ | 2758. |
| 1.1012E+04 | 9.807 | $1.8802 \mathrm{E}+06$ | $1.4574 \mathrm{E}-02$ | 2758. |
| $1.1014 \mathrm{E}+04$ | 9.844 | $1.8802 \mathrm{E}+06$ | $1.4343 \mathrm{E}-02$ | 2758. |
| $1.1014 \mathrm{E}+04$ | 9.855 | $1.8802 \mathrm{E}+06$ | $1.4284 \mathrm{E}-02$ | 2758. |
| 1.1016E+04 | 9.937 | $1.8803 \mathrm{E}+06$ | 1.3897E-02 | 2758. |
| $1.1019 \mathrm{E}+04$ | 10.15 | $1.8803 \mathrm{E}+06$ | $1.3055 \mathrm{E}-02$ | 2758. |
| $1.1024 \mathrm{E}+04$ | 10.50 | $1.8804 \mathrm{E}+06$ | $1.1797 \mathrm{E}-02$ | 2758. |
| $1.1030 \mathrm{E}+04$ | 10.89 | $1.8806 \mathrm{E}+06$ | $1.0446 \mathrm{E}-02$ | 2758. |
| $1.1030 \mathrm{E}+04$ | 10.90 | $1.8806 \mathrm{E}+06$ | $1.0440 \mathrm{E}-02$ | 2758. |
| $1.1031 \mathrm{E}+04$ | 10.93 | $1.8806 \mathrm{E}+06$ | 1.0317E-02 | 2758. |
| $1.1033 \mathrm{E}+04$ | 11.01 | $1.8806 \mathrm{E}+06$ | $9.9856 \mathrm{E}-03$ | 2758. |
| 1.1037E+04 | 11.07 | 1.8807E+06 | $9.5285 \mathrm{E}-03$ | 2758. |
| 1.1037E+04 | 11.08 | 1.8807E+06 | $9.5045 \mathrm{E}-03$ | 2758. |
| $1.1038 \mathrm{E}+04$ | 11.07 | $1.8807 \mathrm{E}+06$ | $9.4333 \mathrm{E}-03$ | 2758. |
| $1.1041 \mathrm{E}+04$ | 11.02 | $1.8808 \mathrm{E}+06$ | $9.2768 \mathrm{E}-03$ | 2758. |
| $1.1044 \mathrm{E}+04$ | 10.89 | $1.8809 \mathrm{E}+06$ | $9.2343 \mathrm{E}-03$ | 2758. |
| $1.1046 \mathrm{E}+04$ | 10.78 | $1.8809 \mathrm{E}+06$ | $9.2639 \mathrm{E}-03$ | 2758. |
| $1.1051 \mathrm{E}+04$ | 10.41 | $1.8810 \mathrm{E}+06$ | $9.5232 \mathrm{E}-03$ | 2758. |
| $1.1059 \mathrm{E}+04$ | 9.597 | 1.8811E+06 | 1.0499E-02 | 2758. |
| $1.1066 \mathrm{E}+04$ | 8.700 | 1.8813E+06 | $1.2057 \mathrm{E}-02$ | 2758. |

CPR 14E
C hapter 8 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\underset{(\mathrm{m})}{\mathbf{r}}$ | $\underset{(k a)}{Q_{v}}$ | $\begin{gathered} \mathbf{h} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1.1072E+04 | 8.139 | 1.8813E+06 | 1.3224E-02 | 2758. |
| 1.1076E+04 | 7.948 | $1.8814 \mathrm{E}+06$ | $1.3552 \mathrm{E}-02$ | 2758. |
| $1.1076 \mathrm{E}+04$ | 7.938 | $1.8814 \mathrm{E}+06$ | $1.3562 \mathrm{E}-02$ | 2758. |
| $1.1078 \mathrm{E}+04$ | 7.892 | $1.8814 \mathrm{E}+06$ | $1.3546 \mathrm{E}-02$ | 2758. |
| $1.1080 \mathrm{E}+04$ | 7.883 | $1.8814 \mathrm{E}+06$ | $1.3453 \mathrm{E}-02$ | 2758. |
| $1.1080 \mathrm{E}+04$ | 7.884 | $1.8814 \mathrm{E}+06$ | $1.3410 \mathrm{E}-02$ | 2758. |
| $1.1082 \mathrm{E}+04$ | 7.913 | $1.8815 \mathrm{E}+06$ | $1.3129 \mathrm{E}-02$ | 2758. |
| $1.1085 \mathrm{E}+04$ | 7.998 | $1.8815 \mathrm{E}+06$ | $1.2614 \mathrm{E}-02$ | 2758. |
| $1.1085 \mathrm{E}+04$ | 7.999 | $1.8815 \mathrm{E}+06$ | 1.2608E-02 | 2758. |
| $1.1086 \mathrm{E}+04$ | 8.041 | $1.8815 \mathrm{E}+06$ | $1.2385 \mathrm{E}-02$ | 2758. |
| $1.1089 \mathrm{E}+04$ | 8.165 | $1.8815 \mathrm{E}+06$ | 1.1776E-02 | 2758. |
| $1.1091 \mathrm{E}+04$ | 8.258 | $1.8816 \mathrm{E}+06$ | 1.1331E-02 | 2758. |
| $1.1092 \mathrm{E}+04$ | 8.275 | $1.8816 \mathrm{E}+06$ | 1.1251E-02 | 2758. |
| $1.1094 \mathrm{E}+04$ | 8.353 | $1.8816 \mathrm{E}+06$ | $1.0865 \mathrm{E}-02$ | 2758. |
| $1.1098 \mathrm{E}+04$ | 8.451 | $1.8816 \mathrm{E}+06$ | $1.0246 \mathrm{E}-02$ | 2758. |
| $1.1100 \mathrm{E}+04$ | 8.458 | 1.8817E+06 | $1.0105 \mathrm{E}-02$ | 2758. |
| $1.1100 \mathrm{E}+04$ | 8.457 | 1.8817E+06 | $1.0055 \mathrm{E}-02$ | 2758. |
| $1.1103 \mathrm{E}+04$ | 8.419 | 1.8817E+06 | 9.9210E-03 | 2758. |
| $1.1106 \mathrm{E}+04$ | 8.297 | $1.8818 \mathrm{E}+06$ | 9.9233E-03 | 2758. |
| $1.1106 \mathrm{E}+04$ | 8.291 | $1.8818 \mathrm{E}+06$ | 9.9271E-03 | 2758. |
| $1.1108 \mathrm{E}+04$ | 8.199 | $1.8818 \mathrm{E}+06$ | $1.0005 \mathrm{E}-02$ | 2758. |
| 1.1112E+04 | 7.916 | $1.8818 \mathrm{E}+06$ | $1.0376 \mathrm{E}-02$ | 2758. |
| 1.1118E+04 | 7.363 | $1.8819 \mathrm{E}+06$ | 1.1413E-02 | 2758. |
| $1.1125 \mathrm{E}+04$ | 6.855 | $1.8819 \mathrm{E}+06$ | 1.2598E-02 | 2758. |
| 1.1129E+04 | 6.652 | $1.8820 \mathrm{E}+06$ | $1.3038 \mathrm{E}-02$ | 2758. |
| $1.1129 \mathrm{E}+04$ | 6.651 | $1.8820 \mathrm{E}+06$ | $1.3039 \mathrm{E}-02$ | 2758. |
| $1.1130 \mathrm{E}+04$ | 6.602 | $1.8820 \mathrm{E}+06$ | $1.3086 \mathrm{E}-02$ | 2758. |
| $1.1133 \mathrm{E}+04$ | 6.575 | $1.8820 \mathrm{E}+06$ | 1.2972E-02 | 2758. |
| $1.1133 \mathrm{E}+04$ | 6.575 | $1.8820 \mathrm{E}+06$ | 1.2963E-02 | 2758. |
| $1.1134 \mathrm{E}+04$ | 6.582 | $1.8820 \mathrm{E}+06$ | $1.2834 \mathrm{E}-02$ | 2758. |
| 1.1137E+04 | 6.631 | $1.8820 \mathrm{E}+06$ | 1.2415E-02 | 2758. |
| $1.1142 \mathrm{E}+04$ | 6.770 | $1.8821 \mathrm{E}+06$ | $1.1525 \mathrm{E}-02$ | 2758. |
| $1.1147 \mathrm{E}+04$ | 6.902 | $1.8821 \mathrm{E}+06$ | $1.0588 \mathrm{E}-02$ | 2758. |
| 1.1150E+04 | 6.907 | $1.8822 \mathrm{E}+06$ | $1.0397 \mathrm{E}-02$ | 2758. |
| 1.1152E+04 | 6.883 | $1.8822 \mathrm{E}+06$ | $1.0294 \mathrm{E}-02$ | 2758. |
| $1.1155 \mathrm{E}+04$ | 6.756 | $1.8822 \mathrm{E}+06$ | $1.0345 \mathrm{E}-02$ | 2758. |
| 1.1157E+04 | 6.681 | $1.8822 \mathrm{E}+06$ | $1.0448 \mathrm{E}-02$ | 2758. |
| $1.1160 \mathrm{E}+04$ | 6.477 | $1.8822 \mathrm{E}+06$ | $1.0823 \mathrm{E}-02$ | 2758. |
| $1.1166 \mathrm{E}+04$ | 6.060 | $1.8823 \mathrm{E}+06$ | 1.1833E-02 | 2758. |
| 1.1172E+04 | 5.733 | $1.8823 \mathrm{E}+06$ | $1.2695 \mathrm{E}-02$ | 2758. |
| $1.1172 \mathrm{E}+04$ | 5.728 | $1.8823 \mathrm{E}+06$ | 1.2706E-02 | 2758. |
| 1.1173E+04 | 5.694 | $1.8823 \mathrm{E}+06$ | 1.2768E-02 | 2758. |
| $1.1176 \mathrm{E}+04$ | 5.649 | $1.8823 \mathrm{E}+06$ | $1.2761 \mathrm{E}-02$ | 2758. |
| 1.1177E+04 | 5.643 | $1.8824 \mathrm{E}+06$ | 1.2692E-02 | 2758. |
| 1.1177E+04 | 5.644 | $1.8824 \mathrm{E}+06$ | 1.2657E-02 | 2758. |

CPR 14E
C hapter 8 of the ' $Y$ ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| $1.1178 \mathrm{E}+04$ | 5.654 | $1.8824 \mathrm{E}+06$ | 1.2487E-02 | 2758. |
| 1.1182E+04 | 5.714 | $1.8824 \mathrm{E}+06$ | 1.1946E-02 | 2758. |
| 1.1187E+04 | 5.825 | $1.8824 \mathrm{E}+06$ | 1.1087E-02 | 2758. |
| 1.1190E+04 | 5.856 | $1.8824 \mathrm{E}+06$ | $1.0681 \mathrm{E}-02$ | 2758. |
| 1.1190E+04 | 5.856 | $1.8824 \mathrm{E}+06$ | 1.0660E-02 | 2758. |
| 1.1192E+04 | 5.846 | $1.8824 \mathrm{E}+06$ | $1.0561 \mathrm{E}-02$ | 2758. |
| 1.1195E+04 | 5.775 | $1.8825 \mathrm{E}+06$ | $1.0547 \mathrm{E}-02$ | 2758. |
| 1.1197E+04 | 5.698 | $1.8825 \mathrm{E}+06$ | $1.0662 \mathrm{E}-02$ | 2758. |
| 1.1197E+04 | 5.682 | $1.8825 \mathrm{E}+06$ | 1.0693E-02 | 2758. |
| 1.1199E+04 | 5.587 | $1.8825 \mathrm{E}+06$ | $1.0895 \mathrm{E}-02$ | 2758. |
| 1.1203E+04 | 5.360 | $1.8825 \mathrm{E}+06$ | $1.1494 \mathrm{E}-02$ | 2758. |
| $1.1207 \mathrm{E}+04$ | 5.108 | $1.8825 \mathrm{E}+06$ | $1.2254 \mathrm{E}-02$ | 2758. |
| 1.1209E+04 | 5.041 | $1.8825 \mathrm{E}+06$ | $1.2446 \mathrm{E}-02$ | 2758. |
| $1.1209 \mathrm{E}+04$ | 5.025 | $1.8825 \mathrm{E}+06$ | $1.2486 \mathrm{E}-02$ | 2758. |
| $1.1211 \mathrm{E}+04$ | 4.972 | $1.8826 \mathrm{E}+06$ | $1.2589 \mathrm{E}-02$ | 2758. |
| $1.1214 \mathrm{E}+04$ | 4.943 | $1.8826 \mathrm{E}+06$ | $1.2489 \mathrm{E}-02$ | 2758. |
| $1.1214 \mathrm{E}+04$ | 4.943 | $1.8826 \mathrm{E}+06$ | $1.2477 \mathrm{E}-02$ | 2758. |
| $1.1215 \mathrm{E}+04$ | 4.947 | $1.8826 \mathrm{E}+06$ | $1.2364 \mathrm{E}-02$ | 2758. |
| $1.1218 \mathrm{E}+04$ | 4.977 | $1.8826 \mathrm{E}+06$ | 1.2016E-02 | 2758. |
| 1.1222E+04 | 5.049 | $1.8826 \mathrm{E}+06$ | $1.1347 \mathrm{E}-02$ | 2758. |
| $1.1226 \mathrm{E}+04$ | 5.088 | $1.8826 \mathrm{E}+06$ | 1.0832E-02 | 2758. |
| $1.1226 \mathrm{E}+04$ | 5.088 | $1.8826 \mathrm{E}+06$ | $1.0821 \mathrm{E}-02$ | 2758. |
| 1.1227E+04 | 5.083 | $1.8826 \mathrm{E}+06$ | 1.0743E-02 | 2758. |
| $1.1229 \mathrm{E}+04$ | 5.043 | $1.8826 \mathrm{E}+06$ | $1.0701 \mathrm{E}-02$ | 2758. |
| $1.1233 \mathrm{E}+04$ | 4.926 | 1.8827E+06 | 1.0916E-02 | 2758. |
| $1.1233 \mathrm{E}+04$ | 4.920 | 1.8827E+06 | $1.0932 \mathrm{E}-02$ | 2758. |
| $1.1234 \mathrm{E}+04$ | 4.869 | 1.8827E+06 | $1.1066 \mathrm{E}-02$ | 2758. |
| 1.1237E+04 | 4.730 | 1.8827E+06 | $1.1483 \mathrm{E}-02$ | 2758. |
| $1.1241 \mathrm{E}+04$ | 4.537 | $1.8827 \mathrm{E}+06$ | $1.2130 \mathrm{E}-02$ | 2758. |
| $1.1241 \mathrm{E}+04$ | 4.514 | 1.8827E+06 | $1.2204 \mathrm{E}-02$ | 2758. |
| $1.1242 \mathrm{E}+04$ | 4.494 | $1.8827 \mathrm{E}+06$ | $1.2268 \mathrm{E}-02$ | 2758. |
| $1.1243 \mathrm{E}+04$ | 4.444 | $1.8827 \mathrm{E}+06$ | $1.2407 \mathrm{E}-02$ | 2758. |
| $1.1247 \mathrm{E}+04$ | 4.396 | $1.8827 \mathrm{E}+06$ | $1.2381 \mathrm{E}-02$ | 2758. |
| 1.1247E+04 | 4.396 | $1.8827 \mathrm{E}+06$ | 1.2342E-02 | 2758. |
| $1.1248 \mathrm{E}+04$ | 4.397 | 1.8827E+06 | 1.2278E-02 | 2758. |
| $1.1250 \mathrm{E}+04$ | 4.415 | 1.8827E+06 | 1.2019E-02 | 2758. |
| $1.1253 \mathrm{E}+04$ | 4.464 | 1.8827E+06 | $1.1477 \mathrm{E}-02$ | 2758. |
| $1.1257 \mathrm{E}+04$ | 4.501 | $1.8827 \mathrm{E}+06$ | $1.0941 \mathrm{E}-02$ | 2758. |
| 1.1259E+04 | 4.493 | $1.8827 \mathrm{E}+06$ | $1.0846 \mathrm{E}-02$ | 2758. |
| $1.1261 \mathrm{E}+04$ | 4.443 | $1.8828 \mathrm{E}+06$ | $1.0854 \mathrm{E}-02$ | 2758. |
| $1.1265 \mathrm{E}+04$ | 4.305 | $1.8828 \mathrm{E}+06$ | $1.1224 \mathrm{E}-02$ | 2758. |
| 1.1267E+04 | 4.213 | $1.8828 \mathrm{E}+06$ | $1.1543 \mathrm{E}-02$ | 2758. |
| $1.1270 \mathrm{E}+04$ | 4.085 | $1.8828 \mathrm{E}+06$ | 1.2015E-02 | 2758. |
| 1.1270E+04 | 4.085 | $1.8828 \mathrm{E}+06$ | 1.2018E-02 | 2758. |
| 1.1271E+04 | 4.048 | $1.8828 \mathrm{E}+06$ | $1.2148 \mathrm{E}-02$ | 2758. |

CPR 14E
C hapter 8 of the 'Y ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\underset{(\mathrm{m})}{\mathbf{r}}$ | $\begin{gathered} Q_{v} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathbf{h} \\ (\mathrm{m}) \end{gathered}$ | $\begin{gathered} V_{d} \\ \left(m^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1.1273E+04 | 3.988 | $1.8828 \mathrm{E}+06$ | $1.2330 \mathrm{E}-02$ | 2758. |
| 1.1276E+04 | 3.956 | $1.8828 \mathrm{E}+06$ | 1.2263E-02 | 2758. |
| 1.1276E+04 | 3.956 | $1.8828 \mathrm{E}+06$ | 1.2261E-02 | 2758. |
| 1.1277E+04 | 3.957 | $1.8828 \mathrm{E}+06$ | 1.2179E-02 | 2758. |
| $1.1279 \mathrm{E}+04$ | 3.974 | $1.8828 \mathrm{E}+06$ | $1.1907 \mathrm{E}-02$ | 2758. |
| 1.1282E+04 | 4.018 | $1.8828 \mathrm{E}+06$ | $1.1365 \mathrm{E}-02$ | 2758. |
| $1.1286 \mathrm{E}+04$ | 4.035 | $1.8828 \mathrm{E}+06$ | $1.0985 \mathrm{E}-02$ | 2758. |
| 1.1287E+04 | 4.020 | $1.8828 \mathrm{E}+06$ | $1.0914 \mathrm{E}-02$ | 2758. |
| 1.1291E+04 | 3.936 | $1.8829 \mathrm{E}+06$ | $1.1082 \mathrm{E}-02$ | 2758. |
| $1.1295 \mathrm{E}+04$ | 3.768 | $1.8829 \mathrm{E}+06$ | $1.1704 \mathrm{E}-02$ | 2758. |
| $1.1295 \mathrm{E}+04$ | 3.767 | $1.8829 \mathrm{E}+06$ | $1.1709 \mathrm{E}-02$ | 2758. |
| $1.1296 \mathrm{E}+04$ | 3.739 | $1.8829 \mathrm{E}+06$ | 1.1826E-02 | 2758. |
| 1.1298E+04 | 3.672 | $1.8829 \mathrm{E}+06$ | 1.2093E-02 | 2758. |
| 1.1301E+04 | 3.603 | $1.8829 \mathrm{E}+06$ | $1.2279 \mathrm{E}-02$ | 2758. |
| $1.1303 \mathrm{E}+04$ | 3.594 | $1.8829 \mathrm{E}+06$ | 1.2185E-02 | 2758. |
| $1.1303 \mathrm{E}+04$ | 3.594 | $1.8829 \mathrm{E}+06$ | $1.2160 \mathrm{E}-02$ | 2758. |
| $1.1304 \mathrm{E}+04$ | 3.601 | $1.8829 \mathrm{E}+06$ | 1.2003E-02 | 2758. |
| 1.1307E+04 | 3.627 | $1.8829 \mathrm{E}+06$ | 1.1621E-02 | 2758. |
| $1.1310 \mathrm{E}+04$ | 3.658 | $1.8829 \mathrm{E}+06$ | 1.1136E-02 | 2758. |
| $1.1310 \mathrm{E}+04$ | 3.658 | $1.8829 \mathrm{E}+06$ | $1.1084 \mathrm{E}-02$ | 2758. |
| $1.1311 \mathrm{E}+04$ | 3.658 | $1.8829 \mathrm{E}+06$ | $1.1041 \mathrm{E}-02$ | 2758. |
| $1.1313 \mathrm{E}+04$ | 3.642 | $1.8829 \mathrm{E}+06$ | 1.0980E-02 | 2758. |
| $1.1316 \mathrm{E}+04$ | 3.569 | $1.8829 \mathrm{E}+06$ | $1.1161 \mathrm{E}-02$ | 2758. |
| $1.1320 \mathrm{E}+04$ | 3.415 | $1.8829 \mathrm{E}+06$ | 1.1805E-02 | 2758. |
| $1.1325 \mathrm{E}+04$ | 3.298 | $1.8829 \mathrm{E}+06$ | 1.2229E-02 | 2758. |
| $1.1326 \mathrm{E}+04$ | 3.291 | $1.8829 \mathrm{E}+06$ | 1.2143E-02 | 2758. |
| $1.1327 \mathrm{E}+04$ | 3.291 | $1.8829 \mathrm{E}+06$ | $1.2118 \mathrm{E}-02$ | 2758. |
| $1.1328 \mathrm{E}+04$ | 3.298 | $1.8829 \mathrm{E}+06$ | $1.1947 \mathrm{E}-02$ | 2758. |
| $1.1330 \mathrm{E}+04$ | 3.323 | $1.8829 \mathrm{E}+06$ | $1.1565 \mathrm{E}-02$ | 2758. |
| $1.1334 \mathrm{E}+04$ | 3.346 | $1.8830 \mathrm{E}+06$ | 1.1125E-02 | 2758. |
| $1.1334 \mathrm{E}+04$ | 3.346 | $1.8830 \mathrm{E}+06$ | 1.1124E-02 | 2758. |
| $1.1334 \mathrm{E}+04$ | 3.345 | $1.8830 \mathrm{E}+06$ | $1.1077 \mathrm{E}-02$ | 2758. |
| $1.1336 \mathrm{E}+04$ | 3.333 | $1.8830 \mathrm{E}+06$ | 1.1027E-02 | 2758. |
| $1.1339 \mathrm{E}+04$ | 3.263 | $1.8830 \mathrm{E}+06$ | $1.1227 \mathrm{E}-02$ | 2758. |
| 1.1342E+04 | 3.146 | $1.8830 \mathrm{E}+06$ | 1.1763E-02 | 2758. |

CPR 14E
Chapter 8 of the ' $Y$ ellow B ook'

Table 8.8

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \left(\mathrm{~J}\left(\mathrm{~m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 0.0000 | 1.9457E+05 | 0.4159 | 239.7 |
| 5.0338E-04 | 465.8 | 0.4161 | 239.7 |
| $2.4550 \mathrm{E}-03$ | 406.0 | 0.4172 | 239.7 |
| 6.1352E-03 | 379.6 | 0.4205 | 239.7 |
| 1.1777E-02 | 334.0 | 0.4272 | 239.7 |
| 1.8536E-02 | 278.6 | 0.4358 | 239.7 |
| $2.7798 \mathrm{E}-02$ | 217.4 | 0.4455 | 239.7 |
| 3.8736E-02 | 168.6 | 0.4534 | 239.7 |
| 5.5937E-02 | 124.0 | 0.4655 | 239.7 |
| 7.6240E-02 | 95.87 | 0.4742 | 239.7 |
| 9.9749E-02 | 77.57 | 0.4778 | 239.7 |
| 0.1308 | 63.51 | 0.4794 | 239.7 |
| 0.1718 | 52.57 | 0.4796 | 239.7 |
| 0.2273 | 43.64 | 0.4788 | 239.7 |
| 0.3085 | 35.70 | 0.4771 | 239.7 |
| 0.4319 | 28.47 | 0.4747 | 239.7 |
| 0.5909 | 22.91 | 0.4735 | 239.7 |
| 0.7524 | 19.34 | 0.4724 | 239.7 |
| 0.9425 | 16.56 | 0.4714 | 239.7 |
| 1.202 | 14.07 | 0.4703 | 239.7 |
| 1.526 | 12.08 | 0.4690 | 239.7 |
| 1.875 | 10.66 | 0.4679 | 239.7 |
| 2.331 | 9.404 | 0.4668 | 239.7 |
| 2.897 | 8.355 | 0.4658 | 239.7 |
| 3.615 | 7.456 | 0.4648 | 239.7 |
| 4.539 | 6.681 | 0.4637 | 239.7 |
| 5.743 | 6.011 | 0.4626 | 239.7 |
| 7.382 | 5.415 | 0.4614 | 239.7 |
| 9.578 | 4.900 | 0.4601 | 239.7 |
| 12.56 | 4.440 | 0.4584 | 239.7 |
| 16.67 | 4.002 | 0.4563 | 239.7 |
| 21.87 | 3.581 | 0.4540 | 239.7 |
| 28.14 | 3.181 | 0.4518 | 239.7 |
| 37.08 | 2.761 | 0.4493 | 239.7 |
| 48.64 | 2.389 | 0.4469 | 239.7 |
| 64.42 | 2.059 | 0.4445 | 239.7 |
| 77.84 | 1.864 | 0.4431 | 239.7 |
| 97.99 | 1.652 | 0.4414 | 239.7 |
| 130.4 | 1.421 | 0.4395 | 239.7 |
| 179.2 | 1.202 | 0.4376 | 239.7 |
| 194.2 | 1.153 | 0.4372 | 239.7 |
| 197.8 | 1.143 | 0.4371 | 239.7 |
| 213.6 | 1.098 | 0.4368 | 239.7 |
| 239.2 | 1.037 | 0.4364 | 239.7 |

CPR 14E
Chapter 8 of the 'Y ellow B ook'

| $\begin{gathered} \mathbf{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} H_{c} \\ \left(\mathrm{~J}\left(\mathrm{~m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 277.9 | 0.9751 | 0.4361 | 239.7 |
| 328.0 | 0.9327 | 0.4357 | 239.7 |
| 390.5 | 0.8970 | 0.4354 | 239.7 |
| 453.0 | 0.8690 | 0.4351 | 239.7 |
| 515.5 | 0.8535 | 0.4351 | 239.7 |
| 590.3 | 0.8427 | 0.4350 | 239.7 |
| 665.0 | 0.8346 | 0.4349 | 239.7 |
| 752.9 | 0.8293 | 0.4349 | 239.7 |
| 842.7 | 0.8259 | 0.4349 | 239.7 |
| 947.4 | 0.8232 | 0.4349 | 239.7 |
| 1070. | 0.8213 | 0.4349 | 239.7 |
| 1213. | 0.8198 | 0.4349 | 239.7 |
| 1377. | 0.8187 | 0.4349 | 239.7 |
| 1568. | 0.8178 | 0.4349 | 239.7 |
| 1794. | 0.8171 | 0.4349 | 239.7 |
| 2077. | 0.8165 | 0.4349 | 239.7 |
| 2376. | 0.8160 | 0.4349 | 239.7 |
| 2617. | 0.8158 | 0.4349 | 239.7 |
| 2820. | 0.8156 | 0.4349 | 239.7 |
| 3022. | 0.8154 | 0.4349 | 239.7 |
| 3224. | 0.8153 | 0.4349 | 239.7 |
| 3426. | 0.8152 | 0.4349 | 239.7 |
| 3652. | 0.8151 | 0.4349 | 239.7 |
| 3901. | 0.8150 | 0.4349 | 239.7 |
| 4149. | 0.8150 | 0.4349 | 239.7 |
| 4393. | 0.8149 | 0.4349 | 239.7 |
| 4608. | 0.8148 | 0.4349 | 239.7 |
| 4844. | 0.8148 | 0.4349 | 239.7 |
| 5081. | 0.8148 | 0.4349 | 239.7 |
| 5318. | 0.8147 | 0.4349 | 239.7 |
| 5555. | 0.8147 | 0.4349 | 239.7 |
| 5791. | 0.8147 | 0.4349 | 239.7 |
| 6028. | 0.8146 | 0.4349 | 239.7 |
| 6265. | 0.8146 | 0.4349 | 239.7 |
| 6502. | 0.8146 | 0.4349 | 239.7 |
| 6738. | 0.8146 | 0.4349 | 239.7 |
| 7002. | 0.8145 | 0.4349 | 239.7 |
| 7275. | 0.8145 | 0.4349 | 239.7 |
| 7499. | 0.8145 | 0.4349 | 239.7 |
| 7723. | 0.8145 | 0.4349 | 239.7 |
| 7947. | 0.8145 | 0.4349 | 239.7 |
| 8190. | 0.8145 | 0.4349 | 239.7 |
| 8440. | 0.8145 | 0.4349 | 239.7 |
| 8671. | 0.8145 | 0.4349 | 239.7 |
| 8872. | 0.8144 | 0.4349 | 239.7 |

CPR 14E
Chapter 8 of the 'Y ellow B ook'

| $\begin{gathered} \mathrm{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \left(\mathrm{~J}\left(\mathrm{~m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathrm{T} \\ (\mathrm{~K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 9083. | 0.8144 | 0.4349 | 239.7 |
| 9339. | 0.8144 | 0.4349 | 239.7 |
| 9623. | 0.8144 | 0.4349 | 239.7 |
| 9907. | 0.8144 | 0.4349 | 239.7 |
| 1.0163E+04 | 0.8144 | 0.4349 | 239.7 |
| $1.0393 \mathrm{E}+04$ | 0.8144 | 0.4349 | 239.7 |
| $1.0600 \mathrm{E}+04$ | 0.8144 | 0.4349 | 239.7 |
| $1.0800 \mathrm{E}+04$ | 0.8144 | 0.4349 | 239.7 |
| $1.0803 \mathrm{E}+04$ | 0.8144 | 0.4349 | 239.7 |
| $1.0811 \mathrm{E}+04$ | 0.8150 | 0.4349 | 239.7 |
| $1.0825 \mathrm{E}+04$ | 0.8203 | 0.4350 | 239.7 |
| $1.0839 \mathrm{E}+04$ | 0.8351 | 0.4353 | 239.7 |
| $1.0839 \mathrm{E}+04$ | 0.8352 | 0.4353 | 239.7 |
| $1.0841 \mathrm{E}+04$ | 0.8378 | 0.4354 | 239.7 |
| $1.0850 \mathrm{E}+04$ | 0.8491 | 0.4357 | 239.7 |
| $1.0865 \mathrm{E}+04$ | 0.8636 | 0.4364 | 239.7 |
| $1.0889 \mathrm{E}+04$ | 0.8096 | 0.4378 | 239.7 |
| $1.0915 \mathrm{E}+04$ | -. 7068 | 0.4398 | 239.7 |
| $1.0948 \mathrm{E}+04$ | -1.944 | 0.4431 | 239.7 |
| $1.0970 \mathrm{E}+04$ | -3.357 | 0.4465 | 239.7 |
| $1.0986 \mathrm{E}+04$ | -5.304 | 0.4500 | 239.7 |
| $1.0997 \mathrm{E}+04$ | -7.162 | 0.4528 | 239.7 |
| $1.1006 \mathrm{E}+04$ | -7.883 | 0.4544 | 239.7 |
| $1.1008 \mathrm{E}+04$ | -7.769 | 0.4545 | 239.7 |
| $1.1009 \mathrm{E}+04$ | -7.708 | 0.4546 | 239.7 |
| $1.1011 \mathrm{E}+04$ | -7.450 | 0.4546 | 239.7 |
| $1.1012 \mathrm{E}+04$ | -7.233 | 0.4546 | 239.7 |
| $1.1014 \mathrm{E}+04$ | -6.962 | 0.4545 | 239.7 |
| $1.1014 \mathrm{E}+04$ | -6.899 | 0.4545 | 239.7 |
| $1.1016 \mathrm{E}+04$ | -6.518 | 0.4544 | 239.7 |
| 1.1019E+04 | -5.801 | 0.4540 | 239.7 |
| $1.1024 \mathrm{E}+04$ | -4.907 | 0.4534 | 239.7 |
| $1.1030 \mathrm{E}+04$ | -4.166 | 0.4528 | 239.7 |
| $1.1030 \mathrm{E}+04$ | -4.164 | 0.4528 | 239.7 |
| $1.1031 \mathrm{E}+04$ | -4.112 | 0.4528 | 239.7 |
| $1.1033 \mathrm{E}+04$ | -3.994 | 0.4527 | 239.7 |
| $1.1037 \mathrm{E}+04$ | -3.928 | 0.4526 | 239.7 |
| $1.1037 \mathrm{E}+04$ | -3.931 | 0.4526 | 239.7 |
| $1.1038 \mathrm{E}+04$ | -3.945 | 0.4526 | 239.7 |
| $1.1041 \mathrm{E}+04$ | -4.056 | 0.4526 | 239.7 |
| $1.1044 \mathrm{E}+04$ | -4.270 | 0.4528 | 239.7 |
| $1.1046 \mathrm{E}+04$ | -4.435 | 0.4530 | 239.7 |
| $1.1051 \mathrm{E}+04$ | -4.992 | 0.4536 | 239.7 |
| $1.1059 \mathrm{E}+04$ | -6.257 | 0.4549 | 239.7 |
| $1.1066 \mathrm{E}+04$ | -7.792 | 0.4565 | 239.7 |

CPR 14E
Chapter 8 of the 'Y ellow B ook'

| $\begin{gathered} \mathrm{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \left(\mathrm{~J}\left(\mathrm{~m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathrm{T} \\ (\mathrm{~K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $1.1072 \mathrm{E}+04$ | -8.693 | 0.4576 | 239.7 |
| $1.1076 \mathrm{E}+04$ | -8.817 | 0.4580 | 239.7 |
| $1.1076 \mathrm{E}+04$ | -8.810 | 0.4580 | 239.7 |
| $1.1078 \mathrm{E}+04$ | -8.696 | 0.4581 | 239.7 |
| $1.1080 \mathrm{E}+04$ | -8.546 | 0.4581 | 239.7 |
| $1.1080 \mathrm{E}+04$ | -8.488 | 0.4581 | 239.7 |
| $1.1082 \mathrm{E}+04$ | -8.161 | 0.4581 | 239.7 |
| $1.1085 \mathrm{E}+04$ | -7.651 | 0.4579 | 239.7 |
| $1.1085 \mathrm{E}+04$ | -7.645 | 0.4579 | 239.7 |
| $1.1086 \mathrm{E}+04$ | -7.444 | 0.4578 | 239.7 |
| $1.1089 \mathrm{E}+04$ | -6.941 | 0.4576 | 239.7 |
| $1.1091 \mathrm{E}+04$ | -6.615 | 0.4574 | 239.7 |
| 1.1092E+04 | -6.561 | 0.4574 | 239.7 |
| $1.1094 \mathrm{E}+04$ | -6.322 | 0.4572 | 239.7 |
| $1.1098 \mathrm{E}+04$ | -6.066 | 0.4570 | 239.7 |
| $1.1100 \mathrm{E}+04$ | -6.059 | 0.4570 | 239.7 |
| $1.1100 \mathrm{E}+04$ | -6.068 | 0.4570 | 239.7 |
| 1.1103E+04 | -6.182 | 0.4571 | 239.7 |
| $1.1106 \mathrm{E}+04$ | -6.507 | 0.4573 | 239.7 |
| $1.1106 \mathrm{E}+04$ | -6.523 | 0.4573 | 239.7 |
| $1.1108 \mathrm{E}+04$ | -6.759 | 0.4575 | 239.7 |
| $1.1112 \mathrm{E}+04$ | -7.482 | 0.4581 | 239.7 |
| $1.1118 \mathrm{E}+04$ | -8.950 | 0.4592 | 239.7 |
| 1.1125E+04 | -10.31 | 0.4603 | 239.7 |
| 1.1129E+04 | -10.70 | 0.4608 | 239.7 |
| 1.1129E+04 | -10.70 | 0.4608 | 239.7 |
| $1.1130 \mathrm{E}+04$ | -10.70 | 0.4609 | 239.7 |
| 1.1133E+04 | -10.51 | 0.4610 | 239.7 |
| $1.1133 \mathrm{E}+04$ | -10.49 | 0.4610 | 239.7 |
| $1.1134 \mathrm{E}+04$ | -10.33 | 0.4610 | 239.7 |
| $1.1137 \mathrm{E}+04$ | -9.853 | 0.4609 | 239.7 |
| 1.1142E+04 | -9.000 | 0.4605 | 239.7 |
| $1.1147 \mathrm{E}+04$ | -8.391 | 0.4602 | 239.7 |
| 1.1150E+04 | -8.380 | 0.4602 | 239.7 |
| 1.1152E+04 | -8.482 | 0.4603 | 239.7 |
| $1.1155 \mathrm{E}+04$ | -8.978 | 0.4606 | 239.7 |
| $1.1157 \mathrm{E}+04$ | -9.263 | 0.4607 | 239.7 |
| 1.1160E+04 | -10.05 | 0.4612 | 239.7 |
| $1.1166 \mathrm{E}+04$ | -11.70 | 0.4622 | 239.7 |
| 1.1172E+04 | -12.89 | 0.4631 | 239.7 |
| 1.1172E+04 | -12.90 | 0.4631 | 239.7 |
| 1.1173E+04 | -12.97 | 0.4632 | 239.7 |
| 1.1176E+04 | -12.93 | 0.4633 | 239.7 |
| 1.1177E+04 | -12.83 | 0.4633 | 239.7 |
| 1.1177E+04 | -12.78 | 0.4633 | 239.7 |

CPR 14E
Chapter 8 of the 'Y ellow B ook'

| $\begin{gathered} \mathrm{t} \\ \text { (s) } \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{c}} \\ \left(\mathrm{~J}\left(\mathrm{~m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{\mathrm{a}} \\ \left(\mathrm{~J} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right) \end{gathered}$ | $\begin{gathered} \mathbf{T} \\ (\mathrm{K}) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $1.1178 \mathrm{E}+04$ | -12.56 | 0.4633 | 239.7 |
| 1.1182E+04 | -11.92 | 0.4631 | 239.7 |
| 1.1187E+04 | -11.09 | 0.4628 | 239.7 |
| 1.1190E+04 | -10.89 | 0.4627 | 239.7 |
| $1.1190 \mathrm{E}+04$ | -10.90 | 0.4627 | 239.7 |
| 1.1192E+04 | -10.95 | 0.4628 | 239.7 |
| $1.1195 \mathrm{E}+04$ | -11.34 | 0.4630 | 239.7 |
| 1.1197E+04 | -11.76 | 0.4632 | 239.7 |
| 1.1197E+04 | -11.84 | 0.4632 | 239.7 |
| 1.1199E+04 | -12.36 | 0.4634 | 239.7 |
| 1.1203E+04 | -13.61 | 0.4641 | 239.7 |
| $1.1207 \mathrm{E}+04$ | -14.99 | 0.4648 | 239.7 |
| $1.1209 \mathrm{E}+04$ | -15.32 | 0.4650 | 239.7 |
| $1.1209 \mathrm{E}+04$ | -15.38 | 0.4650 | 239.7 |
| $1.1211 \mathrm{E}+04$ | -15.55 | 0.4651 | 239.7 |
| $1.1214 \mathrm{E}+04$ | -15.42 | 0.4652 | 239.7 |
| $1.1214 \mathrm{E}+04$ | -15.40 | 0.4652 | 239.7 |
| $1.1215 \mathrm{E}+04$ | -15.24 | 0.4652 | 239.7 |
| $1.1218 \mathrm{E}+04$ | -14.78 | 0.4651 | 239.7 |
| 1.1222E+04 | -14.00 | 0.4649 | 239.7 |
| $1.1226 \mathrm{E}+04$ | -13.64 | 0.4648 | 239.7 |
| $1.1226 \mathrm{E}+04$ | -13.64 | 0.4648 | 239.7 |
| $1.1227 \mathrm{E}+04$ | -13.64 | 0.4648 | 239.7 |
| $1.1229 \mathrm{E}+04$ | -13.93 | 0.4649 | 239.7 |
| 1.1233E+04 | -14.78 | 0.4653 | 239.7 |
| $1.1233 \mathrm{E}+04$ | -14.83 | 0.4653 | 239.7 |
| $1.1234 \mathrm{E}+04$ | -15.20 | 0.4655 | 239.7 |
| $1.1237 \mathrm{E}+04$ | -16.23 | 0.4659 | 239.7 |
| $1.1241 \mathrm{E}+04$ | -17.66 | 0.4664 | 239.7 |
| $1.1241 \mathrm{E}+04$ | -17.82 | 0.4665 | 239.7 |
| $1.1242 \mathrm{E}+04$ | -17.95 | 0.4666 | 239.7 |
| $1.1243 \mathrm{E}+04$ | -18.25 | 0.4667 | 239.7 |
| $1.1247 \mathrm{E}+04$ | -18.29 | 0.4669 | 239.7 |
| $1.1247 \mathrm{E}+04$ | -18.23 | 0.4669 | 239.7 |
| $1.1248 \mathrm{E}+04$ | -18.13 | 0.4669 | 239.7 |
| $1.1250 \mathrm{E}+04$ | -17.75 | 0.4668 | 239.7 |
| $1.1253 \mathrm{E}+04$ | -17.02 | 0.4667 | 239.7 |
| 1.1257E+04 | -16.56 | 0.4666 | 239.7 |
| 1.1259E+04 | -16.62 | 0.4666 | 239.7 |
| $1.1261 \mathrm{E}+04$ | -17.09 | 0.4667 | 239.7 |
| $1.1265 \mathrm{E}+04$ | -18.42 | 0.4672 | 239.7 |
| $1.1267 \mathrm{E}+04$ | -19.32 | 0.4675 | 239.7 |
| 1.1270E+04 | -20.56 | 0.4679 | 239.7 |
| 1.1270E+04 | -20.57 | 0.4679 | 239.7 |
| 1.1271E+04 | -20.90 | 0.4680 | 239.7 |

CPR 14E
Chapter 8 of the 'Y ellow B ook'

| $\mathbf{t}$ <br> $\mathbf{( s )}$ | $\mathbf{H}_{\mathbf{c}}$ <br> $\left(\mathbf{J}\left(\mathbf{m}^{2} \cdot \mathbf{s}\right) \mathbf{)}\right.$ | $\mathbf{H}_{\mathbf{a}}$ <br> $\left(\mathbf{J} /\left(\mathbf{m}^{2} \cdot \mathbf{s}\right) \mathbf{)}\right.$ | $\mathbf{T}$ <br> $(\mathbf{K})$ |
| :---: | :---: | :---: | :---: |
| $1.1273 \mathrm{E}+04$ | -21.39 | 0.4682 | 239.7 |
| $1.1276 \mathrm{E}+04$ | -21.38 | 0.4683 | 239.7 |
| $1.1276 \mathrm{E}+04$ | -21.38 | 0.4683 | 239.7 |
| $1.1277 \mathrm{E}+04$ | -21.25 | 0.4683 | 239.7 |
| $1.1279 \mathrm{E}+04$ | -20.82 | 0.4682 | 239.7 |
| $1.1282 \mathrm{E}+04$ | -20.04 | 0.4681 | 239.7 |
| $1.1286 \mathrm{E}+04$ | -19.75 | 0.4680 | 239.7 |
| $1.1287 \mathrm{E}+04$ | -19.92 | 0.4681 | 239.7 |
| $1.1291 \mathrm{E}+04$ | -20.94 | 0.4684 | 239.7 |
| $1.1295 \mathrm{E}+04$ | -23.02 | 0.4689 | 239.7 |
| $1.1295 \mathrm{E}+04$ | -23.05 | 0.4689 | 239.7 |
| $1.1296 \mathrm{E}+04$ | -23.40 | 0.4690 | 239.7 |
| $1.1298 \mathrm{E}+04$ | -24.21 | 0.4693 | 239.7 |
| $1.1301 \mathrm{E}+04$ | -24.87 | 0.4695 | 239.7 |
| $1.1303 \mathrm{E}+04$ | -24.76 | 0.4696 | 239.7 |
| $1.1303 \mathrm{E}+04$ | -24.72 | 0.4696 | 239.7 |
| $1.1304 \mathrm{E}+04$ | -24.45 | 0.4695 | 239.7 |
| $1.1307 \mathrm{E}+04$ | -23.79 | 0.4694 | 239.7 |
| $1.1310 \mathrm{E}+04$ | -23.16 | 0.4693 | 239.7 |
| $1.1310 \mathrm{E}+04$ | -23.14 | 0.4693 | 239.7 |
| $1.1311 \mathrm{E}+04$ | -23.15 | 0.4693 | 239.7 |
| $1.1313 \mathrm{E}+04$ | -23.37 | 0.4694 | 239.7 |
| $1.1316 \mathrm{E}+04$ | -24.49 | 0.4696 | 239.7 |
| $1.1320 \mathrm{E}+04$ | -26.90 | 0.4702 | 239.7 |
| $1.1325 \mathrm{E}+04$ | -28.50 | 0.4706 | 239.7 |
| $1.1326 \mathrm{E}+04$ | -28.43 | 0.4706 | 239.7 |
| $1.1327 \mathrm{E}+04$ | -28.38 | 0.4706 | 239.7 |
| $1.1328 \mathrm{E}+04$ | -28.05 | 0.4706 | 239.7 |
| $1.1330 \mathrm{E}+04$ | -27.33 | 0.4705 | 239.7 |
| $1.1334 \mathrm{E}+04$ | -26.75 | 0.4704 | 239.7 |
| $1.1334 \mathrm{E}+04$ | -26.75 | 0.4704 | 239.7 |
| $1.1334 \mathrm{E}+04$ | -26.76 | 0.4705 | 239.7 |
| $1.1336 \mathrm{E}+04$ | -26.98 | 0.4705 | 239.7 |
| $1.1339 \mathrm{E}+04$ | -28.31 | 239.7 |  |
| $1.1342 \mathrm{E}+04$ | -30.56 |  |  |

### 8.4.4 Calculation example: Scenario 3

## Concise scenario description

In an industrial installation, propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ has been stored as a pressurized liquified gas in a vertical cylinder, and propane is transported from the vessel through piping. D ue to a full bore rupture of the piping propane is released. In the resulting horizontal two-phase jet, the liquid spray vaporises due to mixing with atmospheric air. After a vapour cloud has developed in the industrial plant, delayed ignition occurs, followed by an explosion. Blast overpressures and positive phase durations will be estimated for a few distances from the centre of the explosion.

## Procedure

The two-phase release of propane through an pipe can be estimated by models, including T PDIS, presented in paragraph 2.5.3. T he subsequent spray release results into a two-phase jet which dimensions can be estimated by the model presented in paragraph 2.5.3.7.

Atmospheric concentrations of flammable (heavy) propane gas can be estimated by the SLAB model presented in paragraph 4.5.5.2. The concentration of the resulting cloud has to be integrated between the iso-concentration contour for which $\mathrm{c}=\mid \mathrm{fl}$, and the iso-concentration contour for which $\mathrm{c}=\mathrm{ufl}$.

The confined flammable propane gas within the obstructed area and the characteristics of the resulting blast after ignition can be estimated by the M ulti-Energy-M odel presented in paragraph 5.5.

According to table 8.5, methods about interfacing spray release models to dispersion models have been given paragraph 2.7.2.3, and about interfacing dispersion models to (explosion) blast models in paragraph 5.7.

## Two-phase propane release from vessel through a pipe

Input:

| Pipe length | $\mathrm{I}_{\mathrm{p}}$ | $=$ | 10 m |
| :--- | :--- | :--- | :--- |
| Pipe diameter | $\mathrm{d}_{\mathrm{p}}$ | $=$ | 0.154 m |
| Internal roughness pipe | $\varepsilon$ | $=$ | $4.5 \cdot 10^{-5} \mathrm{~m}$ |
| Initial upstream temperature | $\mathrm{T}_{0}$ | $=$ | 300 K |
| Leak size | $\mathrm{d}_{\mathrm{h}}$ | $=$ | 0.154 m |
| Contraction factor | $\mathrm{C}_{\mathrm{d}}$ | $=$ | 0.62 |

O utput:

| M ass flow | $\mathrm{q}_{\mathrm{s}}$ | $=$ | $80.0 \mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- | ---: | :--- |
| Vapour mass fraction at exit | $\Phi_{\mathrm{m}, \mathrm{e}}$ | $=$ | $0.079 \mathrm{~kg} / \mathrm{kg}$ |
| Exit temperature | $\mathrm{T}_{\mathrm{e}}$ | $=$ | 289.7 K |
| U pstream pressure | P | $=$ | $730.9 \cdot 10^{3} \mathrm{~N} / \mathrm{m}^{2}$ |

$N$ ote that the symbols used are conform chapter 2 ' O utflow and Spray release'.

## Spray release

Input:

| (A verage) mass flow rate | $\mathrm{q}_{\mathrm{s}}$ | $=$ | $80 \mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- |
| Exit temperature | $\mathrm{T}_{\mathrm{e}}$ | $=$ | 289.7 K |
| Exit vapour mass fraction | $\Phi_{\mathrm{m}, \mathrm{e}}$ | $=$ | $0.079 \mathrm{~kg} / \mathrm{kg}$ |
| Source exit height | $\mathrm{h}_{\mathrm{s}}$ | $=$ | 1 m |
| Leak size | $\mathrm{d}_{\mathrm{h}}$ | $=$ | 0.154 m |
| Discharge coefficient | $\mathrm{C}_{\mathrm{d}}$ | $=$ | 0.62 m |
| Ambient temperature | $\mathrm{T}_{\mathrm{a}}$ | $=$ | 300 K |
| Relative humidity | RH | $=$ | 70 K |

O utput:

| N ett air-borne mass flow rate | $\mathrm{q}_{\mathrm{s} \text {, nett,air }}=$ |  | $80.00 \mathrm{~kg} / \mathrm{s}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Jet diameter after rain-out | $\mathrm{b}_{\mathrm{f}, \text { rainout }}$ |  | 0.37 | m |
| T emperature after rain-out | $\mathrm{T}_{\mathrm{f} \text {, rainout }}$ |  | 230.9 | K |
| Vapour mass fraction after rain-out | $\Phi_{\text {m, frainout }}=$ |  | 0.46 | kg/kg |
| Jet diameter after air entrainment | $\mathrm{b}_{\mathrm{j}}$ | = | 1.47 | m |
| T emperature of air/vapour mixture | $\mathrm{T}_{\mathrm{j}}$ | = | 191.42 | K |
| Vapour mass fraction in air/vapour mixture | $\Phi_{\mathrm{m}, \mathrm{j}}$ | = | 0.46 | kg/kg |
| C oncentration in air/vapour mixture | $\mathrm{C}_{\mathrm{j}}$ | = | 0.115 | $\mathrm{m}^{3} / \mathrm{m}^{3}$ |
| Concentration in air/vapour mixture | $c_{j}^{\prime}$ | = | 0.317 | $\mathrm{kg} / \mathrm{m}^{3}$ |

$N$ ote that the symbols used are conform chapter 2 ' Outflow and Spray release.

## Heavy gas dispersion

Input:
$M$ ass flow rate of the source

| $\mathrm{q}_{\mathrm{s}}$ | $=$ | 80.0 | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | ---: | :--- |
| $\mathrm{t}_{\mathrm{r}}$ | $=$ | 100 s |  |
| $\mathrm{~b}_{0}$ | $=$ | 0.37 m |  |
| h | $=$ | 1.0 m |  |
| T | $=$ | 230.9 K |  |
| $\mathrm{u}_{\mathrm{a}}$ | $=$ | $2 \mathrm{~m} / \mathrm{s}$ |  |
| F |  |  |  |
| RH | $=$ | 70 | $\%$ |
| $\mathrm{~T}_{\mathrm{a}}$ | $=$ | 300 K |  |
| $\mathrm{z}_{0}$ | $=$ | 1.0 m |  |

Output ( $t=10 \mathrm{~s}$ ):

| M aximum explosive mass $\|f\|<c<u f \mid$ | $\mathrm{Q}_{\text {ex, } \max }$ | $=$ | 741 kg |  |
| :--- | :--- | :--- | ---: | :--- |
| $\ldots$ at time | t | $=$ | 40 | s |
| M aximum explosive distance | $\mathrm{x}_{\mathrm{lfl}, \max }$ | $=$ | 164 m |  |
| $\ldots$ at time | t | $=$ | 213 s |  |

$N$ ote that the symbols used are conform chapter 4 'Vapour cloud dispersion'.

## Vapour cloud explosion

Input:

| T otal flammable mass | $\mathrm{Q}_{\text {ex }}$ | = | 741 | kg |
| :---: | :---: | :---: | :---: | :---: |
| Ambient temperature | Ta | $=$ | 300 | K |
| Stoichiometric concentration | $\mathrm{C}_{5}$ | = | 0.0706 | $\mathrm{kg} / \mathrm{m}^{3}$ |
| Cloud volume at stoichiometric concentration | $\mathrm{V}_{\mathrm{c}}$ | = | $105 \cdot 10^{4}$ | $\mathrm{m}^{3}$ |
| F raction of flammable cloud confined Strength number | $\begin{aligned} & \mathrm{V}_{\mathrm{gr}} / \mathrm{V}_{\mathrm{c}} \\ & 10 \end{aligned}$ | $=$ | 1.0 | $\mathrm{m}^{3} / \mathrm{m}^{3}$ |

O utput:

| H eat of combustion in the confined cloud | E | $=37.3 \cdot 10^{9} \mathrm{~J}$ |
| :--- | :--- | :--- |
| Side-on peak overpressure at 100 m | $\mathrm{P}_{\mathrm{s}}$ | $=0.265 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ |
| Positive phase duration at 100 m | $\mathrm{t}_{\mathrm{p}}$ | $=$ |
|  |  | 0.053 s |
| Side-on peak overpressure at 200 m | $\mathrm{P}_{\mathrm{s}}$ | $=0.111 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ |
| Positive phase duration at 200 m | $\mathrm{t}_{\mathrm{p}}$ | $=$ |
|  |  | 0.074 s |
| Side-on peak overpressure at 500 m | $\mathrm{P}_{\mathrm{s}}$ | $=0.0378 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ |
| Positive phase duration at 500 m | $\mathrm{t}_{\mathrm{p}}$ | $=0.089 \mathrm{~s}$ |

N ote that the symbols used are conform chapter 5 'Vapour cloud explosion'.

### 8.4.5 BLEVE

Concise scenario description

A horizontal cylindrical vessel with pressurized liquefied propane ( $\mathrm{C}_{3} \mathrm{H}_{8}$ ) stands within a large fire. T he volume of the vessel is $25.0 \mathrm{~m}^{3}$ and the vessel is filled to $80 \%$ with liquefied propane. After some time the vessel ruptures totally and the two-phase mixture, instantaneously released, is ignited immediately.
D ue to the external fire the vessel is locally weakened. T herefore it is most probable that it will break into two equal parts.
A large storage tank, located 15 m from the vessel, and a control building at 100 m from the vessel, may be hit.

R equired models and methods

The model for the estimation of the pressure waves and fragmentation is described in chapter 7.
The model for the estimation of the fireball characteristics is described in chapter 6.
$N$ ote that both models are independent of each other.

Pressure effects and fragments

Input:

| $M$ ass of liquid propane | Mf | = | 8780 | kg |
| :---: | :---: | :---: | :---: | :---: |
| M ass of propane vapour | $\mathrm{M}_{\mathrm{g}}$ | = | 215.5 | kg |
| F ailure overpressure | $\mathrm{p}_{1}$ | = | 19.0.10 ${ }^{5}$ | $\mathrm{N} / \mathrm{m}^{2}$ |
| Ambient pressure | $\mathrm{p}_{\mathrm{a}}$ | = | $1.0 \cdot 10^{5}$ | $\mathrm{N} / \mathrm{m}^{2}$ |
| Ambient temperature | Ta | = | 293 | K |
| $M$ ass vessel | M v | = | 3859 | kg |
| Vessel diameter | $\mathrm{d}_{v}$ | = | 1.5 | m |
| Length-to-diameter ratio | $\mathrm{I}_{\mathrm{v}} / \mathrm{d}_{\mathrm{v}}$ | = | 10.0 |  |

O utput:
The total energy released
Side-on peak pressure at 15 m
Side-on impulse at 15 m
Side-on peak pressure at 100 m
Side-on impulse at 100 m
N umber of fragments
F ragment mass
Initial velocity fragments
Possible travel distance

| $\mathrm{E}_{\mathrm{av}}$ | $=$ | $570 \cdot 10^{6} \mathrm{~J}$ |
| :--- | :--- | ---: | :--- |
| $\mathrm{P}_{\mathrm{s}}$ | $=$ | $468000 \mathrm{~N} / \mathrm{m}^{2}$ |
| $\mathrm{i}_{\mathrm{s}}$ | $=$ | $795 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{s}}$ | $=$ | $107700 \mathrm{~N} / \mathrm{m}^{2}$ |
| $\mathrm{i}_{\mathrm{s}}$ | $=$ | $86 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ |

$\mathrm{n}_{\mathrm{f}} \quad=\quad 2$
$\mathrm{M}_{\mathrm{f}}=1930 \mathrm{~kg}$
$\mathrm{v}_{\mathrm{i}} \quad=\quad 109 \mathrm{~m} / \mathrm{s}$
$\mathrm{R}_{\mathrm{f}}=900 \mathrm{~m}$

H ere the short-cut method has been followed. T he total energy, $E_{a v}$ that is released by the expansion of the vapour and the flashing of the liquid can be calculated by equation (7.4), figure 7.3, and equation (7.5a). T his explosive energy release produces a blast wave. Estimates of the blast parameters at the large storage vessel can be estimated by equations (7.7) and (7.8), and figures 7.5 and 7.6.
The initial velocity of the vessel parts and the potential travel distance can be estimated by equation (7.15) and (7.22), together with figure 7.12 and equation (7.21).

The complete calculation of the blast and fragmentation effects is presented in section 7.6.
$N$ ote that the symbols used are according to chapter 7 'Rupture of vessels'.

## Fire ball

Input:

T otal mass propane released
Vapour pressure at burst vessel
Ambient pressure
A mbient temperature
Partial $\mathrm{H}_{2} \mathrm{O}$ pressure (humidity $70 \%$ )
Assumed flame temperature

O utput:

M aximum heat radiation flux at $\mathrm{X}_{\text {bleve }}=100 \mathrm{~m}$
View factor $X_{\text {bleve }}=100 \mathrm{~m}$
Atmospheric transmissitivity $X_{\text {bleve }}=100 \mathrm{~m}$

M aximum heat radiation flux at $\mathrm{X}_{\text {bleve }}=839 \mathrm{~m}$
View factor $X_{\text {bleve }}=839 \mathrm{~m}$
Atmospheric transmissitivity $X_{\text {bleve }}=839 \mathrm{~m}$
Surface Emissive Power fireball
Duration of the fireball
R adius of the fireball
H eight centre fireball

| m | $=$ | 8996 |
| :--- | ---: | ---: |
| kg |  |  |
| $\mathrm{P}_{\mathrm{sv}}$ | $=$ | $19.0 \cdot 10^{5}$ |
| $\mathrm{~N} / \mathrm{m}^{2}$ |  |  |

$\mathrm{P}_{\text {air }}=1.013 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{T}_{\mathrm{a}}=293 \mathrm{~K}$
$\mathrm{p}_{\mathrm{w}}=1623 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{T}_{\mathrm{f}}=1200 \mathrm{~K}$

## Procedure

The radius, duration and lift-off height of the fire ball can be calculated by equations (6.90), (6.91) and (6.22), respectively.

The straight distance between the centre of the fire ball to the receptor can be calculated by equation (6.92) based on the horizontal distance to the vessel and the lift-off height of the fire ball.
The view factor, depending on the radius of the fire ball and the distance to the centre of the fireball, can be calculated by equation (6.93). T he surface emissive power of the fire ball can be estimated by equations (6.21) and (6.95). The heat flux the receptor is receiving, depends on the surface emissive power, atmospheric transmissitivity and the view factor, and can be estimated by equation (6.4).
The complete calculation of heat flux due to a fire ball, caused by an ignition of a BLEVE, is presented in section 6.6.5.
$N$ ote that the symbols used are according to chapter 6 'H eat fluxes from fires'.

### 8.5 Discussion and conclusions

Interfacing of models deals with the transfer of data from a previous model to a subsequent model in the chain representing a scenario.

The chain of models necessary to quantify the physical effects is depending on the availability of existing (computerised) models. M odels vary in degree of complexity and detail, and have a common tendency to describe highly idealised laboratory situations in which one single phenomenon is under study. Consequently, the detailed predictions of the prior model have to be simplified in order to serve as input for the next model. T his simplification always results in a loss of information and thus final predictions deteriorate to some extent.

In theory, integral models should be able to preserve all information about prior physical phenomena, taking into account variations in time and magnitude. H owever, improved predictions are not necessary for all types of (safety-) studies. The description of such integral models is much more complicated because of the fact that more details have to be taken into account and a special dedicated numerical procedure must be applied. The large numerical integral procedure this approach would require, would further enlarge the required computational capacity.
F or the present, the maximum degree of model complexity has been reached by models such as GASP in chapter 3 'Pool Evaporation', that are still reasonably manageable in safety and risk assessment studies.

Several types of physical effects are possible for a given set of accident conditions. Furthermore, hazardous materials may follow more than one route leading to particular consequences.
Thus, more than one scenario may be required to fully access all possible physical effects causing damage. T hese scenarios differ from each other by a different kind of spill of hazardous material under particular process and meteorological conditions.

In case the released hazardous material will react and form toxic reaction products, the list of scenarios can easily be extended to follow-up scenarios. The best way to avoid endless repetitions of very similar scenarios is to consider the reaction products of the primary hazardous material released, and look for the most fitting scenario.

Always the possibility of so-called domino-effects is apparent, i.e. triggering of secondary events by a primary event such that the result is an increase in consequences or area of an effect zone. These domino effects are generally only considered if they result in a significant escalation of the original incident.

### 8.6 References

AlChE (1989),
C hemical Process Quantitative Risk Analysis - guidelines for -,
C enter for C hemical Process Safety of the A merican Institute of C hemical E ngineers, 1989.

Bosch (1992),
C.J.H.van den Bosch, H. Bekkering,

System description IRIS: Effect M odule, TN O-report 92-054, for the N etherlands M inistry for H ome Affairs, 11-2-92.

Potts (1981),
H azard A ssessment C omputer System -U sers' operation manual vol.1-, R.G. Potts, A.D. LIT T LE for US C oast Guard, 30-09-81.

# Annex <br> Physical properties of chemicals <br> C.J.H. van den Bosch 

## List of symbols Annex

| $c_{\text {fil }}$ | C oncentration at lower flammability limit | $\mathrm{kg} / \mathrm{m}^{3}$ |
| :---: | :---: | :---: |
| $\mathrm{Cufl}_{\text {uf }}$ | C oncentration at upper flammability limit | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\mathrm{C}_{\text {s }}$ | M aximum solubility in water | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\mathrm{C}_{\mathrm{p}, \mathrm{g}}$ | Specific heat gas/vapour | J/(mol-K) |
| $\mathrm{C}_{\mathrm{p}, \mathrm{L}}$ | Specific heat liquid | J/(kg-K) |
| $\mathrm{C}_{\times 1 .}$ | C oefficient ' $X$ ' of temperature relation |  |
| LFL | L ower flammability limit | vol\% |
| UFL | U pper flammability limit | vol\% |
| $\mathrm{P}^{\circ}$ | Vapour pressure | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{P}_{\mathrm{c}}$ | Critical pressure | $\mathrm{N} / \mathrm{m}^{2}$ |
| Tb | Boiling point | K |
| T ${ }_{\text {c }}$ | C ritical temperature | K |
| $\mathrm{T}_{\text {fl }}$ | Flash point | K |
| Tm | M elting point | K |

## Greek symbols

$\gamma \quad$ Poisson ratio $C_{p, g} / C_{v, g}$
$\Delta H_{c} \quad H$ eat of combustion
J/kg
$L_{v} \quad H$ eat of vaporisation
J/kg
$\eta_{g} \quad$ D ynamic viscosity gas/vapour
$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$
$\eta_{\mathrm{L}} \quad$ D ynamic viscosity liquid
$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$
$\mu \quad$ M olecular weight
$\mathrm{kg} / \mathrm{mol}$
$\rho_{g} \quad G$ as/vapour density
$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\mathrm{L}} \quad$ Liquid density
$\mathrm{kg} / \mathrm{m}^{3}$
$\sigma \quad$ Surface tension
$\mathrm{N} / \mathrm{m}$

CPR 14E
A nnex of the ' $Y$ ellow B ook'

## Table of contents of Annex

List of symbols Annex ..... annex-2
A. 1 Introduction ..... annex-5
A. 2 References ..... annex-9
A. 3 Data physical properties. ..... annex-11

## A. 1 Introduction

F or several chemicals physical properties are given as physical constants or as coefficients of relations expressing properties' temperature dependency.
D ata has been collected from various sources. M ost individual sources do not provide all physical properties required. All sources referred to have been used to compile a data set of physical constants and coefficients, as complete as possible.

Physical constants are given for each chemical.
The chemical specific coefficients of the temperature relations are given for each chemical. U sing these equations the physical properties can be calculated for any temperature, within the valid range.

Values for the temperature-dependent physical properties are given for $\mathrm{T}=288.15 \mathrm{~K}\left(15{ }^{\circ} \mathrm{C}\right)$.

Physical properties given as physical constant:

| M olecular weight | $\mu$ |
| :--- | :--- |
| M elting point | $\mathrm{T}_{m}$ |
| Boiling point | $\mathrm{T}_{\mathrm{b}}$ |
| Critical temperature | $\mathrm{T}_{\mathrm{c}}$ |
| Critical pressure | $\mathrm{P}_{\mathrm{c}}$ |
| Flash point | $\mathrm{T}_{f l}$ |
| H eat of combustion | $\Delta \mathrm{H}$ |
| Lower flammability limit | LF |
| U pper flammability limit | UFL |
| Solubility in water | $\mathrm{C}_{\mathrm{s}}$ |

Physical properties given as a function of absolute temperature:

| Specific heat gas/vapour | $C_{p, g}$ |
| :--- | :--- |
| Poisson ratio $C_{p, g} / C_{v, g}$ | $\gamma$ |
| G as/vapour density | $\rho_{g}$ |
| G as/vapour viscosity | $\eta_{g}$ |
| Vapour pressure | $\mathrm{P}^{\circ}$ |
| H eat of vaporisation | $\mathrm{L}_{\mathrm{v}}$ |
| Specific heat liquid | $\mathrm{C}_{\mathrm{p}, \mathrm{L}}$ |
| Liquid density | $\rho_{\mathrm{L}}$ |
| Liquid viscosity | $\eta_{\mathrm{L}}$ |
| Surface tension | $\sigma$ |

## A. 11 Yaws' concept

The following equations, according to the concept of $Y$ aws [1977] express the temperature dependency of the physical properties:

| $\mathrm{C}_{\mathrm{p}, \mathrm{g}}(\mathrm{T}$ ) | $=\mathrm{C}_{\mathrm{A}, \mathrm{Cpg}}+\mathrm{C}_{\mathrm{B}, \mathrm{Cpg}} \times \mathrm{T}+\mathrm{C}_{\mathrm{C}, \mathrm{Cpg}} \times \mathrm{T}^{2}+\mathrm{C}_{\mathrm{D}, \mathrm{Cpg}} \times \mathrm{T}^{3}$ | ( $\mathrm{cal} /(\mathrm{mol} \cdot \mathrm{K})$ ) |
| :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{p}, \mathrm{L}}(\mathrm{T})$ | $=C_{A, C p L}+C_{B, C p L} \times T+C_{C, C p L} \times T^{2}$ | ( $\mathrm{cal} /(\mathrm{g} \cdot \mathrm{K})$ ) |
| $\Delta H_{v}(T)$ | $=\Delta H_{v}\left(T_{0}\right) \times\left(\left(T_{c}{ }^{-T}\right) /\left(T_{c^{-}} T_{H v, 0}\right)\right)^{C \Delta H v}$ | (cal/g) |
| $\eta_{g}(\mathrm{~T})$ | $=\mathrm{C}_{\mathrm{A}, \eta \mathrm{g}}+\mathrm{C}_{\mathrm{B}, \eta \mathrm{g}} \times \mathrm{T}+\mathrm{C}_{\mathrm{C}, \eta \mathrm{g}} \times \mathrm{T}^{2}$ | ( $\mu \mathrm{P}$ ) |
| ${ }^{10} \log \left(\eta_{L}(T)\right)$ | $=C_{A, \eta L}+C_{B, \eta L} T T+C_{C, \eta L} \times T+C_{\text {d, nL }} \times T^{2}$ | (cP) |
| ${ }^{10} \log \left(P^{\circ}(T)\right)$ | $=C_{A, p^{\circ}}+C_{B, p^{\circ} T}+C_{C, p^{\circ} \times 10} \log (T)+C_{D, p^{\circ} \times} \times$ | $\begin{aligned} & C_{E, p^{\circ}} \times T^{2} \\ & (\mathrm{mmHg}) \end{aligned}$ |
| $\sigma(T)$ | $=\sigma\left(T_{\sigma, 0}\right) \times\left(\left(T_{c}-T\right) /\left(T_{c^{-}} T_{\sigma, 0}\right)\right)^{C \sigma}$ | (dyne/cm) |
| $\rho_{L}(T)$ | $=\mathrm{C}_{\mathrm{A}, \mathrm{pL}} \times \mathrm{C}_{\mathrm{B}, \mathrm{pL}}^{-(1-(T / T \mathrm{c}))^{(2 / 7)}}$ | $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ |

N ote that the following relations are also applied in this chapter:

$$
\begin{aligned}
C_{v, g} & =C_{p, g}-R \\
\gamma & =C_{p, g} / C_{v, g} \\
\rho_{g} & =P \times \mu /(R \cdot T)
\end{aligned}
$$

It must be stressed that the coefficients presented are valid only for relations that correspond to those given by Yaws [1977]. N ote that these quantities have to be converted into S.I.-units. In table A.1.1 conversion factors have been given.

Table A.1.1 Conversion factors

| From unit | To unit | Multiply by |
| :--- | :--- | :--- |
| $\mathrm{cal} /(\mathrm{mol} \cdot \mathrm{K})$ | $\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$ | $4,184.0$ |
| $\mathrm{cal} /(\mathrm{g} \cdot \mathrm{K})$ | $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$ | $4,184.0$ |
| $\mathrm{cal} / \mathrm{g}$ | $\mathrm{J} / \mathrm{kg}$ | $4,184.0$ |
| $\mu \mathrm{P}$ | $\mathrm{N} / \mathrm{s} / \mathrm{m}^{2}$ | $10^{-7}$ |
| cP | $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ | $10^{-3}$ |
| mm Hg | $\mathrm{N} / \mathrm{m}^{2}$ | $101325 / 760.0$ |
| dyne/cm | $\mathrm{N} / \mathrm{m}^{3}$ | $10^{-3}$ |
| $\mathrm{~g} / \mathrm{cm}^{3}$ | $\mathrm{~kg} / \mathrm{m}^{3}$ | $10^{3}$ |

All calculation examples presented in this Y ellow Book are based on these relations. Other databases exist, based on other mathematical equations. There is no reason whatsoever to presume that these other (private) databases could not also be applied to perform the calculations by the models presented in this book.

The calculated temperature-dependent physical properties may differ a few per cent from those calculated using the equations presented here, hence the predictions by the models will also slightly differ, if other databases are used.

## A. 1.2 Concept according to DIPPR

In the DIPPR database the following functions of (absolute) temperature are used:

$$
\begin{aligned}
& f_{0}(T)=A+B \times T+C \times T^{2}+D \times T^{3}+E \times T^{4} \\
& f_{1}(T)=E \times p\left(A+B / T+C \times L n(T)+D \times T^{E}\right) \\
& f_{2}(T)=\left(A \times T^{B}\right) /\left(1+C / T+D / T^{2}\right) \\
& f_{3}(T)=A+B \times E \times p\left(-C / T^{D}\right) \\
& f_{4}(T)=A+B / T+C / T^{3}+D / T^{8}+E / T^{9} \\
& f_{5}(T)=A / B^{\left(1+(1-T / C)^{D}\right)} \\
& f_{6}(T)=A \times(1-T / T c)^{\left(B+C \times T / T c+D \times(T / T c)+E \times(T / T c)^{3}\right)} \\
& f_{7}(T)=A+B \times(C / T / S i n h(C / T))^{2}+D \times(E / T / C \operatorname{osh}(E / T))^{2}
\end{aligned}
$$

It must be mentioned that in DIPPR the most appropriate equation for a physical property is used for a particular chemical. This means that for the same physical property several equations are applied.
For example for propane the following equations have been used

$$
\begin{array}{lll}
C_{p, g}(T)=f_{7}(T) & C_{p, L}(T)=f_{0}(T) & \Delta H_{v}(T)=f_{6}(T) \\
\eta_{g}(T)=f_{2}(T) & \eta_{L}(T)=f_{1}(T) & P^{\circ}(T)=f_{1}(T) \\
\sigma(T)=f_{6}(T) & \rho_{L}(T)=f_{5}(T) &
\end{array}
$$

## A. 2 References

Chem (1995),
C hemiekaarten - Gegevens voor het veilig werken met chemicaliën, NIA/VN CI/Samsom H.D. T jeenk Willink, $10^{e}$ editie, Alphen a/d Rijn 1994-95.

CRC (1995),
H andbook of Chemistry and Physics, CRC Press, 75 th ed., 1995

DIPPR (1990),
Th. B. Selover, U se of DIPPr data in reactive chemical hazard assessment, Plant/O perations Progress,9(4),207-212,O ctober 1990.

Landolt
L andolt-Börnstein, Zahlenwerte und F unktionen, Springer-V erlag.

Y aws (1977),
C.L. Y aws, Physical Properties, M cG raw-H ill, N ew Y ork, 1977.

## A. 3 Data physical properties

## Physical properties are listed for the following chemicals:

1. ACROLEIN ...............................................................................annex-9
2. ACRYLONITRILE ....................................................................annex-11
3. AIR ..........................................................................................annex-13
4. AM M ONIA................................................................................annex-15
5. BUTANE (n-) ............................................................................annex-17
6. CARBON M ONOXIDE.............................................................annex-19
7. CARBONDISULFIDE ................................................................annex-21
8. CHLORINE ...............................................................................annex-23
9. ETHENE ...................................................................................annex-25
10. GASOLINE ................................................................................annex-27
11. HYDROGEN .............................................................................annex-29
12. HYDROGEN CHLORIDE .........................................................annex-31
13. HYDROGEN CYANIDE ............................................................annex-33
14. HYDROGEN FLUORIDE..........................................................annex-35
15. HYDROGEN SULFIDE .............................................................annex- 37
16. METHANE ...............................................................................annex-39
17. METHANOL .............................................................................annex-41
18. METHYL MERCAPTAN ............................................................annex- 43
19. NITROGEN DIOXIDE ..............................................................annex-45
20. PROPANE .................................................................................annex-47
21. PROPENE ..................................................................................annex-49
22. SULPHUR DIOXIDE................................................................annex-51
23. TOLUENE ................................................................................annex-53
24. WATER .....................................................................................annex-55

CPR 14E
A nnex of the 'Y ellow B ook'

## 1. ACROLEIN



| Functions (calculated at 288.15 K | $\left(15.00^{\circ} \mathrm{C}\right)$ | and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ | $(1.000 \mathrm{Bar})$ |
| :--- | :--- | :---: | :--- |
| Gas density (ideal gas law) | $:$ | $2.340 \mathrm{~kg} / \mathrm{m} 3$ |  |
| Mass of 1 m 3 gas/vapour | $:$ | 2.340 kg |  |
| Volume of 1 kg gas/vapour | $:$ | 0.427 m 3 |  |
| Mass of 1 m 3 liquid | $:$ | 844.033 kg |  |
| Volume of 1000 kg liquid | $:$ | 1.185 m 3 |  |


| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 5.621200 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 1.000000 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 1.000000 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{A}=$ | -3.251597 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | -4.099966 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{mg} * \min / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 1.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):
Liquid density
Formula Nr. 1 rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right)$ (where $\left.C=T C\right) \quad[\mathrm{g} / \mathrm{cm} 3] \quad[\mathrm{g} / \mathrm{cm} 3]$
Minimum temperature $=185.450000$ [K]
Maximum temperature $=506.000000$ [ K ]
Parameter $1=3.228800 \mathrm{E}-0001$
Parameter $2=2.944900 \mathrm{E}-0001$
Parameter $3=5.060000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter $5=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 185.450000 [K]
Maximum temperature = 506.000000 [K]
Parameter 1 = 3.900860E+0001
Parameter 2 = -2.746400E+0003
Parameter 3 = -1.117600E+0001
Parameter 4 = -1.054000E-0003
Parameter 5 = 6.868000E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 185.450000 [K]
Maximum temperature = 506.000000 [K]
Parameter 1 = 1.195000E+0002
Parameter 2 = 3.457000E+0002
Parameter 3 = 5.060000E+0002
Parameter 4 = 2.964000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 275.000000 [K]
Maximum temperature = 350.000000 [K]
Parameter 1 = 3.669900E-0001
Parameter 2 = 4.970900E-0004
Parameter 3 = 6.687800E-0008
Parameter 4 = -7.132000E-0011
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.150000 [K]
Maximum temperature = 1000.100000 [K]
Parameter 1 = 4.864400E+0000
Parameter 2 = 2.794800E-0002
Parameter 3 = 2.931600E-0005
Parameter 4 = -2.487000E-0008
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 222.890000 [K]
Maximum temperature = 353.220000 [K]
Parameter 1 = -1.791500E+0000
Parameter 2 = 3.689500E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 3.078400E-0004
Parameter 5 = -1.847000E-0007
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 325.840000 [K]
Maximum temperature = 995.840000 [K]
Parameter 1 = -1.718200E+0001
Parameter 2 = 3.226100E-0001
Parameter 3 = -5.332000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 185.450000 [K]
Maximum temperature = 506.000000 [K]
Parameter 1 = 1.658000E +0001
Parameter 2 = 3.457000E+0002
Parameter 3 = 5.060000E+0002
Parameter 4 = 1.281300E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 2. ACRYLONITRILE



Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right.$ ) and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) : $2.215 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour
2.215 kg

Volume of 1 kg gas/vapour
0.452 m 3

Mass of 1 m3 liquid
812.497 kg

Volume of 1000 kg liquid : 1.231 m 3

| Probit constants (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 5.265800 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| B | 1.000000 | SI units ( $\left.\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 1.300000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $A=$ | -7.568639 | (ppm*min) |
| $\mathrm{B}=$ | 1.000000 | (ppm*min) |
| $\mathrm{N}=$ | 1.300000 | (ppm*min) |
| $A=$ | -8.600019 | (mg*min/m3) |
| $\mathrm{B}=$ | 1.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 1.300000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. 1 rho $=A * \mathrm{~B}^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad$ [g/cm3] [g/cm3]
Minimum temperature $=189.630000$ [K]
Maximum temperature $=533.000000$ [K]
Parameter $1=2.470400 \mathrm{E}-0001$
Parameter $2=2.265000 \mathrm{E}-0001$
Parameter $3=5.350000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 189.630000 [K]
Maximum temperature = 535.000000 [K]
Parameter 1 = 3.448330E+0001
Parameter 2 = -2.749000E+0003
Parameter 3 = -9.465400E+0000
Parameter 4 = -8.991000E-0004
Parameter 5 = 5.199700E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 189.630000 [K]
Maximum temperature = 535.000000 [K]
Parameter 1 = 1.373000E+0002
Parameter 2 = 3.623000E+0002
Parameter 3 = 5.350000E+0002
Parameter 4 = 2.733000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 189.630000 [K]
Maximum temperature = 400.000000 [K]
Parameter 1 = 4.947600E-0001
Parameter 2 = -4.940000E-0004
Parameter 3 = 1.595400E-0006
Parameter 4 = 1.850800E-0013
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 200.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 3.897900E+0000
Parameter 2 = 4.600500E-0002
Parameter 3 = -2.709000E-0005
Parameter 4 = 6.015100E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 240.000000 [K]
Maximum temperature = 390.000000 [K]
Parameter 1 = -9.171000E-0001
Parameter 2 = 2.560100E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = -1.668000E-0003
Parameter 5 = 9.100300E-0007
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 303.150000 [K]
Maximum temperature = 1000.000000 [K]
Parameter 1 = -5.005000E+0000
Parameter 2 = 2.412800E-0001
Parameter 3 = -1.518000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 189.630000 [K]
Maximum temperature = 535.000000 [K]
Parameter 1 = 1.904000E +0001
Parameter 2 = 3.623000E+0002
Parameter 3 = 5.350000E+0002
Parameter 4 = 1.070500E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 3. AIR



Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2(1.000 \mathrm{Bar})$
Gas density (ideal gas law) :
$1.209 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour
1.209 kg

Volume of 1 kg gas/vapour
0.827 m 3

Mass of 1 m 3 liquid
Undefined
Volume of 1000 kg liquid : Undefined

| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{A}=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):
Liquid density
Formula Nr. 1 rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=63.150000$ [K]
Maximum temperature $=126.100000$ [K]
Parameter $1=3.063500 \mathrm{E}-0001$
Parameter 2 $=2.802100 \mathrm{E}-0001$
Parameter $3=1.430000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 63.150000 [K]
Maximum temperature = 126.100000 [K]
Parameter 1 = 2.208250E+0001
Parameter 2 = -4.636600E+0002
Parameter 3 = -7.642500E+0000
Parameter 4 = 1.512500E-0002
Parameter 5 = 9.202400E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 63.150000 [K]
Maximum temperature = 126.100000 [K]
Parameter 1 = 4.082000E+0001
Parameter 2 = 9.463000E+0001
Parameter 3 = 1.430000E+0002
Parameter 4 = 3.875700E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 64.000000 [K]
Maximum temperature = 120.000000 [K]
Parameter 1 = 9.990900E-0001
Parameter 2 = -1.390000E-0002
Parameter 3 = 9.090500E-0005
Parameter 4 = 2.520200E-0008
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 250.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 7.064000E+0000
Parameter 2 = -1.256000E-0003
Parameter 3 = 3.227700E-0006
Parameter 4 = -1.234000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 63.150000 [K]
Maximum temperature = 125.000000 [K]
Parameter 1 = -7.685000E-0001
Parameter 2 = 4.193500E+0001
Parameter 3 = 0.000000E+0000
Parameter 4 = -7.046000E-0003
Parameter 5 = -1.886000E-0006
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 80.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 2.202900E+0001
Parameter 2 = 5.434000E-0001
Parameter 3 = -1.418000E-0004
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 63.150000 [K]
Maximum temperature = 126.100000 [K]
Parameter 1 = 5.143000E+0000
Parameter 2 = 9.463000E+0001
Parameter 3 = 1.430000E+0002
Parameter 4 = 1.245700E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 4. AMMONIA



Poisson ratio
$=1.301$

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right.$ ) and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) : $0.711 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour
0.711 kg

Volume of 1 kg gas/vapour
1.407 m 3

Mass of 1 m3 liquid
616.555 kg

Volume of 1000 kg liquid : 1.622 m 3

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 7.936700 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{B}=$ | 1.000000 | SI units (Kg*s/m3) |
| $\mathrm{N}=$ | 2.000000 | SI units (Kg*s/m3) |
| $A=$ | -16.286131 | (ppm*min) |
| $\mathrm{B}=$ | 1.000000 | (ppm*min) |
| $\mathrm{N}=$ | 2.000000 | (ppm*min) |
| A $=$ | -15.599977 | (mg*min/m3) |
| $\mathrm{B}=$ | 1.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 2.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=195.410000$ [K]
Maximum temperature $\quad=\quad 405.650000$ [K]
Parameter $1=2.348500 \mathrm{E}-0001$
Parameter $2=2.527900 \mathrm{E}-0001$
Parameter $3=4.056500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 195.410000 [K]
Maximum temperature = 405.650000 [K]
Parameter 1 = 2.724560E+0001
Parameter 2 = -1.850300E+0003
Parameter 3 = -7.149700E+0000
Parameter 4 = 5.716300E-0004
Parameter 5 = 4.017500E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 195.410000 [K]
Maximum temperature = 405.650000 [K]
Parameter 1 = 2.762000E+0002
Parameter 2 = 3.005000E+0002
Parameter 3 = 4.056500E+0002
Parameter 4 = 4.030600E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 195.410000 [K]
Maximum temperature = 385.150000 [K]
Parameter 1 = -4.109200E+0000
Parameter 2 = 6.139300E-0002
Parameter 3 = -2.427000E-0004
Parameter 4 = 3.204800E-0007
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 100.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 7.264000E+0000
Parameter 2 = 3.012700E-0003
Parameter 3 = 6.415500E-0006
Parameter 4 = -3.150000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 195.410000 [K]
Maximum temperature = 393.150000 [K]
Parameter 1 = -4.221200E+0000
Parameter 2 = 5.021700E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 9.842400E-0003
Parameter 5 = -1.438000E-0005
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 195.410000 [K]
Maximum temperature = 1000.000000 [K]
Parameter 1 = -7.893800E+0000
Parameter 2 = 3.675200E-0001
Parameter 3 = -4.532000E-0006
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 195.410000 [K]
Maximum temperature = 405.650000 [K]
Parameter 1 = 2.057000E +0001
Parameter 2 = 3.005000E+0002
Parameter 3 = 4.056500E+0002
Parameter 4 = 1.102800E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 5. BUTANE (n-)



Poisson ratio
$=1.095$

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right.$ ) and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) : $2.425 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour : 2.425 kg
Volume of 1 kg gas/vapour : 0.412 m 3
Mass of 1 m3 liquid
584.490 kg

Volume of 1000 kg liquid : 1.711 m 3

| Probit constants (Toxicity) |  |  |
| :---: | :---: | :---: |
| A = | 0.000000 | SI units (Kg*s/m3) |
| $\mathrm{B}=$ | 0.000000 | SI units (Kg*s/m3) |
| $\mathrm{N}=$ | 0.000000 | SI units (Kg*s/m3) |
| $A=$ | 0.000000 | (ppm*min) |
| $B=$ | 0.000000 | (ppm*min) |
| $\mathrm{N}=$ | 0.000000 | (ppm*min) |
| A $=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 0.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. 1 rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad(w h e r e C=T c) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=120.000000$ [K]
Maximum temperature $\quad=\quad 400.000000$ [K]
Parameter $1=2.415000 \mathrm{E}-0001$
Parameter $2=2.948000 \mathrm{E}-0001$
Parameter $3=4.252000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 195.000000 [K]
Maximum temperature = 400.000000 [K]
Parameter 1 = 7.300000E+0000
Parameter 2 = -1.200000E+0003
Parameter 3 = 1.000000E-0020
Parameter 4 = 1.000000E-0020
Parameter 5 = 1.000000E-0020
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 200.000000 [K]
Maximum temperature = 500.000000 [K]
Parameter 1 = 9.000000E+0001
Parameter 2 = 2.727000E+0002
Parameter 3 = 4.252000E+0002
Parameter 4 = 3.700000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 120.000000 [K]
Maximum temperature = 400.000000 [K]
Parameter 1 = 3.000000E-0001
Parameter 2 = 2.500000E-0003
Parameter 3 = -1.300000E-0005
Parameter 4 = 2.700000E-0008
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 200.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 2.266000E+0000
Parameter 2 = 7.900000E-0002
Parameter 3 = -2.650000E-0005
Parameter 4 = -6.740000E-0010
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 120.000000 [K]
Maximum temperature = 400.000000 [K]
Parameter 1 = -3.168000E+0000
Parameter 2 = 3.135000E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 1.034000E-0002
Parameter 5 = -2.026000E-0005
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 200.000000 [K]
Maximum temperature = 800.000000 [K]
Parameter 1 = 3.762000E-0001
Parameter 2 = 2.491000E-0001
Parameter 3 = 9.901000E-0006
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 120.000000 [K]
Maximum temperature = 400.000000 [K]
Parameter 1 = 2.200000E+0001
Parameter 2 = 2.250000E+0002
Parameter 3 = 4.252000E+0002
Parameter 4 = 1.198200E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 6. CARBON MONOXIDE

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Jpper flammability limit
Solubility in water

## CARBON MONOXIDE

$=\mathrm{CO}$
$=1016$
$28.010000 \mathrm{~kg} / \mathrm{kmol}$
$132.920000 \mathrm{~K}\left(-140.23{ }^{\circ} \mathrm{C}\right)$ $68.150000 \mathrm{~K}\left(-205.00{ }^{\circ} \mathrm{C}\right)$ $68.150000 \mathrm{~K}\left(-205.00^{\circ} \mathrm{C}\right)$
$81.700000 \mathrm{~K}\left(-191.45{ }^{\circ} \mathrm{C}\right)$
$1.010400 \mathrm{E}+0007 \mathrm{~J} / \mathrm{kg}(2.830130 \mathrm{E}+0008 \mathrm{~J} / \mathrm{kmol})$ $67.050000 \mathrm{~K}\left(-206.10{ }^{\circ} \mathrm{C}\right)$
$12.500000 \mathrm{vol} \mathrm{\%}$ in air
$100.000000 \mathrm{vol} \mathrm{\%}$ in air
$0.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density
Undefined
Vapor pressure
Undefined
Heat of vaporization
Undefined
Liquid heatcapacity
Undefined
Gas heatcapacity (ideal gas)
J/kg*K (1039.53 J/kg*K)
Undefined
Liquid viscosity
Vapor viscosity
$1.668827 \mathrm{E}-0005$
Surface tension
Undefined
Poisson ratio 1.400

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ (1.000 Bar)
Gas density (ideal gas law) :
$1.169 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m3 gas/vapour
1.169 kg
0.855 m 3

Volume of 1 kg gas/vapour
Undefined
Mass of 1 m3 liquid
Undefined

| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 2.321166 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 1.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 1.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{A}=$ | -7.245492 | (ppm*min) |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | -7.400000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 1.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=\quad 68.150000$ [K]
Maximum temperature $=132.920000$ [K]
Parameter $1=2.942500 \mathrm{E}-0001$
Parameter 2 $=2.733800 \mathrm{E}-0001$
Parameter $3=1.329200 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Vapor pressure
Formula Nr. $2 \log (P)=A+B / T+C * \log (T)+D^{*} T+E^{*} T^{\wedge} 2 \quad[m m H g][m m[H g]$
Minimum temperature $\quad=\quad 68.150000[\mathrm{~K}]$
Maximum temperature $\quad=\quad 132.920000$ [K]
Parameter $1=4.611950 \mathrm{E}+0001$
Parameter $2=-7.443300 \mathrm{E}+0002$
Parameter $3=-1.949400 \mathrm{E}+0001$
Parameter $4=3.642400 \mathrm{E}-0002$
Parameter 5 $=2.554400 \mathrm{E}-0005$
Heat of vaporization
Formula $\mathrm{Nr} . \quad 3 \quad \mathrm{Hv}=\mathrm{A} *\left((\mathrm{C}-\mathrm{T}) /(\mathrm{C}-\mathrm{B})^{\wedge} \mathrm{D} \quad(\mathrm{A}=\mathrm{Hv} 1, \mathrm{~B}=\mathrm{T} 1, \mathrm{C}=\mathrm{Tc}) \quad[\mathrm{cal} / \mathrm{g}] \quad[\mathrm{cal} / \mathrm{g}]\right.$
Minimum temperature $\quad=\quad 68.150000$ [K]
Maximum temperature $\quad=\quad 132.920000$ [K]
Parameter $1=4.356000 \mathrm{E}+0001$
Parameter 2 $=1.005000 \mathrm{E}+0002$
Parameter $3=1.329200 \mathrm{E}+0002$
Parameter $4=3.180000 \mathrm{E}-0001$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Liquid heatcapacity
Formula Nr. $4 \quad \mathrm{Cpl}=\mathrm{A}+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{*} \mathrm{~T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3$ [cal/g/K] [cal/g/K]
Minimum temperature $=\quad 68.150000$ [K]
Maximum temperature $\quad=\quad 90.000000$ [K]
Parameter $1=4.702800 \mathrm{E}-0001$
Parameter 2 $=6.002600 \mathrm{E}-0004$
Parameter $3=2.323900 \mathrm{E}-0009$
Parameter $4=-1.043000 \mathrm{E}-0011$
Parameter 5 $=0.000000 \mathrm{E}+0000$

IG heatcapacity
Formula Nr. $5 \quad \mathrm{Cp}=A+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{*} \mathrm{~T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3 \quad[\mathrm{cal} / \mathrm{mol}] \quad[\mathrm{cal} / \mathrm{mol}]$
Minimum temperature $\quad=\quad 170.000000$ [K]
Maximum temperature $=1100.000000$ [K]
Parameter $1=7.045700 \mathrm{E}+0000$
Parameter $2=-1.196000 \mathrm{E}-0003$
Parameter $3=3.472100 \mathrm{E}-0006$
Parameter $4=-1.401000 \mathrm{E}-0009$
Parameter 5 $=0.000000 \mathrm{E}+0000$
Liquid viscosity
Formula Nr. $6 \mathrm{Log}(V i s c)=\mathrm{Ea}+\mathrm{Eb} / \mathrm{T}+\mathrm{Ec}$ *Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature $\quad=\quad 68.550000$ [K]
Maximum temperature $\quad=\quad 131.370000$ [K]
Parameter $1=-1.366300 \mathrm{E}+0000$
Parameter 2 $=6.540800 \mathrm{E}+0001$
Parameter $3=0.000000 \mathrm{E}+0000$
Parameter $4=-2.344000 \mathrm{E}-0003$
Parameter 5 $\quad=-6.416000 \mathrm{E}-0007$

Vapor viscosity
Formula Nr. $7 \quad$ Visc $=A+B * T+C * T^{\wedge} 2$ [microPoise] [microPoise]
Minimum temperature $=68.150000$ [K]
Maximum temperature $\quad=\quad 1250.000000$ [K]
Parameter $1=1.283800 \mathrm{E}+0001$
Parameter $2=5.909900 \mathrm{E}-0001$
Parameter $3 \quad=-1.957000 \mathrm{E}-0004$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Surface Tension
Formula Nr. $8 \quad$ Sigma $=A *((C-T) /(C-B))^{\wedge} D \quad(A=$ Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature $\quad=\quad 68.150000$ [K]
Maximum temperature $\quad=\quad 132.920000$ [K]
Parameter 1 $=5.646000 \mathrm{E}+0000$
Parameter $2=1.005000 \mathrm{E}+0002$
Parameter $3=1.329200 \mathrm{E}+0002$
Parameter $4=1.133000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

CPR 14E
A nnex of the 'Y ellow B ook'

## 7. CARBONDISULFIDE

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Jpper flammability limit
Solubility in water

```
CARBONDISULFIDE
```

CS2
$=1131$
$=\quad 76.140000 \mathrm{~kg} / \mathrm{kmol}$
$=\quad 552.000000 \mathrm{~K}\left(278.85{ }^{\circ} \mathrm{C}\right)$
$161.580000 \mathrm{~K}\left(-111.57{ }^{\circ} \mathrm{C}\right.$
$161.110000 \mathrm{~K}\left(-112.04{ }^{\circ} \mathrm{C}\right)$
$319.380000 \mathrm{~K}\left(46.23^{\circ} \mathrm{C}\right)$
$1.450200 \mathrm{E}+0007 \mathrm{~J} / \mathrm{kg}(1.104182 \mathrm{E}+0009 \mathrm{~J} / \mathrm{kmol})$
$243.150000 \mathrm{~K}\left(-30.00{ }^{\circ} \mathrm{C}\right)$
$1.300000 \mathrm{vol} \mathrm{\%}$ in air
$100.000000 \mathrm{vol} \mathrm{\%}$ in air
$2.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K}\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density $\quad$ ( $267.90 \mathrm{~kg} / \mathrm{m} 3$ )

Vapor pressure
Heat of vaporization
Liquid heatcapacity
Gas heatcapacity (ideal gas)
Liquid viscosity
Vapor viscosity
Surface tension
Poisson ratio
Volume of 1000 kg liquid : 0.789 m 3

| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{A}=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * \mathrm{~B}^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\mathrm{C}=\mathrm{Tc}$ ) [g/cm3] [g/cm3]
Minimum temperature $=161.110000$ [K]
Maximum temperature $=\quad 552.000000$ [K]

Parameter $1=4.302000 \mathrm{E}-0001$
Parameter $2=2.632500 \mathrm{E}-0001$
Parameter 3 $=5.520000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 161.110000 [K]
Maximum temperature = 552.000000 [K]
Parameter 1 = 2.097620E+0001
Parameter 2 = -1.969200E+0003
Parameter 3 = -4.912400E+0000
Parameter 4 = 6.857900E-0004
Parameter 5 = 1.525500E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 161.110000 [K]
Maximum temperature = 552.000000 [K]
Parameter 1 = 8.050000E+0001
Parameter 2 = 3.566000E+0002
Parameter 3 = 5.520000E+0002
Parameter 4 = 2.985000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 163.930000 [K]
Maximum temperature = 552.000000 [K]
Parameter 1 = 1.944500E-0001
Parameter 2 = 5.827900E-0004
Parameter 3 = -2.731000E-0006
Parameter 4 = 4.309600E-0009
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 100.000000 [K]
Maximum temperature = 773.000000 [K]
Parameter 1 = 5.595400E+0000
Parameter 2 = 2.258400E-0002
Parameter 3 = -2.040000E-0005
Parameter 4 = 6.359600E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 235.000000 [K]
Maximum temperature = 320.000000 [K]
Parameter 1 = -3.665800E+0000
Parameter 2 = 6.549200E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 2.539300E-0003
Parameter 5 = 2.896000E-0006
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 273.150000 [K]
Maximum temperature = 582.950000 [K]
Parameter 1 = -7.759100E+0000
Parameter 2 = 3.662400E-0001
Parameter 3 = -2.579000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 161.110000 [K]
Maximum temperature = 552.000000 [K]
Parameter 1 = 2.311000E +0001
Parameter 2 = 3.566000E+0002
Parameter 3 = 5.520000E+0002
Parameter 4 = 1.190900E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 8. CHLORINE

## Material_Name

Molecular formula
CHLORINE
UN number
= C12 1017
Molecular weight
Critical temperature
$=\quad 70.910000 \mathrm{~kg} / \mathrm{kmol}$ $417.150000 \mathrm{~K}\left(144.00{ }^{\circ} \mathrm{C}\right)$ $172.120000 \mathrm{~K}\left(-101.03^{\circ} \mathrm{C}\right)$ $172.120000 \mathrm{~K}\left(-101.03{ }^{\circ} \mathrm{C}\right)$ $239.120000 \mathrm{~K}\left(-34.03{ }^{\circ} \mathrm{C}\right)$
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
$0.000000 \mathrm{E}+0000 \mathrm{~J} / \mathrm{kg}(0.000000 \mathrm{E}+0000 \mathrm{~J} / \mathrm{kmol})$
Lower flammability limit
$0.000000 \mathrm{~K}\left(-273.15{ }^{\circ} \mathrm{C}\right)$
0.000000 vol\% in air

Upper flammability limit
$0.000000 \mathrm{vol} \mathrm{\%}$ in air
Solubility in water
$7.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density
$=1.427436 \mathrm{E}+0003 \mathrm{~kg} / \mathrm{m} 3(1427.44 \mathrm{~kg} / \mathrm{m} 3)$
Vapor pressure
Heat of vaporization
$=5.889504 \mathrm{E}+0005$
$\mathrm{N} / \mathrm{m} 2$ (5.89 Bar )
$=2.565440 \mathrm{E}+0005 \quad \mathrm{~J} / \mathrm{kg}(256544.02 \mathrm{~J} / \mathrm{kg}$
Liquid heatcapacity
$=8.994889 \mathrm{E}+0002 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}(899.49 \mathrm{~J} / \mathrm{kg} * \mathrm{~K})$
Gas heatcapacity (ideal gas)
$=4.714603 \mathrm{E}+0002$
$=3.405445 \mathrm{E}-0004$
J/kg*K (471.46 J/kg*K)
Liquid viscosity
Vapor viscosity $\quad=1.295505 \mathrm{E}-0005 \mathrm{Pa*} \mathrm{~S}$
Surface tension $\quad=1.890329 \mathrm{E}-0002 \mathrm{~N} / \mathrm{m}$
Poisson ratio
$=1.331$

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right.$ ) and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ (1.000 Bar)
Gas density (ideal gas law) : $2.960 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour : 2.960 kg
Volume of 1 kg gas/vapour : 0.338 m 3
Mass of 1 m3 liquid
1427.436 kg

Volume of 1000 kg liquid : 0.701 m 3

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 10.599000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{B}=$ | 0.500000 | SI units (Kg*s/m3) |
| $\mathrm{N}=$ | 2.750000 | SI units (Kg*s/m3) |
| A $=$ | -4.860538 | (ppm*min) |
| $\mathrm{B}=$ | 0.500000 | (ppm*min) |
| $\mathrm{N}=$ | 2.750000 | (ppm*min) |
| A $=$ | -6.350155 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.500000 | (mg*min/m3) |
| $\mathrm{N}=$ | 2.750000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. 1 rho $=A * \mathrm{~B}^{\wedge}-\left((1-\mathrm{T} / \mathrm{C})^{\wedge} 2 / 7\right) \quad$ (where $\mathrm{C}=\mathrm{Tc}$ ) [g/cm3] [g/cm3]
Minimum temperature $=172.120000$ [K]
Maximum temperature $\quad=\quad 417.150000$ [K]
Parameter $1=5.624400 \mathrm{E}-0001$
Parameter $2=2.718800 \mathrm{E}-0001$
Parameter $3=4.171500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Vapor pressure
Formula Nr. $2 \log (P)=A+B / T+C * \log (T)+D^{*} T+E * T \wedge 2 \quad[m m H g][m m[H g]$
Minimum temperature $\quad=\quad 172.120000[\mathrm{~K}]$
Maximum temperature $\quad=\quad 417.150000$ [K]
Parameter $1 \quad=2.275110 \mathrm{E}+0001$
Parameter 2 $=-1.570600 \mathrm{E}+0003$
Parameter $3=-5.743400 \mathrm{E}+0000$
Parameter $4=8.377100 \mathrm{E}-0004$
Parameter 5 $=2.769700 \mathrm{E}-0006$
Heat of vaporization
Formula $\mathrm{Nr} . \quad 3 \quad \mathrm{Hv}=\mathrm{A} *\left((\mathrm{C}-\mathrm{T}) /(\mathrm{C}-\mathrm{B})^{\wedge} \mathrm{D} \quad(\mathrm{A}=\mathrm{Hv} 1, \mathrm{~B}=\mathrm{T} 1, \mathrm{C}=\mathrm{Tc}) \quad[\mathrm{cal} / \mathrm{g}] \quad[\mathrm{cal} / \mathrm{g}]\right.$
Minimum temperature $\quad=\quad 172.120000$ [K]
Maximum temperature $\quad=\quad 417.150000$ [K]
Parameter $1=6.010000 \mathrm{E}+0001$
Parameter 2 $=2.946000 \mathrm{E}+0002$
Parameter $3=4.171500 \mathrm{E}+0002$
Parameter $4=3.810400 \mathrm{E}-0001$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Liquid heatcapacity
Formula Nr. $4 \quad \mathrm{Cpl}=\mathrm{A}+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{*} \mathrm{~T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3 \quad[\mathrm{cal} / \mathrm{g} / \mathrm{K}] \quad[\mathrm{cal} / \mathrm{g} / \mathrm{K}]$
Minimum temperature $=172.000000$ [K]
Maximum temperature $\quad=\quad 353.000000$ [K]
Parameter 1 $=2.175900 \mathrm{E}-0001$
Parameter $2=1.240400 \mathrm{E}-0004$
Parameter $3=-3.898000 \mathrm{E}-0007$
Parameter $4=-2.544000 \mathrm{E}-0010$
Parameter 5 $=0.000000 \mathrm{E}+0000$

IG heatcapacity
Formula Nr. $5 \quad \mathrm{Cp}=A+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{*} \mathrm{~T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3$ [cal/mol] [cal/mol]
Minimum temperature $\quad=\quad 100.000000$ [K]
Maximum temperature $\quad=\quad 773.000000$ [K]
Parameter $1=6.351200 \mathrm{E}+0000$
Parameter 2 $=7.605900 \mathrm{E}-0003$
Parameter $3 \quad=-7.389000 \mathrm{E}-0006$
Parameter $4=2.387200 \mathrm{E}-0009$
Parameter 5 $=0.000000 \mathrm{E}+0000$
Liquid viscosity
Formula Nr. $6 \mathrm{Log}(V i s c)=\mathrm{Ea}+\mathrm{Eb} / \mathrm{T}+\mathrm{Ec}$ *Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature $\quad=\quad 190.000000$ [K]
Maximum temperature $\quad=\quad 300.000000$ [K]
Parameter $1=-7.674200 \mathrm{E}+0000$
Parameter 2 $=6.904900 \mathrm{E}+0002$
Parameter $3=0.000000 \mathrm{E}+0000$
Parameter $4=2.860800 \mathrm{E}-0002$
Parameter 5 $\quad=-4.135000 \mathrm{E}-0005$

Vapor viscosity
Formula Nr. 7 Visc $=A+B * T+C^{*} T^{\wedge} 2$ [microPoise] [microPoise]
Minimum temperature $=200.000000$ [K]
Maximum temperature $\quad=\quad 1000.000000$ [K]
Parameter $1 \quad=-5.394300 \mathrm{E}+0000$
Parameter $2=4.949800 \mathrm{E}-0001$
Parameter $3=-9.254000 \mathrm{E}-0005$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Surface Tension
Formula Nr. 8 Sigma $=A *((C-T) /(C-B))^{\wedge} D \quad(A=$ Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature $\quad=\quad 172.120000$ [K]
Maximum temperature $\quad=\quad 417.150000$ [K]
Parameter 1 $=1.788000 \mathrm{E}+0001$
Parameter $2=2.946000 \mathrm{E}+0002$
Parameter $3=4.171500 \mathrm{E}+0002$
Parameter $4=1.085000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

CPR 14E
A nnex of the 'Y ellow B ook'

## 9. ETHENE

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Upper flammability limit
Solubility in water


Temperature dependent data (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density $=\quad$ Undefined

## Vapor pressure

 UndefinedHeat of vaporization Undefined
Liquid heatcapacity Undefined
Gas heatcapacity (ideal gas)
$1.540338 \mathrm{E}+0003 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}(1540.34 \mathrm{~J} / \mathrm{kg} * \mathrm{~K})$
Liquid viscosity
Undefined
Vapor viscosity
9.812499E-0006 Pa*s

Surface tension Undefined
Poisson ratio
1.238

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) :
$1.171 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour
1.171 kg
0.854 m 3

Volume of 1 kg gas/vapour
Undefined
Mass of 1 m3 liquid
Undefined

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{B}=$ | 0.000000 | SI units ( $\left.\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $A=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | (ppm*min) |
| $\mathrm{N}=$ | 0.000000 | (ppm*min) |
| $A=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 0.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=103.800000$ [K]
Maximum temperature $=282.900000$ [K]
Parameter $1=2.118000 \mathrm{E}-0001$
Parameter $2=2.784000 \mathrm{E}-0001$
Parameter $3=2.829000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 104.000000 [K]
Maximum temperature = 283.100000 [K]
Parameter 1 = 3.089500E+0001
Parameter 2 = -1.196800E+0003
Parameter 3 = -1.015300E+0001
Parameter 4 = 9.935100E-0003
Parameter 5 = 0.000000E+0000
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 103.800000 [K]
Maximum temperature = 282.900000 [K]
Parameter 1 = 1.154000E+0002
Parameter 2 = 1.693000E+0002
Parameter 3 = 2.829000E+0002
Parameter 4 = 3.800000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 104.000000 [K]
Maximum temperature = 233.000000 [K]
Parameter 1 = 3.402000E-0001
Parameter 2 = 6.218000E-0003
Parameter 3 = -5.012000E-0005
Parameter 4 = 1.263000E-0007
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 9.340000E-0001
Parameter 2 = 3.690000E-0002
Parameter 3 = -1.930000E-0005
Parameter 4 = 4.010000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 103.800000 [K]
Maximum temperature = 282.900000 [K]
Parameter 1 = -7.706000E+0000
Parameter 2 = 4.681000E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 3.725000E-0002
Parameter 5 = -7.633000E-0005
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 173.000000 [K]
Maximum temperature = 1073.000000 [K]
Parameter 1 = 3.586000E+0000
Parameter 2 = 3.513000E-0001
Parameter 3 = -8.055000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 103.800000 [K]
Maximum temperature = 282.900000 [K]
Parameter 1 = 1.952000E +0001
Parameter 2 = 1.530000E+0002
Parameter 3 = 2.829000E+0002
Parameter 4 = 1.276000E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 10. GASOLINE



| Functions (calculated at 288.15 K | $\left(15.00{ }^{\circ} \mathrm{C}\right)$ | and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ | (1.000 Bar) |
| :--- | :--- | :---: | :--- |
| Gas density (ideal gas law) | ( $1.000 \mathrm{~kg} / \mathrm{m} 3$ |  |  |
| Mass of 1 m 3 gas/vapour | $:$ | 4.800 kg |  |
| Volume of 1 kg gas/vapour | $:$ | 0.208 m 3 |  |
| Mass of 1 m 3 liquid | $:$ | 740.377 kg |  |
| Volume of 1000 kg liquid | $:$ | 1.351 m 3 |  |


| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{A}=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{A}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. 1 rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=273.000000$ [K]
Maximum temperature $=330.000000$ [K]
Parameter $1=3.010000 \mathrm{E}-0001$
Parameter 2 $=3.070000 \mathrm{E}-0001$
Parameter $3=4.697000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 263.000000 [K]
Maximum temperature = 343.000000 [K]
Parameter 1 = -1.137520E+0001
Parameter 2 = 0.000000E+0000
Parameter 3 = 0.000000E+0000
Parameter 4 = 7.820000E-0002
Parameter 5 = -1.042000E-0004
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 260.000000 [K]
Maximum temperature = 470.000000 [K]
Parameter 1 = 8.361200E+0001
Parameter 2 = 3.130000E+0002
Parameter 3 = 4.697000E+0002
Parameter 4 = 3.800000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 240.000000 [K]
Maximum temperature = 330.000000 [K]
Parameter 1 = 2.713000E-0001
Parameter 2 = 1.000000E-0003
Parameter 3 = -4.212800E-0007
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 200.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 3.077910E+0000
Parameter 2 = 9.977430E-0002
Parameter 3 = -4.079680E-0005
Parameter 4 = 5.303310E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 273.000000 [K]
Maximum temperature = 330.000000 [K]
Parameter 1 = 2.233000E+0000
Parameter 2 = 0.000000E+0000
Parameter 3 = 0.000000E+0000
Parameter 4 = -1.310000E-0002
Parameter 5 = 1.430000E-0005
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 250.000000 [K]
Maximum temperature = 600.000000 [K]
Parameter 1 = -8.111910E+0000
Parameter 2 = 2.729870E-0001
Parameter 3 = -5.576810E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 273.000000 [K]
Maximum temperature = 330.000000 [K]
Parameter 1 = 1.900000E +0001
Parameter 2 = 2.930000E+0002
Parameter 3 = 4.697000E+0002
Parameter 4 = 1.200000E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 11. HYDROGEN

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Jpper flammability limit
Solubility in water
= HYDROGEN
$=\mathrm{H} 2$
$\begin{array}{lr}= & 1049 \\ = & 2.016000 \mathrm{~kg} / \mathrm{kmol}\end{array}$
$2.016000 \mathrm{~kg} / \mathrm{kmol}$
$32.800000 \mathrm{~K}\left(-240.35{ }^{\circ} \mathrm{C}\right)$
$14.000000 \mathrm{~K}\left(-259.15{ }^{\circ} \mathrm{C}\right)$
$13.947000 \mathrm{~K}\left(-259.20^{\circ} \mathrm{C}\right)$
$19.200000 \mathrm{~K}\left(-253.95{ }^{\circ} \mathrm{C}\right)$
$1.419000 \mathrm{E}+0008 \mathrm{~J} / \mathrm{kg}(2.860704 \mathrm{E}+0008 \mathrm{~J} / \mathrm{kmol})$
$12.900000 \mathrm{~K}\left(-260.25{ }^{\circ} \mathrm{C}\right)$
4.000000 vol\% in air
100.000000 vol\% in air
$0.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K}\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density $=\quad$ Undefined
Vapor pressure
Undefined
Heat of vaporization
Undefined
Liquid heatcapacity
Undefined
Gas heatcapacity (ideal gas)
$1.431780 \mathrm{E}+0004 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}$ (14317.81 J/kg*K)
Undefined
Liquid viscosity
$8.272483 \mathrm{E}-0006$

Undefined
Poisson ratio
1.405

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ (1.000 Bar)
Gas density (ideal gas law) :
$0.084 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m3 gas/vapour
0.084 kg

Volume of 1 kg gas/vapour
11.884 m 3

Mass of 1 m3 liquid
Undefined
Volume of 1000 kg liquid : Undefined

| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 0.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{A}=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=13.600000$ [K]
Maximum temperature $=32.800000$ [K]
Parameter $1=3.150000 \mathrm{E}-0002$
Parameter 2 $=3.473000 \mathrm{E}-0001$
Parameter $3=3.280000 \mathrm{E}+0001$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 13.600000 [K]
Maximum temperature = 32.800000 [K]
Parameter 1 = 5.236600E+0000
Parameter 2 = -4.628000E+0001
Parameter 3 = -4.480900E-0001
Parameter 4 = 2.529000E-0002
Parameter 5 = 0.000000E+0000
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 13.600000 [K]
Maximum temperature = 32.800000 [K]
Parameter 1 = 1.070000E+0002
Parameter 2 = 2.020000E+0001
Parameter 3 = 3.280000E+0001
Parameter 4 = 2.370000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 13.600000 [K]
Maximum temperature = 28.000000 [K]
Parameter 1 = 3.790000E+0000
Parameter 2 = -3.298000E-0001
Parameter 3 = 1.217090E-0002
Parameter 4 = -2.434800E-0006
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 6.880000E+0000
Parameter 2 = -2.200000E-0005
Parameter 3 = 2.100000E-0007
Parameter 4 = 1.300000E-0010
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 13.600000 [K]
Maximum temperature = 32.800000 [K]
Parameter 1 = -4.857000E+0000
Parameter 2 = 2.513000E+0001
Parameter 3 = 0.000000E+0000
Parameter 4 = 1.409000E-0001
Parameter 5 = -2.773000E-0003
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 113.000000 [K]
Maximum temperature = 1473.000000 [K]
Parameter 1 = 2.187000E+0001
Parameter 2 = 2.220000E-0001
Parameter 3 = -3.751000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 13.600000 [K]
Maximum temperature = 32.800000 [K]
Parameter 1 = 2.410000E+0000
Parameter 2 = 1.700000E+0001
Parameter 3 = 3.280000E+0001
Parameter 4 = 1.101200E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 12. HYDROGEN CHLORIDE

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Upper flammability limit
Solubility in water

HYDROGEN CHLORIDE
HCl
$=1050$
$=\quad 36.460000 \mathrm{~kg} / \mathrm{kmol}$
$324.650000 \mathrm{~K}\left(51.50{ }^{\circ} \mathrm{C}\right)$
$158.970000 \mathrm{~K}\left(-114.18{ }^{\circ} \mathrm{C}\right)$
$158.970000 \mathrm{~K}\left(-114.18{ }^{\circ} \mathrm{C}\right)$
$188.150000 \mathrm{~K}\left(-85.00{ }^{\circ} \mathrm{C}\right)$
$7.844600 \mathrm{E}+0005 \mathrm{~J} / \mathrm{kg}(2.860141 \mathrm{E}+0007 \mathrm{~J} / \mathrm{kmol})$
$0.000000 \mathrm{~K}\left(-273.15{ }^{\circ} \mathrm{C}\right)$
0.000000 vol\% in air
$0.000000 \mathrm{vol} \mathrm{\%}$ in air
$720.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K}\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density $\begin{aligned} & =8.469085 \mathrm{E}+0002\end{aligned}$
$\mathrm{kg} / \mathrm{m} 3$ ( $846.91 \mathrm{~kg} / \mathrm{m} 3$ )
Vapor pressure
$=3.728652 \mathrm{E}+0006 \mathrm{~N} / \mathrm{m} 2$ (37.29 Bar )
Heat of vaporization
$=2.757109 \mathrm{E}+0005$
$\mathrm{J} / \mathrm{kg}(275710.86 \mathrm{~J} / \mathrm{kg}$
Liquid heatcapacity
$\mathrm{J} / \mathrm{kg}$ *K (1753.94 J/kg*K)
Gas heatcapacity (ideal gas)
$=7.957981 \mathrm{E}+0002$

- $9.022553 \mathrm{E}-0005$

J/kg*K (795.80 J/kg*K)
Liquid viscosity
Vapor viscosity
$=1.413966 \mathrm{E}-0005$
Surface tension
$=5.004225 \mathrm{E}-0003 \mathrm{~N} / \mathrm{m}$
Poisson ratio
$=1.402$

Functions (calculated at $288.15 \mathrm{~K}\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) : $1.522 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour 1.522 kg

Volume of 1 kg gas/vapour
0.657 m 3

Mass of 1 m3 liquid
846.909 kg

Volume of 1000 kg liquid : 1.181 m 3

| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | -1.428900 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 3.690000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 1.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
|  |  |  |
| $\mathrm{A}=$ | -35.756985 | (ppm*min) |
| $\mathrm{B}=$ | 3.690000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | -37.300003 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 3.690000 | $\left(\mathrm{mg}^{*} \mathrm{~min} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 1.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=158.970000$ [K]
Maximum temperature $=324.650000$ [K]
Parameter $1=4.023500 \mathrm{E}-0001$
Parameter $2=2.491600 \mathrm{E}-0001$
Parameter 3 = $=3.246500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Vapor pressure
Formula Nr. $2 \log (P)=A+B / T+C * \log (T)+D^{*} T+E^{*} T^{\wedge} 2 \quad[\mathrm{~mm} \mathrm{Hg}][\mathrm{mm} \mathrm{Hg}]$
Minimum temperature $\quad=\quad 158.970000[\mathrm{~K}]$
Maximum temperature $\quad=\quad 324.650000$ [K]
Parameter $1=3.085270 \mathrm{E}+0001$
Parameter 2 $=-1.435900 \mathrm{E}+0003$
Parameter $3=-9.269400 \mathrm{E}+0000$
Parameter $4=2.414900 \mathrm{E}-0003$
Parameter 5 $=8.196100 \mathrm{E}-0006$
Heat of vaporization
Formula $\mathrm{Nr} . \quad 3 \quad \mathrm{Hv}=\mathrm{A} *\left((\mathrm{C}-\mathrm{T}) /(\mathrm{C}-\mathrm{B})^{\wedge} \mathrm{D} \quad(\mathrm{A}=\mathrm{Hv} 1, \mathrm{~B}=\mathrm{T} 1, \mathrm{C}=\mathrm{Tc}) \quad[\mathrm{cal} / \mathrm{g}] \quad[\mathrm{cal} / \mathrm{g}]\right.$
Minimum temperature $\quad=\quad 158.970000$ [K]
Maximum temperature $\quad=\quad 324.650000$ [K]
Parameter $1=9.041000 \mathrm{E}+0001$
Parameter 2 $=2.418000 \mathrm{E}+0002$
Parameter $3=3.246500 \mathrm{E}+0002$
Parameter $4=3.864100 \mathrm{E}-0001$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Liquid heatcapacity
Formula Nr. $4 \quad \mathrm{Cpl}=\mathrm{A}+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{*} \mathrm{~T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3 \quad[\mathrm{cal} / \mathrm{g} / \mathrm{K}] \quad[\mathrm{cal} / \mathrm{g} / \mathrm{K}]$
Minimum temperature $=165.000000$ [K]
Maximum temperature $\quad=\quad 185.000000$ [K]
Parameter 1 $=3.101300 \mathrm{E}-0001$
Parameter $2=5.859200 \mathrm{E}-0004$
Parameter $3=2.148400 \mathrm{E}-0008$
Parameter $4=-4.085000 \mathrm{E}-0011$
Parameter 5 $=0.000000 \mathrm{E}+0000$

IG heatcapacity
Formula Nr. $5 \quad \mathrm{Cp}=A+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{*} \mathrm{~T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3$ [cal/mol] [cal/mol]
Minimum temperature $\quad=\quad 273.000000$ [K]
Maximum temperature $=1500.000000$ [K]
Parameter $1=7.075800 \mathrm{E}+0000$
Parameter 2 $=-1.102000 \mathrm{E}-0003$
Parameter $3=2.292800 \mathrm{E}-0006$
Parameter $4=-7.206000 \mathrm{E}-0010$
Parameter 5 $=0.000000 \mathrm{E}+0000$
Liquid viscosity
Formula Nr. $6 \mathrm{Log}(V i s c)=\mathrm{Ea}+\mathrm{Eb} / \mathrm{T}+\mathrm{Ec}$ *Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature $\quad=\quad 233.150000$ [K]
Maximum temperature $\quad=\quad 313.150000$ [K]
Parameter $1=2.002600 \mathrm{E}+0000$
Parameter 2 $=-2.604000 \mathrm{E}+0002$
Parameter $3=0.000000 \mathrm{E}+0000$
Parameter $4 \quad=-5.924000 \mathrm{E}-0003$
Parameter 5 $\quad=-5.258000 \mathrm{E}-0006$

Vapor viscosity
Formula Nr. 7 Visc $=A+B^{*} T+C^{*} T^{\wedge} 2$ [microPoise] [microPoise]
Minimum temperature $\quad=\quad 200.000000$ [K]
Maximum temperature $\quad=\quad 1000.000000$ [K]
Parameter $1 \quad=-1.125000 \mathrm{E}+0001$
Parameter $2=5.642100 \mathrm{E}-0001$
Parameter $3=-1.196000 \mathrm{E}-0004$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Surface Tension
Formula Nr. $8 \quad$ Sigma $=A *((C-T) /(C-B))^{\wedge} D \quad(A=$ Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature $\quad=\quad 158.970000$ [K]
Maximum temperature $\quad=\quad 324.650000$ [K]
Parameter 1 $=1.449000 \mathrm{E}+0001$
Parameter $2=2.418000 \mathrm{E}+0002$
Parameter $3=3.246500 \mathrm{E}+0002$
Parameter $4=1.297000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

CPR 14E
A nnex of the 'Y ellow B ook'
13. HYDROGEN CYANIDE

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Upper flammability limit
Solubility in water
= HYDROGEN CYANIDE
= HCN
$=1051$
$27.030000 \mathrm{~kg} / \mathrm{kmol}$ $456.650000 \mathrm{~K}\left(183.50{ }^{\circ} \mathrm{C}\right)$ $259.910000 \mathrm{~K}\left(-13.24{ }^{\circ} \mathrm{C}\right)$ $259.830000 \mathrm{~K}\left(-13.32{ }^{\circ} \mathrm{C}\right)$ $298.850000 \mathrm{~K}\left(25.70{ }^{\circ} \mathrm{C}\right)$
$2.306300 \mathrm{E}+0007 \mathrm{~J} / \mathrm{kg}(6.233929 \mathrm{E}+0008 \mathrm{~J} / \mathrm{kmol})$ $255.370000 \mathrm{~K}\left(-17.78{ }^{\circ} \mathrm{C}\right)$
6.000000 vol\% in air 100.000000 vol\% in air $100.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$
$\begin{aligned} \text { Liquid density } & =\quad 6.945373 \mathrm{E}+0002\end{aligned}$ $\mathrm{kg} / \mathrm{m} 3 \quad(694.54 \mathrm{~kg} / \mathrm{m} 3)$
Vapor pressure
Heat of vaporization
$=6.945373 \mathrm{E}+0002$
$\mathrm{N} / \mathrm{m} 2$ (0.67 Bar )
$=1.048359 \mathrm{E}+0006 \mathrm{~J} / \mathrm{kg}(1048359.52 \mathrm{~J} / \mathrm{kg}$
Liquid heatcapacity
$=2.616330 \mathrm{E}+0003 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}(2616.33 \mathrm{~J} / \mathrm{kg} * \mathrm{~K})$
Gas heatcapacity (ideal gas)
$=1.311660 \mathrm{E}+0003$

- 2.011130 E 0004
$\mathrm{J} / \mathrm{kg}$ *K (1311.66 J/kg*K)
Liquid viscosity
Pa*S
Vapor viscosity $\quad=2.574882 \mathrm{E}-0006$
Surface tension $=1.888982 \mathrm{E}-0002 \mathrm{~N} / \mathrm{m}$
Poisson ratio
$=1.306$

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) : $1.128 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour
1.128 kg

Volume of 1 kg gas/vapour
0.886 m 3

Mass of 1 m3 liquid
694.537 kg

Volume of 1000 kg liquid : 1.440 m 3

| Probit constants (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 19.262881 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| B | 1.000000 | SI units ( $\left.\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 2.400000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $A=$ | -9.514656 | (ppm*min) |
| $\mathrm{B}=$ | 1.000000 | (ppm*min) |
| $\mathrm{N}=$ | 2.400000 | (ppm*min) |
| $A=$ | -9.800000 | (mg*min/m3) |
| B $=$ | 1.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 2.400000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=259.830000$ [K]
Maximum temperature $=\quad 456.650000$ [K]
Parameter $1=1.974900 \mathrm{E}-0001$
Parameter $2=1.878700 \mathrm{E}-0001$
Parameter 3 $=4.566500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 259.830000 [K]
Maximum temperature = 456.650000 [K]
Parameter 1 = 2.928310E+0001
Parameter 2 = -2.196200E+0003
Parameter 3 = -7.854800E+0000
Parameter 4 = -4.266000E-0004
Parameter 5 = 5.813000E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 259.830000 [K]
Maximum temperature = 456.650000 [K]
Parameter 1 = 2.177000E+0002
Parameter 2 = 3.582000E+0002
Parameter 3 = 4.566500E+0002
Parameter 4 = 2.607400E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 259.830000 [K]
Maximum temperature = 298.850000 [K]
Parameter 1 = 8.024300E-0001
Parameter 2 = -1.307000E-0003
Parameter 3 = 1.857500E-0006
Parameter 4 = 1.879700E-0009
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 100.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 5.683800E+0000
Parameter 2 = 1.154300E-0002
Parameter 3 = -7.027000E-0006
Parameter 4 = 1.807300E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 259.850000 [K]
Maximum temperature = 298.150000 [K]
Parameter 1 = -2.410000E+0000
Parameter 2 = 4.335200E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 4.523200E-0004
Parameter 5 = 9.467600E-0007
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 300.000000 [K]
Maximum temperature = 425.000000 [K]
Parameter 1 = -8.391300E+0000
Parameter 2 = 8.982500E-0002
Parameter 3 = 7.991800E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 259.830000 [K]
Maximum temperature = 456.650000 [K]
Parameter 1 = 1.092000E +0001
Parameter 2 = 3.582000E+0002
Parameter 3 = 4.566500E+0002
Parameter 4 = 1.019800E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'
14. HYDROGEN FLUORIDE

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Upper flammability limit
Solubility in water

## HYDROGEN FLUORIDE

$=\mathrm{HF}$
$=\quad 1052$
$461.150000 \mathrm{~K}\left(188.00{ }^{\circ} \mathrm{C}\right)$ $189.790000 \mathrm{~K} \quad\left(-83.36{ }^{\circ} \mathrm{C}\right)$ $189.790000 \mathrm{~K}\left(-83.36^{\circ} \mathrm{C}\right)$ $292.670000 \mathrm{~K}\left(19.52{ }^{\circ} \mathrm{C}\right)$
$1.811600 \mathrm{E}+0003 \mathrm{~J} / \mathrm{kg} \quad(3.625012 \mathrm{E}+0004 \mathrm{~J} / \mathrm{kmol})$ $0.000000 \mathrm{~K}\left(-273.15{ }^{\circ} \mathrm{C}\right)$
0.000000 vol\% in air
0.000000 vol\% in air
$1000.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$
$=9.672703 \mathrm{E}+0002 \mathrm{~kg} / \mathrm{m} 3(967.27 \mathrm{~kg} / \mathrm{m} 3)$

Vapor pressure
$\mathrm{N} / \mathrm{m} 2$ (0.86 Bar )
Hiquid heatcapacity
$=3.783930 \mathrm{E}+0005 \quad \mathrm{~J} / \mathrm{kg}(378393.05 \mathrm{~J} / \mathrm{kg}$

Gas heatcapacity (ideal gas)
J/kg*K (2489.28 J/kg*K)
$=1.453429 \mathrm{E}+0003$

- $2.225353 \mathrm{E}-0004$

J/kg*K (1453.43 J/kg*K)
Liquid viscosity
Vapor viscosity
$=1.071795 \mathrm{E}-0005$
Surface tension
$=9.138491 \mathrm{E}-0003$
N/m
Poisson ratio
$=1.400$

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ (1.000 Bar)
Gas density (ideal gas law) :
$0.835 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m3 gas/vapour
0.835 kg

Volume of 1 kg gas/vapour
1.197 m 3

Mass of 1 m3 liquid
967.270 kg

Volume of 1000 kg liquid : 1.034 m 3

| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 8.228900 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 1.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 1.500000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{A}=$ | -8.672754 | (ppm*min) |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 1.500000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | -8.400021 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 1.500000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * \mathrm{~B}^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\mathrm{C}=\mathrm{Tc}$ ) [g/cm3] [g/cm3]
Minimum temperature $=189.790000$ [K]
Maximum temperature $=\quad 461.150000$ [K]
Parameter $1=2.067800 \mathrm{E}-0001$
Parameter 2 $=1.298200 \mathrm{E}-0001$
Parameter $3 \quad=4.611500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 189.790000 [K]
Maximum temperature = 461.150000 [K]
Parameter 1 = 2.515930E+0001
Parameter 2 = -1.825500E+0003
Parameter 3 = -6.813000E+0000
Parameter 4 = 9.564300E-0004
Parameter 5 = 5.614500E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 181.000000 [K]
Maximum temperature = 461.000000 [K]
Parameter 1 = 8.948400E+0001
Parameter 2 = 2.927000E+0002
Parameter 3 = 4.611500E+0002
Parameter 4 = 3.800000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 189.790000 [K]
Maximum temperature = 292.670000 [K]
Parameter 1 = 3.073600E-0001
Parameter 2 = 9.971000E-0004
Parameter 3 = -1.234000E-0010
Parameter 4 = 1.820400E-0013
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 50.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 7.007700E+0000
Parameter 2 = -3.707000E-0004
Parameter 3 = 5.620500E-0007
Parameter 4 = 6.758700E-0012
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 204.000000 [K]
Maximum temperature = 292.670000 [K]
Parameter 1 = -4.619600E+0000
Parameter 2 = 7.528000E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 3.704700E-0003
Parameter 5 = 3.456100E-0006
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 285.500000 [K]
Maximum temperature = 472.680000 [K]
Parameter 1 = -2.158700E+0002
Parameter 2 = 1.513000E+0000
Parameter 3 = -1.360000E-0003
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 189.790000 [K]
Maximum temperature = 461.150000 [K]
Parameter 1 = 6.482000E +0000
Parameter 2 = 3.255000E+0002
Parameter 3 = 4.611500E+0002
Parameter 4 = 1.412200E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'
15. HYDROGEN SULFIDE

Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Upper flammability limit
Solubility in water

```
HYDROGEN SULFIDE
```

= H2S
$=1053$
$=\quad 34.080000 \mathrm{~kg} / \mathrm{kmol}$
$373.530000 \mathrm{~K}\left(100.38{ }^{\circ} \mathrm{C}\right)$
$187.680000 \mathrm{~K}\left(-85.47{ }^{\circ} \mathrm{C}\right)$
$187.450000 \mathrm{~K}\left(-85.70{ }^{\circ} \mathrm{C}\right)$
$212.800000 \mathrm{~K}\left(-60.35{ }^{\circ} \mathrm{C}\right)$
$1.810300 \mathrm{E}+0007 \mathrm{~J} / \mathrm{kg}(6.169502 \mathrm{E}+0008 \mathrm{~J} / \mathrm{kmol})$
$166.400000 \mathrm{~K}\left(-106.75{ }^{\circ} \mathrm{C}\right)$
4.300000 vol\% in air
$100.000000 \mathrm{vol} \mathrm{\%}$ in air
$6.000000 \mathrm{~kg} / \mathrm{m} 3$
Temperature dependent data (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density $=7.998392 \mathrm{E}+0002 \mathrm{~kg}$

Vapor pressure
Heat of vaporization
Liquid heatcapacity
Gas heatcapacity (ideal gas)
Liquid viscosity
Vapor viscosity
Surface tension
Poisson ratio

## $\mathrm{kg} / \mathrm{m} 3$ (799.84 kg/m3 )

$=1.617544 \mathrm{E}+0006 \quad \mathrm{~N} / \mathrm{m} 2$ (16.18 Bar )
$=4.372398 \mathrm{E}+0005 \mathrm{~J} / \mathrm{kg}(437239.84 \mathrm{~J} / \mathrm{kg})$
$=2.012115 \mathrm{E}+0003 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}(2012.11 \mathrm{~J} / \mathrm{kg} * \mathrm{~K})$
$=1.006428 \mathrm{E}+0003 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}(1006.43 \mathrm{~J} / \mathrm{kg} * \mathrm{~K})$
$=4.036770 \mathrm{E}-0004 \quad \mathrm{~Pa} * \mathrm{~S}$
$=1.216139 \mathrm{E}-0005 \mathrm{~Pa} * \mathrm{~S}$
$=1.071192 \mathrm{E}-0002 \mathrm{~N} / \mathrm{m}$
$=1.320$

Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ (1.000 Bar)
Gas density (ideal gas law) : $1.422 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour
1.422 kg

Volume of 1 kg gas/vapour
0.703 m 3

Mass of 1 m3 liquid
799.839 kg

Volume of 1000 kg liquid : 1.250 m 3

| Probit | constants | (Toxicity) |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 10.655125 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{B}=$ | 1.000000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 1.900000 | SI units $\left(\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
|  |  |  |
| $\mathrm{A}=$ | -10.833752 | (ppm*min) |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 1.900000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | -11.500000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 1.000000 | $\left(\mathrm{mg}^{*} \mathrm{~min} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 1.900000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=187.680000$ [K]
Maximum temperature $=373.530000$ [K]
Parameter $1=3.483400 \mathrm{E}-0001$
Parameter $2=2.816100 \mathrm{E}-0001$
Parameter $3=3.735300 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 187.680000 [K]
Maximum temperature = 373.530000 [K]
Parameter 1 = 2.003420E+0001
Parameter 2 = -1.368500E+0003
Parameter 3 = -4.737200E+0000
Parameter 4 = 1.039000E-0003
Parameter 5 = 1.823500E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 187.680000 [K]
Maximum temperature = 373.530000 [K]
Parameter 1 = 1.079000E+0002
Parameter 2 = 2.806000E+0002
Parameter 3 = 3.735300E+0002
Parameter 4 = 3.831800E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 191.480000 [K]
Maximum temperature = 208.150000 [K]
Parameter 1 = 4.097300E-0001
Parameter 2 = 2.715900E-0004
Parameter 3 = 3.012300E-0007
Parameter 4 = 1.513100E-0010
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 100.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 7.757300E+0000
Parameter 2 = 1.405700E-0004
Parameter 3 = 5.461200E-0006
Parameter 4 = -2.403000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 190.120000 [K]
Maximum temperature = 223.180000 [K]
Parameter 1 = -4.638800E+0000
Parameter 2 = 5.337700E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 7.180400E-0003
Parameter 5 = 5.032300E-0006
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 230.000000 [K]
Maximum temperature = 570.000000 [K]
Parameter 1 = -1.511200E+0001
Parameter 2 = 5.113500E-0001
Parameter 3 = -1.279000E-0004
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 187.680000 [K]
Maximum temperature = 373.530000 [K]
Parameter 1 = 1.194000E+0001
Parameter 2 = 2.806000E+0002
Parameter 3 = 3.735300E+0002
Parameter 4 = 1.280900E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'
16. METHANE


Temperature dependent data (Parameters):
Liquid density
Formula Nr. 1 rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right)$ (where $\left.C=T C\right) \quad[\mathrm{g} / \mathrm{cm} 3] \quad[\mathrm{g} / \mathrm{cm} 3]$
Minimum temperature $=90.40000$ [K]
Maximum temperature = 190.400000 [K]
Parameter $1=1.611000 \mathrm{E}-0001$
Parameter $2=2.877000 \mathrm{E}-0001$
Parameter $3=1.904000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter $5=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 90.800000 [K]
Maximum temperature = 191.100000 [K]
Parameter 1 = 2.257300E+0001
Parameter 2 = -6.562400E+0002
Parameter 3 = -7.394200E+0000
Parameter 4 = 1.189600E-0002
Parameter 5 = 0.000000E +0000
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 90.400000 [K]
Maximum temperature = 190.400000 [K]
Parameter 1 = 1.217000E+0002
Parameter 2 = 1.115000E+0002
Parameter 3 = 1.904000E+0002
Parameter 4 = 3.800000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 90.400000 [K]
Maximum temperature = 163.000000 [K]
Parameter 1 = 1.230000E+0000
Parameter 2 = -1.033000E-0002
Parameter 3 = 7.200000E-0005
Parameter 4 = -1.073000E-0007
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 5.040000E+0000
Parameter 2 = 9.320000E-0003
Parameter 3 = 8.870000E-0006
Parameter 4 = -5.370000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 90.400000 [K]
Maximum temperature = 190.400000 [K]
Parameter 1 = -1.167000E+0001
Parameter 2 = 4.993000E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 8.125000E-0002
Parameter 5 = -2.263000E-0004
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 193.000000 [K]
Maximum temperature = 1273.000000 [K]
Parameter 1 = 1.596000E+0001
Parameter 2 = 3.439000E-0001
Parameter 3 = -8.140000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 90.400000 [K]
Maximum temperature = 190.400000 [K]
Parameter 1 = 1.502600E+0001
Parameter 2 = 1.048400E+0002
Parameter 3 = 1.904000E+0002
Parameter 4 = 1.394100E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 17. METHANOL



Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right.$ ) and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) : $1.337 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour
1.337 kg

Volume of 1 kg gas/vapour
0.748 m 3

Mass of 1 m3 liquid
809.346 kg

Volume of 1000 kg liquid : 1.236 m 3

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| A = | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{B}=$ | 0.000000 | SI units ( $\left.\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $A=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | (ppm*min) |
| $\mathrm{N}=$ | 0.000000 | (ppm*min) |
| A $=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 0.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. 1 rho $=A * \mathrm{~B}^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / \mathrm{cm} 3] \quad[g / \mathrm{cm} 3]$
Minimum temperature $=175.550000$ [K]
Maximum temperature $\quad=\quad 512.550000$ [K]
Parameter $1=2.928000 \mathrm{E}-0001$
Parameter $2=2.760000 \mathrm{E}-0001$
Parameter $3=5.125500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 205.750000 [K]
Maximum temperature = 513.150000 [K]
Parameter 1 = -4.262900E+0001
Parameter 2 = -1.186200E+0003
Parameter 3 = 2.327900E+0001
Parameter 4 = -3.508200E-0002
Parameter 5 = 1.757800E-0005
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 175.500000 [K]
Maximum temperature = 512.400000 [K]
Parameter 1 = 2.601000E+0002
Parameter 2 = 3.377000E+0002
Parameter 3 = 5.125500E+0002
Parameter 4 = 4.000000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 175.400000 [K]
Maximum temperature = 493.000000 [K]
Parameter 1 = 8.382000E-0001
Parameter 2 = -3.231000E-0003
Parameter 3 = 8.296000E-0006
Parameter 4 = -1.689000E-0010
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.000000 [K]
Maximum temperature = 1000.000000 [K]
Parameter 1 = 3.620000E+0000
Parameter 2 = 2.490000E-0002
Parameter 3 = -7.050000E-0006
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 233.000000 [K]
Maximum temperature = 512.400000 [K]
Parameter 1 = -1.709000E+0001
Parameter 2 = 2.096000E+0003
Parameter 3 = 0.000000E+0000
Parameter 4 = 4.738000E-0002
Parameter 5 = -4.893000E-0005
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 273.000000 [K]
Maximum temperature = 1173.000000 [K]
Parameter 1 = -5.636300E+0000
Parameter 2 = 3.445000E-0001
Parameter 3 = -3.340000E-0006
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 175.400000 [K]
Maximum temperature = 512.400000 [K]
Parameter 1 = 2.260000E +0001
Parameter 2 = 2.930000E+0002
Parameter 3 = 5.125500E+0002
Parameter 4 = 8.115000E-0001
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'
18. METHYL MERCAPTAN


Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ (1.000 Bar)
Gas density (ideal gas law) : $2.008 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour : 2.008 kg
Volume of 1 kg gas/vapour : 0.498 m 3
Mass of 1 m3 liquid : 875.585 kg
Volume of 1000 kg liquid : 1.142 m 3

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{B}=$ | 0.000000 | SI units ( $\left.\mathrm{Kg}^{*} \mathrm{~s} / \mathrm{m} 3\right)$ |
| $\mathrm{N}=$ | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{A}=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | (ppm*min) |
| $\mathrm{N}=$ | 0.000000 | (ppm*min) |
| $A=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 0.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * \mathrm{~B}^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\mathrm{C}=\mathrm{Tc}$ ) [g/cm3] [g/cm3]
Minimum temperature $=\quad 150.180000$ [K]
Maximum temperature $=\quad 469.950000$ [K]
Parameter $1=3.323400 \mathrm{E}-0001$
Parameter $2=2.806300 \mathrm{E}-0001$
Parameter 3 $=4.699500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 150.180000 [K]
Maximum temperature = 469.950000 [K]
Parameter 1 = 2.025240E+0001
Parameter 2 = -1.949900E+0003
Parameter 3 = -4.227100E+0000
Parameter 4 = 2.582700E-0004
Parameter 5 = -1.382000E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 150.180000 [K]
Maximum temperature = 469.950000 [K]
Parameter 1 = 1.141000E+0002
Parameter 2 = 3.101000E+0002
Parameter 3 = 4.699500E+0002
Parameter 4 = 3.787000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 233.000000 [K]
Maximum temperature = 280.000000 [K]
Parameter 1 = 5.336200E-0001
Parameter 2 = -7.525000E-0004
Parameter 3 = 4.104900E-0007
Parameter 4 = 3.962200E-0009
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 100.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 7.606200E+0000
Parameter 2 = 1.500800E-0002
Parameter 3 = 4.590600E-0006
Parameter 4 = -4.533000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 150.180000 [K]
Maximum temperature = 270.180000 [K]
Parameter 1 = -1.538600E+0000
Parameter 2 = 2.778600E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = -6.108000E-0005
Parameter 5 = 1.486600E-0007
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 273.150000 [K]
Maximum temperature = 473.150000 [K]
Parameter 1 = -3.694300E+0001
Parameter 2 = 4.530400E-0001
Parameter 3 = -4.312000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 150.180000 [K]
Maximum temperature = 469.950000 [K]
Parameter 1 = 2.183000E +0001
Parameter 2 = 3.101000E+0002
Parameter 3 = 4.699500E+0002
Parameter 4 = 1.226100E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 19. NITROGE N DIOXIDE



Functions (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ ( 1.000 Bar )
Gas density (ideal gas law) : $1.920 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m 3 gas/vapour : 1.920 kg
Volume of 1 kg gas/vapour : 0.521 m 3
Mass of 1 m3 liquid
1466.996 kg

Volume of 1000 kg liquid : 0.682 m 3

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 28.423045 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{B}=$ | 1.000000 | SI units (Kg*s/m3) |
| $\mathrm{N}=$ | 3.700000 | SI units (Kg*s/m3) |
| $A=$ | -16.192022 | (ppm*min) |
| $\mathrm{B}=$ | 1.000000 | (ppm*min) |
| $\mathrm{N}=$ | 3.700000 | (ppm*min) |
| $A=$ | -18.600000 | (mg*min/m3) |
| $\mathrm{B}=$ | 1.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 3.700000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=293.150000$ [K]
Maximum temperature $=\quad 431.350000$ [K]
Parameter $1=6.014800 \mathrm{E}-0001$
Parameter $2=2.910600 \mathrm{E}-0001$
Parameter $3=4.313500 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 261.950000 [K]
Maximum temperature = 431.350000 [K]
Parameter 1 = 1.976430E+0001
Parameter 2 = -1.998700E+0003
Parameter 3 = -4.411800E+0000
Parameter 4 = 1.708200E-0003
Parameter 5 = 3.427300E-0006
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 294.300000 [K]
Maximum temperature = 294.300000 [K]
Parameter 1 = 1.980000E+0002
Parameter 2 = 0.000000E+0000
Parameter 3 = 4.313500E+0002
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D* T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 298.000000 [K]
Maximum temperature = 400.000000 [K]
Parameter 1 = 4.812200E-0001
Parameter 2 = 8.684500E-0004
Parameter 3 = 3.060700E-0010
Parameter 4 = -2.423000E-0013
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 50.000000 [K]
Maximum temperature = 920.000000 [K]
Parameter 1 = 7.089700E+0000
Parameter 2 = 6.667900E-0003
Parameter 3 = 1.301700E-0006
Parameter 4 = -1.840000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 273.150000 [K]
Maximum temperature = 313.150000 [K]
Parameter 1 = 3.182900E+0000
Parameter 2 = -3.515200E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = -6.236000E-0003
Parameter 5 = -6.283000E-0006
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 295.000000 [K]
Maximum temperature = 460.000000 [K]
Parameter 1 = -3.679700E+0002
Parameter 2 = 2.303500E+0000
Parameter 3 = -2.114000E-0003
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 261.950000 [K]
Maximum temperature = 431.350000 [K]
Parameter 1 = 1.675000E +0001
Parameter 2 = 3.466000E+0002
Parameter 3 = 4.313500E+0002
Parameter 4 = 9.954000E-0001
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 20. PROPANE


Functions (calculated at 288.15 K
Gas density (ideal gas law) $:$
Mass of 1 m 3 gas/vapour
Volume of 15 kg gas/vapour
Mass of 1 m m liquid

| Probit constants (Toxicity) |  |  |
| :---: | :---: | :---: |
| A = | 0.000000 | SI units (Kg*s/m3) |
| $\mathrm{B}=$ | 0.000000 | SI units (Kg*s/m3) |
| $\mathrm{N}=$ | 0.000000 | SI units (Kg*s/m3) |
| $A=$ | 0.000000 | (ppm*min) |
| $B=$ | 0.000000 | (ppm*min) |
| $\mathrm{N}=$ | 0.000000 | (ppm*min) |
| A $=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 0.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. $1 \quad$ rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad$ (where $\left.C=T c\right) \quad[g / \mathrm{cm} 3] \quad[g / \mathrm{cm} 3]$
Minimum temperature $=8 \quad 85.300000$ [K]
Maximum temperature $\quad=\quad 369.700000$ [K]
Parameter $1=2.204000 \mathrm{E}-0001$
Parameter 2 $=2.753000 \mathrm{E}-0001$
Parameter $3=3.697000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 144.100000 [K]
Maximum temperature = 323.000000 [K]
Parameter 1 = 3.600700E+0001
Parameter 2 = -1.737200E+0003
Parameter 3 = -1.166600E+0001
Parameter 4 = 8.518700E-0003
Parameter 5 = 0.000000E+0000
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 85.300000 [K]
Maximum temperature = 369.700000 [K]
Parameter 1 = 1.018000E+0002
Parameter 2 = 2.309000E+0002
Parameter 3 = 3.697000E+0002
Parameter 4 = 3.800000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 85.300000 [K]
Maximum temperature = 353.000000 [K]
Parameter 1 = 3.326000E-0001
Parameter 2 = 2.332000E-0003
Parameter 3 = -1.336000E-0005
Parameter 4 = 3.016000E-0008
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = -5.800000E-0001
Parameter 2 = 6.990000E-0002
Parameter 3 = -3.290000E-0005
Parameter 4 = 6.540000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 85.300000 [K]
Maximum temperature = 369.700000 [K]
Parameter 1 = -3.372000E+0000
Parameter 2 = 3.135000E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 1.034000E-0002
Parameter 5 = -2.026000E-0005
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 193.000000 [K]
Maximum temperature = 1273.000000 [K]
Parameter 1 = 4.912000E+0000
Parameter 2 = 2.712000E-0001
Parameter 3 = -3.806000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 85.300000 [K]
Maximum temperature = 369.700000 [K]
Parameter 1 = 2.200000E+0001
Parameter 2 = 1.830000E+0002
Parameter 3 = 3.697000E+0002
Parameter 4 = 1.198200E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 21. PROPE NE

| Material_Name | = PROPENE |  |
| :---: | :---: | :---: |
| Molecular formula | $=\mathrm{CH} 3 \mathrm{CH}=\mathrm{CH} 2$ |  |
| UN number | 1077 |  |
| Molecular weight | $42.080000 \mathrm{~kg} / \mathrm{kmol}$ |  |
| Critical temperature | $364.900000 \mathrm{~K}\left(91.75{ }^{\circ} \mathrm{C}\right)$ |  |
| Melting point | $88.000000 \mathrm{~K}\left(-185.15{ }^{\circ} \mathrm{C}\right)$ |  |
| Triplepoint temperature | $87.890000 \mathrm{~K}\left(-185.26{ }^{\circ} \mathrm{C}\right)$ |  |
| Normal boiling point | $225.300000 \mathrm{~K}\left(-47.85{ }^{\circ} \mathrm{C}\right)$ |  |
| Standard net heat of combustion | $4.580400 \mathrm{E}+0007 \mathrm{~J} / \mathrm{kg}(1.927432 \mathrm{E}+0009 \mathrm{~J} / \mathrm{kmol})$ |  |
| Flash point | $165.000000 \mathrm{~K}\left(-108.15{ }^{\circ} \mathrm{C}\right)$ |  |
| Lower flammability limit | $2.000000 \mathrm{vol} \mathrm{\%}$ in air |  |
| Upper flammability limit | 100.000000 vol\% in air |  |
| Solubility in water | $0.000000 \mathrm{~kg} / \mathrm{m} 3$ |  |
| Temperature dependent data (calculated at $288.15 \mathrm{~K}\left(15.00{ }^{\circ} \mathrm{C}\right.$ ) |  |  |
| Liquid density | $=5.226934 \mathrm{E}+0002$ | kg/m3 (522.69 kg/m3 ) |
| Vapor pressure | $=8.909625 \mathrm{E}+0005$ | N/m2 (8.91 Bar ) |
| Heat of vaporization | $=3.488223 \mathrm{E}+0005$ | $\mathrm{J} / \mathrm{kg}$ (348822.30 $\mathrm{J} / \mathrm{kg}$ |
| Liquid heatcapacity | $=2.567563 \mathrm{E}+0003$ | $\mathrm{J} / \mathrm{kg}$ *K (2567.56 J/kg*K) |
| Gas heatcapacity (ideal gas) | $=1.513526 \mathrm{E}+0003$ | $\mathrm{J} / \mathrm{kg}$ *K (1513.53 J/kg*K) |
| Liquid viscosity | $=9.137159 \mathrm{E}-0005$ | Pa*S |
| Vapor viscosity | $=8.103778 \mathrm{E}-0006$ | Pa*S |
| Surface tension | $=8.282738 \mathrm{E}-0003$ | $\mathrm{N} / \mathrm{m}$ |
| Poisson ratio | $=1.150$ |  |

Functions (calculated at $288.15 \mathrm{~K}\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2(1.000 \mathrm{Bar})$
Gas density (ideal gas law) : $1.756 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m3 gas/vapour
1.756 kg

Volume of 1 kg gas/vapour
0.569 m 3

Mass of 1 m3 liquid
522.693 kg

Volume of 1000 kg liquid : 1.913 m 3

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ s/m3) |
| $\mathrm{B}=$ | 0.000000 | SI units (Kg*s/m3) |
| $\mathrm{N}=$ | 0.000000 | SI units (Kg*s/m3) |
| $A=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | (ppm*min) |
| $\mathrm{N}=$ | 0.000000 | (ppm*min) |
| A $=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 0.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):
Liquid density
Formula Nr. 1 rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right) \quad(w h e r e C=T c) \quad[g / c m 3] \quad[g / c m 3]$
Minimum temperature $=88.700000$ [K]
Maximum temperature $\quad=\quad 364.900000$ [K]
Parameter $1=2.252000 \mathrm{E}-0001$
Parameter 2 $=2.686000 \mathrm{E}-0001$
Parameter $3=3.649000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 123.000000 [K]
Maximum temperature = 365.100000 [K]
Parameter 1 = 3.687700E+0001
Parameter 2 = -1.725500E+0003
Parameter 3 = -1.205700E+0001
Parameter 4 = 8.994800E-0003
Parameter 5 = 0.000000E+0000
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 87.700000 [K]
Maximum temperature = 364.900000 [K]
Parameter 1 = 1.046000E+0002
Parameter 2 = 2.253000E+0002
Parameter 3 = 3.649000E+0002
Parameter 4 = 3.800000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 87.700000 [K]
Maximum temperature = 313.000000 [K]
Parameter 1 = 4.706000E-0001
Parameter 2 = 1.683000E-0003
Parameter 3 = -1.682000E-0005
Parameter 4 = 4.407000E-0008
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 6.800000E-0001
Parameter 2 = 5.680000E-0002
Parameter 3 = -2.860000E-0005
Parameter 4 = 5.600000E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 113.000000 [K]
Maximum temperature = 364.900000 [K]
Parameter 1 = -5.009000E+0000
Parameter 2 = 4.132000E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 1.771000E-0002
Parameter 5 = -3.092000E-0005
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 173.000000 [K]
Maximum temperature = 1273.000000 [K]
Parameter 1 = -5.601000E+0000
Parameter 2 = 3.188000E-0001
Parameter 3 = -6.291000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B) )^D (A=Sigma1, B=T1, C=TC) [dynes/cm] [dynes/cm]
Minimum temperature = 87.700000 [K]
Maximum temperature = 364.900000 [K]
Parameter 1 = 1.998000E+0001
Parameter 2 = 2.030000E+0002
Parameter 3 = 3.649000E+0002
Parameter 4 = 1.179700E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 22. SULPHUR DIOXIDE

```
Material_Name
Molecular formula
UN number
Molecular weight
Critical temperature
Melting point
Triplepoint temperature
Normal boiling point
Standard net heat of combustion
Flash point
Lower flammability limit
Upper flammability limit
Solubility in water
```

Material_Name
olecular formula
UN number

Critical temperature
Melting point
epoint temperature
Normal boiling point

Flash point
Lower flammability limit

Solubility in water
SULPHUR DIOXIDE
= SO2

SULPHUR DIOXIDE
SO2
$=1079$
$=\quad 64.060000 \mathrm{~kg} / \mathrm{kmol}$
$430.750000 \mathrm{~K}\left(157.60{ }^{\circ} \mathrm{C}\right)$ $200.000000 \mathrm{~K}\left(-73.15{ }^{\circ} \mathrm{C}\right)$ $197.670000 \mathrm{~K}\left(-75.48{ }^{\circ} \mathrm{C}\right)$ $263.130000 \mathrm{~K}\left(-10.02{ }^{\circ} \mathrm{C}\right)$
$0.000000 \mathrm{E}+0000 \mathrm{~J} / \mathrm{kg}(0.000000 \mathrm{E}+0000 \mathrm{~J} / \mathrm{kmol})$
$0.000000 \mathrm{~K}\left(-273.15{ }^{\circ} \mathrm{C}\right)$
0.000000 vol\% in air
0.000000 vol\% in air
$105.000000 \mathrm{~kg} / \mathrm{m} 3$

Temperature dependent data (calculated at $288.15 \mathrm{~K} \quad\left(15.00{ }^{\circ} \mathrm{C}\right)$
Liquid density $=1.394521 \mathrm{E}+0003 \mathrm{~kg} / \mathrm{m} 3(1394.52 \mathrm{~kg} / \mathrm{m} 3)$

Vapor pressure
Heat of vaporization
Liquid heatcapacity
Gas heatcapacity (ideal gas)
Liquid viscosity
Vapor viscosity
Surface tension
Poisson ratio
$=1.264$
Volume of 1000 kg liquid : 0.717 m 3

| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 9.862881 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 1.000000 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 2.400000 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
|  |  |  |
| $\mathrm{A}=$ | -16.843761 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 2.400000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | -19.200000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 1.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 2.400000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):

Liquid density
Formula Nr. 1 rho = A * B^-((1-T/C)^2/7) (where C=Tc) [g/cm3] [g/cm3]
Minimum temperature $=197.670000$ [K]
Maximum temperature = 430.750000 [K]
Parameter $1=5.123900 \mathrm{E}-0001$
Parameter $2=2.533200 \mathrm{E}-0001$
Parameter 3 = 4.307500E+0002
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter $5=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 197.670000 [K]
Maximum temperature = 430.750000 [K]
Parameter 1 = 2.075270E+0001
Parameter 2 = -1.831700E+0003
Parameter 3 = -4.597200E+0000
Parameter 4 = 6.785100E-0004
Parameter 5 = 4.663200E-0007
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 197.670000 [K]
Maximum temperature = 430.750000 [K]
Parameter 1 = 7.977000E+0001
Parameter 2 = 3.142000E+0002
Parameter 3 = 4.307500E+0002
Parameter 4 = 4.128800E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 197.670000 [K]
Maximum temperature = 263.130000 [K]
Parameter 1 = 3.495600E-0001
Parameter 2 = -1.321000E-0004
Parameter 3 = 8.943900E-0008
Parameter 4 = 8.704000E-0011
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 100.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = 6.487700E+0000
Parameter 2 = 1.258100E-0002
Parameter 3 = -7.544000E-0006
Parameter 4 = 1.528800E-0009
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 239.650000 [K]
Maximum temperature = 323.150000 [K]
Parameter 1 = -8.538000E-0001
Parameter 2 = 1.861800E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = -6.998000E-0004
Parameter 5 = -3.825000E-0007
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 200.000000 [K]
Maximum temperature = 1000.000000 [K]
Parameter 1 = -1.294600E+0001
Parameter 2 = 5.104600E-0001
Parameter 3 = -1.152000E-0004
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 197.670000 [K]
Maximum temperature = 430.750000 [K]
Parameter 1 = 1.862000E+0001
Parameter 2 = 3.142000E+0002
Parameter 3 = 4.307500E+0002
Parameter 4 = 1.181000E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 23. TOLUENE



| Functions (calculated at 288.15 K | $\left(15.00{ }^{\circ} \mathrm{C}\right.$ ) $\mathrm{and} 1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2$ | $(1.000 \mathrm{Bar})$ |  |
| :--- | :--- | :---: | :--- |
| Gas density (ideal gas law) | $:$ | $3.844 \mathrm{~kg} / \mathrm{m} 3$ |  |
| Mass of 1 m 3 gas/vapour | $:$ | 3.844 kg |  |
| Volume of 1 kg gas/vapour | $:$ | 0.260 m 3 |  |
| Mass of 1 m 3 liquid | $:$ | 871.010 kg |  |
| Volume of 1000 kg liquid | $:$ | 1.148 m 3 |  |


| Probit constants | (Toxicity) |  |
| :--- | ---: | :--- |
| $\mathrm{A}=$ | 0.000000 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 0.000000 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 0.000000 | SI units $(\mathrm{Kg} * \mathrm{~s} / \mathrm{m} 3)$ |
| $\mathrm{A}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{ppm} * \mathrm{~min})$ |
|  |  |  |
| $\mathrm{A}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{B}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |
| $\mathrm{N}=$ | 0.000000 | $(\mathrm{mg} * \mathrm{~min} / \mathrm{m} 3)$ |

Temperature dependent data (Parameters):
Liquid density
Formula Nr. 1 rho $=A * B^{\wedge}-\left((1-T / C)^{\wedge} 2 / 7\right)$ (where C=Tc) $[\mathrm{g} / \mathrm{cm} 3] \quad[\mathrm{g} / \mathrm{cm} 3]$
Minimum temperature $=178.000000$ [K]
Maximum temperature $=591.800000$ [ K$]$
Parameter $1=2.883000 \mathrm{E}-0001$
Parameter $2=2.624000 \mathrm{E}-0001$
Parameter 3 = $5.918000 \mathrm{E}+0002$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter $5=0.000000 \mathrm{E}+0000$

```
Vapor pressure
Formula Nr. 2 Log(P) = A + B/T + C*Log(T) + D*T + E*T^2 [mm Hg] [mm Hg]
Minimum temperature = 213.000000 [K]
Maximum temperature = 593.600000 [K]
Parameter 1 = 1.152100E+0002
Parameter 2 = -4.918100E+0003
Parameter 3 = -4.346700E+0001
Parameter 4 = 3.854800E-0002
Parameter 5 = -1.349600E-0005
Heat of vaporization
Formula Nr. 3 Hv = A * ((C-T)/(C-B)^D (A=Hv1, B=T1, C=Tc) [cal/g] [cal/g]
Minimum temperature = 178.000000 [K]
Maximum temperature = 591.800000 [K]
Parameter 1 = 8.610000E+0001
Parameter 2 = 3.836000E+0002
Parameter 3 = 5.918000E+0002
Parameter 4 = 3.800000E-0001
Parameter 5 = 0.000000E+0000
Liquid heatcapacity
Formula Nr. 4 Cpl = A + B*T + C*T^2 + D*T^3 [cal/g/K] [cal/g/K]
Minimum temperature = 178.000000 [K]
Maximum temperature = 583.000000 [K]
Parameter 1 = -1.461000E-0001
Parameter 2 = 4.584000E-0003
Parameter 3 = -1.346000E-0005
Parameter 4 = 1.425000E-0008
Parameter 5 = 0.000000E+0000
IG heatcapacity
Formula Nr. 5 Cp = A + B*T + C*T^2 + D*T^3 [cal/mol] [cal/mol]
Minimum temperature = 298.000000 [K]
Maximum temperature = 1500.000000 [K]
Parameter 1 = -9.340000E+0000
Parameter 2 = 1.385000E-0001
Parameter 3 = -8.720000E-0005
Parameter 4 = 2.060000E-0008
Parameter 5 = 0.000000E+0000
Liquid viscosity
Formula Nr. 6 Log(Visc) = Ea + Eb/T + Ec*Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature = 233.000000 [K]
Maximum temperature = 591.800000 [K]
Parameter 1 = -2.553000E+0000
Parameter 2 = 5.591000E+0002
Parameter 3 = 0.000000E+0000
Parameter 4 = 1.987000E-0003
Parameter 5 = -1.954000E-0006
Vapor viscosity
Formula Nr. 7 Visc = A + B*T + C*T^2 [microPoise] [microPoise]
Minimum temperature = 273.000000 [K]
Maximum temperature = 1273.000000 [K]
Parameter 1 = -8.421000E+0000
Parameter 2 = 2.711000E-0001
Parameter 3 = -4.018000E-0005
Parameter 4 = 0.000000E+0000
Parameter 5 = 0.000000E+0000
Surface Tension
Formula Nr. 8 Sigma = A * ((C-T)/(C-B))^D (A=Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature = 178.000000 [K]
Maximum temperature = 591.800000 [K]
Parameter 1 = 2.852000E+0001
Parameter 2 = 2.930000E+0002
Parameter 3 = 5.918000E+0002
Parameter 4 = 1.236400E+0000
Parameter 5 = 0.000000E+0000
```

CPR 14E
A nnex of the 'Y ellow B ook'

## 24. WATER



Functions (calculated at $288.15 \mathrm{~K}\left(15.00{ }^{\circ} \mathrm{C}\right)$ and $1.000000 \mathrm{E}+05 \mathrm{~N} / \mathrm{m} 2(1.000 \mathrm{Bar})$
Gas density (ideal gas law) : $0.752 \mathrm{~kg} / \mathrm{m} 3$
Mass of 1 m3 gas/vapour
0.752 kg
1.330 m 3

Volume of 1 kg gas/vapour
$\begin{array}{llr}\text { Mass of } 1 \mathrm{m3} \text { liquid } & : & 1036.876 \mathrm{~kg} \\ \text { Volume of } 1000 \mathrm{~kg} \text { liquid } & : & 0.964 \mathrm{~m} 3\end{array}$

| (Toxicity) |  |  |
| :---: | :---: | :---: |
| $\mathrm{A}=$ | 0.000000 | SI units (Kg*s/m3) |
| $\mathrm{B}=$ | 0.000000 | SI units ( $\mathrm{Kg}^{*}$ S/m3) |
| $\mathrm{N}=$ | 0.000000 | SI units (Kg*s/m3) |
| $A=$ | 0.000000 | (ppm*min) |
| $\mathrm{B}=$ | 0.000000 | (ppm*min) |
| $\mathrm{N}=$ | 0.000000 | (ppm*min) |
| A $=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{B}=$ | 0.000000 | (mg*min/m3) |
| $\mathrm{N}=$ | 0.000000 | (mg*min/m3) |

Temperature dependent data (Parameters):
Liquid density
Formula Nr. $1 \quad$ rho $=A * \mathrm{~B}^{\wedge}-\left((1-\mathrm{T} / \mathrm{C})^{\wedge} 2 / 7\right) \quad$ (where $\mathrm{C}=\mathrm{Tc}$ ) [g/cm3] [g/cm3]
Minimum temperature $\quad=\quad 273.160000$ [K]
Maximum temperature $\quad=\quad 647.350000$ [K]
Parameter $1=3.471000 \mathrm{E}-0001$
Parameter 2 $\quad=\quad 2.740000 \mathrm{E}-0001$
Parameter 3 $=6.480000 \mathrm{E}+0002$
Parameter 4 $=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Vapor pressure
Formula Nr. $2 \log (P)=A+B / T+C * \log (T)+D^{*} T+E * T \wedge 2 \quad[m m H g][m m[H g]$
Minimum temperature $\quad=\quad 273.160000[\mathrm{~K}]$
Maximum temperature $\quad=\quad 647.130000$ [K]
Parameter $1 \quad=2.988850 \mathrm{E}+0001$
Parameter $2=-3.152900 \mathrm{E}+0003$
Parameter $3 \quad=-7.315200 \mathrm{E}+0000$
Parameter $4=1.126200 \mathrm{E}-0005$
Parameter 5 $=1.804800 \mathrm{E}-0006$
Heat of vaporization
Formula $\mathrm{Nr} . \quad 3 \quad \mathrm{Hv}=\mathrm{A} *\left((\mathrm{C}-\mathrm{T}) /(\mathrm{C}-\mathrm{B})^{\wedge} \mathrm{D} \quad(\mathrm{A}=\mathrm{Hv} 1, \mathrm{~B}=\mathrm{T} 1, \mathrm{C}=\mathrm{Tc}) \quad[\mathrm{cal} / \mathrm{g}] \quad[\mathrm{cal} / \mathrm{g}]\right.$
Minimum temperature $\quad=\quad 273.160000$ [K]
Maximum temperature $\quad=\quad 647.130000$ [K]
Parameter $1=4.759000 \mathrm{E}+0002$
Parameter 2 $=4.601000 \mathrm{E}+0002$
Parameter $3=6.480000 \mathrm{E}+0002$
Parameter $4=3.774600 \mathrm{E}-0001$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Liquid heatcapacity
Formula Nr. $4 \quad \mathrm{Cpl}=\mathrm{A}+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{\star} \mathrm{T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3 \quad[\mathrm{cal} / \mathrm{g} / \mathrm{K}] \quad[\mathrm{cal} / \mathrm{g} / \mathrm{K}]$
Minimum temperature $=\quad 273.150000$ [K]
Maximum temperature $\quad=\quad 533.150000$ [K]
Parameter $1=6.933800 \mathrm{E}-0001$
Parameter 2 $=3.194400 \mathrm{E}-0003$
Parameter $3 \quad=-1.101000 \mathrm{E}-0005$
Parameter $4=1.259900 \mathrm{E}-0008$
Parameter 5 $=0.000000 \mathrm{E}+0000$

IG heatcapacity
Formula Nr. $5 \quad \mathrm{Cp}=\mathrm{A}+\mathrm{B}^{*} \mathrm{~T}+\mathrm{C}^{*} \mathrm{~T}^{\wedge} 2+\mathrm{D}^{*} \mathrm{~T}^{\wedge} 3 \quad[\mathrm{cal} / \mathrm{mol}] \quad[\mathrm{cal} / \mathrm{mol}]$
Minimum temperature $\quad=\quad 100.000000$ [K]
Maximum temperature $\quad=\quad 1500.000000$ [K]
Parameter $1=7.981000 \mathrm{E}+0000$
Parameter $2=-9.050000 \mathrm{E}-0004$
Parameter $3=4.294100 \mathrm{E}-0006$
Parameter $4=-1.507000 \mathrm{E}-0009$
Parameter 5 $=0.000000 \mathrm{E}+0000$
Liquid viscosity
Formula Nr. $6 \mathrm{Log}(V i s c)=\mathrm{Ea}+\mathrm{Eb} / \mathrm{T}+\mathrm{Ec}$ *Log (T) + Ed*T + Ee*T*T (where Ec=0!) [centiPoise]
[centiPoise]
Minimum temperature $\quad=\quad 273.150000$ [K]
Maximum temperature $\quad=\quad 643.150000$ [K]
Parameter $1=-8.426800 \mathrm{E}+0000$
Parameter 2 $=1.559300 \mathrm{E}+0003$
Parameter $3=0.000000 \mathrm{E}+0000$
Parameter $4=1.334000 \mathrm{E}-0002$
Parameter 5 $\quad=-9.176000 \mathrm{E}-0006$

Vapor viscosity
Formula Nr. $7 \quad$ Visc $=A+B * T+C * T^{\wedge} 2$ [microPoise] [microPoise]
Minimum temperature $=373.150000$ [K]
Maximum temperature $\quad=\quad 1073.100000$ [K]
Parameter $1=-3.536800 \mathrm{E}+0001$
Parameter $2=4.243600 \mathrm{E}-0001$
Parameter $3=-1.268000 \mathrm{E}-0005$
Parameter $4=0.000000 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$

Surface Tension
Formula Nr. $8 \quad$ Sigma $=A *((C-T) /(C-B))^{\wedge} D \quad(A=$ Sigma1, B=T1, C=Tc) [dynes/cm] [dynes/cm]
Minimum temperature $=273.160000$ [K]
Maximum temperature $\quad=\quad 647.130000$ [K]
Parameter 1 $=4.054000 \mathrm{E}+0001$
Parameter $2=4.601000 \mathrm{E}+0002$
Parameter $3=6.480000 \mathrm{E}+0002$
Parameter $4=1.193900 \mathrm{E}+0000$
Parameter 5 $=0.000000 \mathrm{E}+0000$


[^0]:    

[^1]:    $$
    8
    $$

[^2]:    $\qquad$

[^3]:    1) $\quad \Lambda$ and I are usually expressed in these non-SI units.
[^4]:    M ost widely-used dispersion models make use of the Pasquill-Gifford stability categories (A-unstable to F -stable) and parametrisations of the local lateral and vertical plume width ( $\sigma_{y}$ and $\sigma_{z}$ ).
    However, already Pasquill and Smith [1983] point out the restrictions of these qualitative schemes in favour of schemes using quantifications of physical parameters of the boundary layer. At the European Workshop 'Objectives for N ext Generation of Practical Short-Range Atmospheric Dispersion M odels' [Olesen, 1992] it was generally agreed that up-to-date models should use these types of stability schemes. Such a scheme is the scheme developed by H oltslag et. al. (see Section 4.3.2).
    This scheme can be coupled directly with calculation of dispersion parameters as a function of $M$ onin-Obukhov length, plume height and down-wind distance or travel time. This approach leads to good agreement with observations [Gryning et. al., 1987].
    T here is a number of additional advantages of the 'H oltslag'-scheme and the related methodology for calculation of dispersion parameters:

    - The scheme is applicable to all climatological zones;
    - The calculation of dispersion parameters can be extended to very low wind speed conditions.

[^5]:    1) $\sigma_{y}(x)$ should be read as: ' $\sigma_{y}$ as a function of $x$ '.
[^6]:    1) $\quad \sigma_{z}(x)$ should be read as: ' $\sigma_{z}$ as a function of $x$ '.
    2) $\quad H$ ere $\sigma_{x}\left(u_{a} t\right)$ should be read as: ' $\sigma_{x}$ as a function of $u_{a} \cdot t$ '
    3) $\quad \mathrm{H}$ ere $\sigma_{x}(x)$ should be read as: ' $\sigma_{x}$ as a function of $x$ '
